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Abstract: Extracellular vesicles, which are highly conserved in most cells, contain biologically active
substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin
is the most external organ and is in direct contact with the external environment. Photoaging and skin
damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and
is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to
accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin’s ability
to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful
bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research
on the interactions between the bacteria and the skin is in progress. Although several studies have
investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived
from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from
L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in
CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro.
Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results
demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition,
our study offers important evidence on the depigmentation effect of LpEVs.

Keywords: extracellular vesicles (EVs); exosome; skin aging; Lactobacillus plantarum; pigmentation

1. Introduction

Extracellular vesicles (EVs) are highly conserved lipid-membrane-enclosed vesicles
found in most cells, including prokaryotes, eukaryotes, and archaea [1,2]. EVs contain a va-
riety of biologically active substances such as proteins, lipids, nucleic acids, and metabolites.
They reflect the state of the cells from the originating molecules, and communicate with
neighboring or distant cells [3]. EVs include exosomes and micro-vesicles [4]. Exosomes
are 30–200 nm vesicles secreted from multi-vesicular endosomes (MVEs), which are endo-
somes that make up numerous vesicles and undergo fusion with the plasma membrane [5].
Micro-vesicles are 100–1000 nm in size and are produced through budding with the plasma
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membrane [6]. EVs derived from various cells interact with target cells and affect various
physiological mechanisms, such as the immune response and inflammation [7].

Bacterial-derived EVs are classified into Gram-negative and Gram-positive bacteria-
derived EVs. EVs from Gram-negative bacteria contain lipopolysaccharides (LPS) [8], and
EVs from Gram-positive bacteria contain lipoteichoic acids (LTA) [9]. Bacterial-derived EVs
are involved in transferring antibiotic resistance proteins to other bacteria [10] and induce
communications between bacteria. They also function to eliminate competing bacteria by
delivering a protein that degrades the peptidoglycans of competing bacteria [11]. Additionally,
bacterial EVs can cause disease in the host [12]. For example, Staphylococcus aureus-derived
EVs cause atopic dermatitis by delivering α-hemolysin to the skin [13]. Consequently, there
are a number of research studies that use these characteristics and optimize the transporter
mechanism to mediate drug delivery to specific cells or tissues [14–18].

Lactobacillus plantarum is a Gram-positive member of the genus Lactiplantibacillus, is
rod-shaped and 3–8 µm in length [19], and produces lactic acid [20]. L. plantarum is found
in many fermented products and has been associated with reducing allergic reactions as a
probiotic, and lowering cholesterol and triglyceride levels [21–24]. In particular, L. plantarum
suppresses various harmful Gram-positive and Gram-negative bacteria by secreting an
antimicrobial substance from the human gastrointestinal tract [25,26]. L. plantarum, which
is an aerotolerant Gram-positive bacteria, is also found on the skin, and research on the
interactions with the skin are currently in progress [27–30]. However, the effect of LpEVs
on skin wrinkle formation not have been studied.

The skin is the largest organ in the human body and the most external-facing organ,
in direct contact with the external environment [31]. Photoaging and skin damage occur
because of extrinsic factors such as UV and external harmful factors; they also occur due
to various inflammatory cytokines and intrinsic factors, such as ROS, that are generated
during metabolism [32]. Wrinkles of the skin are a major indicator of skin aging [33]. The
formation of wrinkles is caused by a decrease in the expression of collagen and hyaluronic
acid, which are components of the extracellular matrix (ECM) [34]. Simultaneously, an
increase in the expression of MMP-1, a metalloproteinase that degrades collagen, stimulates
skin wrinkles [35]. In addition, aging of the skin reduces the ability of the skin barrier
because of damage, thereby lowering the skin’s ability to contain water, and increasing the
amount of water loss [36].

Various bacteria and viruses reside in colonies in the stratum corneum and pores
of the human skin. This coexistence is known as the microbiome [37]. The composition
of the microbiome depends on the environment where the bacteria grow, a person’s sex,
and age [38,39]. This microbiome resides on the skin and maintains a balance with other
surrounding communities, making it resistant when exposed to external pathogens, and
it also serves a beneficial function in preventing infection in the body [40]. With aging,
the composition of the microbiome changes due to exposure to UV and various chemicals.
This change in the composition of the microbiome also accelerates skin aging, because the
microbiome and the skin cells in the body interact with each other [41]. Substances such as
proteins and lipids are secreted differently, due to various environment and stimuli, and
are delivered through EVs [42].

This study confirmedthe anti-aging and anti-pigmentation effects of LpEVs as demon-
strated in in vitro test and clinical trials. We foundthat the number of L. plantarum bacteria
in the skin of women in their 20s was higher than for women in their 50s, on average, and
that the absence of L. plantarum was associated with skin aging. The results confirmed that
LpEVs, which were obtained from the skin of women in their 20s, improves skin aging such
as skin wrinkling and elasticity. Therefore, these results indicate that the LpEVs in young
skin can be used as an effective anti-skin aging agent.
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2. Materials and Methods
2.1. Isolation of Microorganisms

In this study, microorganisms were isolated from human skin and the following
separation method was used: Gauze was rubbed on the women’s skin suspensions, which
were obtained by adding distilled water; then 150 µL of each sample were spread on
de Man, Rogosa, and Sharpe (MRS) agar plates under aerobic condition at 37 ◦C. Single
colonies were obtained and purified by transferring them to new MRS agar plates. The
strain was kept in MRS broth medium that contained 30% glycerol at −70 ◦C.

2.2. 16S rRNA Gene Sequence and Phylogenetic Analysis

The genomic DNA isolation Kit (Gene all, Seoul, Korea) was used to isolate the ge-
nomic DNA of the strain, according to the manufacturer’s instructions. The 16S ribosomal
RNA (rRNA) gene was amplified from chromosomal DNA of a strain using the universal
bacteria primer sets, and the full sequence was assembled with SeqMan software version 7.1
(DNASTAR Inc., Madison, WI, USA). The 16S rRNA gene sequence similarities between the
strains and other related Lactobacillus species were obtained from the GenBank database.
Multiple sequence alignments were performed using the CLUSTAL X program and calcu-
lated using the two-parameter Kimura method. Finally, a phylogenetic tree was constructed
with the neighbor-joining and maximum-parsimony methods using the MEGA7 Program.

2.3. Microorganism Preparation

Single colonies of the microorganisms that belonged to the Lactobacillus plantarum
species were inoculated and pre-incubated in MRS broth medium (KisanBio, Seoul, Korea)
at 37 ◦C for 18 h. Next, the cultures’ LpEVs were rinsed three times with DPBS to remove
residual medium, and incubated in 10% skim milk (BD, Franklin Lakes, NJ, USA) at 37 ◦C
for 24 h.

2.4. Extracellular Vesicle Isolation

L. plantarum, which was extracted from human skin tissue for use in this study, was
cultured in 10% skim milk and then Extracellular vesicles (EVs) were isolated. In detail, they
were centrifuged at 4000× g for 10 min, and the EVs were purified with ultra-centrifugation
(Hitachi, Chiyoda-ku, Tokyo, Japan) at 10,000× g for 30 min, and 150,000× g for 2.5 h. The
EV-rich pellets were re-suspended at a final volume of 100 mL with distilled water (DW),
and kept at 4 ◦C in a freezer, after filtering with a 0.22 µm bottle-top filter.

2.5. Nanoparticle Tracking Analysis (NTA)

Nanoparticle tracking analysis (NTA) was conducted with a Zetaview TWIN (Particle
Metrix, Meerbusch, DE) to confirm the diameter and concentration of the extracellular
vesicles. Lactobacillus species-derived extracellular vesicles (LpEVs) were isolated from
human skin, suspended in filtered DW at 20.15 ◦C and were irradiated with a blue-light
laser wavelength (λ = 488 nm). The sample conductivity was performed at 42.19 µS/cm and
the filter wavelength was measured with backscatter detection. Samples were measured
with dilution (dilution factor was 500) on the equivalent sample aliquot. The data were
analyzed using ZetaView Software (version 8.05).

2.6. Cell Culture

The human dermal fibroblasts (CCD986sk) were purchased from the American Type
Culture Collection (Manassas, VA, USA) and incubated in DMEM high glucose medium
(WelGene Inc., Daegu, Korea), supplemented with 10% fetal bovine serum (FBS, WelGene
Inc., Daegu, Korea) and 1% penicillin/streptomycin (Hyclone Laboratories Inc., Logan, UT,
USA) at 37 ◦C, in an atmosphere that contained 5% CO2.
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2.7. Cell Viability Assay

We investigated changes of viability in cells based on treatment with LpEVs. The cell
viability was determined using the cell proliferation reagent WST-1 (Dojindo Molecular
Technologies Inc., Rockville, MD, USA). Cells were seeded in a 96-well plate at 1 × 104
cells/well in 200 µL of complete conditioned medium, supplemented with 10% FBS and
1% penicillin/streptomycin. Cells were incubated for 18 h at 37 ◦C in an atmosphere that
contained 5% CO2. Cells were then simultaneously treated with 0.625%, 1.25%, 5%, and
10% concentrations of dose-dependent LpEVs, and incubated for 24 h at 37 ◦C and 5% CO2.
After incubation, 200 µL/well WST-1 reagents were added and incubated for 2 h at 37 ◦C.
The cells were then measured absorbance against a background control with a microplate
reader (BioTek Instruments, Inc., Winooski, VT, USA) at 450 nm.

2.8. LpEV Treatment Induces Elastase Inhibitory Activity

Elastase inhibitory activity was performed in Tris-HCL buffer (0.2 mM, pH 8.0).
Porcine pancreatic elastase (Sigma-Aldrich, St. Louis, MO, USA) was dissolved to make a
5 mg/mL stock solution in distilled water (DW). As substrate, N-Succinyl-Ala-Ala-Ala-p-
nitroanilide was dissolved in a buffer at 1.8 mM. The LpEVs were treated and incubated
with the enzyme for 20 min before adding a substrate to begin the reaction. The final
reaction mixture (total volume 200 µL) contained the buffer. distilled water (DW) was used
as negative control. Elastase inhibitory activity was measured continuously for 30 min
immediately afteradding the substrateusing a Microplate Reader (BioTek Instruments, Inc.,
Winooski, VT, USA) in 96-well micro-plates.

The percentage inhibition for elastase inhibitory activity is calculated by:

Elastase inhibitory activity (%) = [(ODcontrol(DW) − ODLpEV)/ODcontrol(DW)] × 100

2.9. mRNA Expression Analysis with Reverse Transcript PCR (RT-PCR)

We performed a RT-PCR analysis to investigate changes in mRNA expression, and
to determine genes that were correlated with skin elasticity and treatment with LpEVs.
A TRIzol reagent (Sigma-Aldrich Chemical Co., St. Louis, MO, USA) was used to ex-
tract mRNA from CCD986sk dermal fibroblasts treated with LpEVs. Assessment of the
purity and integrity of the mRNA was performed using a Nano Drop™ 2000/2000c Spec-
trophotometer (Thermo Fisher scientific, Waltham, MA, USA) and analyzed at 260/280 nm.
RT-PCR was conducted with primers for matrix metalloproteinase-1 (MMP-1), pro-collagen
type I (COL1A1), and filaggrin (FLG). The primer sequences used in this study are shown
in Table 1 and these primers, which were designed by ourselves, were used. The RNA
template was reverse-transcribed using amfi-Rivert cDNA Synthesis Platinum Master Mix
(GenDEPOT, Katy, TX, USA) and amplified by PCR using a C1000 Touch™ thermal cycler
(Bio-rad, Hercules, CA, USA). The PCR program included an initial denaturation at 95 ◦C
for 2 min, followed by 40 cycles of 30 s at 95 ◦C, 90 s at 62 ◦C, and 5 min at 70 ◦C. In this
study, all mRNA expression experiments were repeated more than three times.

Table 1. Each primer sequences and Tm information used in this study.

Primer Primer Sequence Tm (◦C)

Actin
Forward 5′—CATGAAGTGTGACGTGGACA—3′

58 ◦CReverse 5′—CAGGGCAGTGATCTCCTTCT—3′

COL1A1
Forward 5′—GACCTCAAGATGTGCCACTC—3′

58 ◦CReverse 5′—CCAGTCTCCATGTTGCAGAA—3′

MMP-1
Forward 5′—CCCAGCGACTCTAGAAACAC—3′

58 ◦CReverse 5′—GCCTCCCATCATTCTTCAGG—3′

Filaggrin Forward 5′—GCTGAAGGAACTTCTGGAAAAG—3′
62 ◦CReverse 5′—GCCAACTTGAATACCATCAGAAG—3
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2.10. Protein Expression Analysis with Western Blot

We investigated the effects of Hyaluronidase 2 (HAS2), which is known to lyase
hyaluronic acid in vitro, to confirm the skin moisturizing effects of LpEV treatments. Dermal
fibroblasts were stimulated for 24 h and harvested. The proteins in cells were extracted
with 1 × RIPA buffer and a proteinase/phosphate inhibitor buffer, and run on 10% SDS-
PAGE gels. Proteins were then blotted on the PVDF membrane, and immune-detected
with primary antibodies against HAS2 (ab140671, abcam, Chambridge, UK), and with a
secondary anti-mouse antibody (ab6728, abcam, Chambridge, UK). A ChemiDoc imaging
system was used for detection (ChemiDoc XRS+, Bio-Rad, Hercules, CA, USA). The HAS2
protein volume was normalized by actin protein expression.

2.11. Preparation of Skin Application Solutions

Mannitol 5% that contained Lactobacillus extracellular vesicles was used for an experi-
mental group, and Mannitol 5% was used as a control group. Thereafter, phosphate-buffered
saline was added and adjusted to 100%. Samples were stored at 5 ◦C to 25 ◦C.

2.12. Volunteer Recruitment and Selection

The test period was from 26 November 2020 to 24 December 2020. Of a total of 20
volunteers, 16 Korean women were tested and 4 dropped out (IRB Number: KDRI-IRB-
20936). The criteria for selecting volunteers were as follows: (1) a person who voluntarily
wrote and signed an informed consent form after the principal investigator, or a person
delegated by the principal investigator, fully explained and informed the research subject;
(2) a healthy person without acute or chronic physical diseases, including skin diseases;
(3) a subject that could complete a follow-up during the testing period. Treated methods
are directly used by study subjects. They mix agent 1 and 2, evenly did on face twice a
day in the morning and evening. And then, they measured skin condition every 2 weeks
for 4 weeks. Before the test, the volunteers first removed any waste or debris; then, after
resting at 20–24 ◦C with 40–60% RH, for 30 min, they took pictures using MARK Vu and
F-ray equipment. Thereafter, the measurement site was partitioned and instrumental
measurement was performed. Photography and device evaluation were performed in the
same manner after 2-week and 4-week periods.

2.13. Skin Contour Measurement

F-Ray and Moire techniques were used to measure skin contours. The elasticity was
measured by shooting at a total of seven angles (front, left and right 30◦, 45◦, 60). An
18-megapixel camera was used.

2.14. Skin Image Measurement

A MARK Vu (PSI PLUS, Suwon-si, Korea) was used for skin image measurement.
A continuous light source that used four types of LEDs—general light, polarized light,
ultraviolet light, and glossy light—was used. Using the device’s Detail Logic program, we
were able to assess 13 different skin conditions such as pores, wrinkles, blemishes, and
sebum, from high-resolution photos.

2.15. Skin Wrinkles, Elasticity, and Dermal Density Measurements

Skin wrinkles were measured using ANTERA 3D (Miravex, Dublin, Ireland) which is a
high-resolution three-dimensional image measuring device that obtained three-dimensional
images of the skin by using an optical method and a mathematical algorithm. The image
measured the depth and width of fine wrinkles, the roughness of the skin, and the number
of pores. A Cutometer® MPA 580 (Courage & Khazaka, Cologne, Germany) was used for
skin elasticity analysis. Dermal density was measured using Ultrasound (DermaLab Skin,
CORTEX TECHNOLOGY, Hadsund, Denmark) equipment.
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2.16. Statistical Analysis

Significance was confirmed using the Minitab 19 (Minitab® 19.2, Minitab Inc., State
College, PA, USA) program. The paired t-test was used to compare the values measured before
and after the test, and the significance was confirmed at the level of p < 0.05, p < 0.01, p < 0.001,
through repeated measure ANOVA, by repeating measurements three or more times.

3. Results
3.1. S rRNA and Phylogenetic Analysis of Lactobacillus plantarum

We previously found that the population of L. plantarum was significantly higher in the
skin of women in their 20s than those in their 50s, on average (Figure 1). We hypothesized
that the decrease in L. plantarum might be related to skin aging. To confirm this hypothesis,
we collected specimens from the foreheads of women in their 20s, and L. plantarum was
isolated on MRS agar plates. In order to identify whether the isolated strain was actually L.
plantarum, we extracted genomic DNA and amplified 16S RNA chromosomal DNA. The
amplified sequence was assembled using SeqMan software and a BioEdit program. The
results were consistent with L. plantarum in the GenBank database (Figure 2), and this strain
was used for subsequent experiments.

Figure 1. Quantitative data of L. plantarum ratio of skin of women in their (A,B) 20 s and (C,D) 50 s.
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Figure 2. Phylogenetic tree based on 16S rRNA gene sequences of Lactobacillus plantarum isolated
from skin of women in their 20′s.

3.2. Lactobacillus plantarum Actively Secretes EVs

We isolated extracellular vesicles secreted from L. plantarum of women in their 20s using
ultracentrifugation, analyzed LpEVs with a nanoparticle tracking analysis (NTA) video, and con-
firmed their size and distribution (Figure 3A). NTA analysis revealed that the LpEVs exist in exo-
some forms (Figure 3B). The EV particles had an average diameter of
126.5± 56.4 nm, an average size of 50–200 nm, and the concentration of EVs was 35.86 µg/mL
(per mL). The number of particles per mL of EVs and mg of protein concentration was
9.1 × 109 per 1 mL, and 2.53 × 1011 per 1 mg of protein (Figure 3C). From these results, we
determined that L. plantarum isolated from the skin of women in their 20s actively secretes
EVs, with sizes that range from 50 to 200 nm.

3.3. LpEV Treatment Induces Cell Proliferation and Regulates ECM Degradation-Associated
Gene Expression

Senescent cells are characterized by their inability to proliferate [43]. Therefore, we
validated proliferation to confirm the effect of LpEVs in fibroblasts. The result means that
the LpEVs have an effect on proliferation in fibroblasts at concentrations of 2.5 and 5%, but
not 10% (Figure 4A). We then investigated ECM-related gene expression. The cells that
make up the dermis are surrounded by an extracellular matrix (ECM) that connects them
and allows the cells to maintain their shape. First, we irradiated UVA and then treated
LpEVs in fibroblasts.We examined MMP-1 expression and the amount of elastase to confirm
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the effect of LpEVs on ECM degradation (Figure 4B). The mRNA level of MMP-1, an enzyme
that degrades the ECM, decreased significantly based on the assessment of 0.625% of LpEVs.
In addition, in order to confirm the skin elasticity effect of LpEVs treatment, fibroblasts
were treated with LpEVs, and then the elastase activity was analyzed. As a result, we
found that LpEVs increased the inhibition of elastase activity, which is a peptidase, from
approximately 20% at a concentration of 1.25% to 40% at a 10% concentration (Figure 4C).
These results showed that the EVs of women in their 20s affect cell proliferation, and can
inhibit the expression or activities of ECM degradation enzymes and peptidase.

Figure 3. Purification and characteristics of Lactobacillus plantarum-derived extracellular vesicles
(LpEVs): (A) a representative frame from one of the LpEVs’ nanoparticle tracking analysis videos.
The purified EVs were diluted 1:500 in distilled water; (B) the particle size and number of LpEVs
determined by nanoparticle tracking analysis (NTA); (C) protein and particle concentration of LpEVs.

Figure 4. Evaluation of the effects of LpEVs on MMP-1 mRNA expression levels using RT-PCR in
CCD986sk: (A) cell Proliferation of LpEVs in CCD986sk dermal fibroblasts. Cell proliferation assays
were performed on cells treated with LpEVs in a dose dependent manner (** p < 0.01); (B) the MMP-1
expression levels in CCD986sk after irradiation of UVA and treatment of LpEVs (* p < 0.05); (C) the
elastase inhibitory activity was measured in a dose dependent manner in CCD986sk (** p < 0.01,
*** p < 0.001).

3.4. LpEV Treatment Induces ECM Production-Associated Gene Expression

We examined mRNA expression of Type 1 procollagen following LpEVs treatment
in CCD986sk dermal fibroblasts, to investigate influence of LpEVs on ECM production as
well as ECM degradation. The mRNA level of Type 1 procollagen increased by a factor of
1.7 times compared with TGF-beta that was used as a positive control. LpEVs increased
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in a dose-dependent manner and to about 1.6 times the baseline measurement at 10%
concentration (Figure 5A). Filaggrin is involved in epidermal homeostasis and maintains
the skin barrier function. Filaggrin expression is generally reduced as aging occurs [44].
Accordingly, we investigated whether LpEVs affect the expression of filaggrin in CCD986sk
dermal fibroblasts. As a result, LpEVs increased the mRNA expression of filaggrin by more
than 2 times at a concentration of 2.5–10% (Figure 5B). In addition, the protein expression
of HAS2, which induces hyaluronic acid synthesis and plays a crucial role as a crosslinking
of ECM [45], decreased slightly at low concentrations of EV (0.625–2.5%), but increased by
about 20–30% at 5% and 10% concentrations (Figure 5C). Therefore, LpEVs increase the
expression of ECM components and the enzymes related to ECM.

Figure 5. Evaluation of the effects of LpEVs on collagen, filaggrin, and HAS2 expression levels in
CCD986sk: (A) collagen mRNA expression levels (* p < 0.05); (B) filaggrin mRNA levels (* p < 0.05,
** p < 0.01); (C) HAS2 protein levels in CCD986sk after 24h of treatment (* p < 0.05, ** p < 0.01).

3.5. LpEV Treatment Suppresses Wrinkle Formation in Clinical Trials

Ultraviolet radiation or damage caused by aging reduce skin elasticity and cause
wrinkle formation [46,47]. We conducted clinical assessments on 16 skin wrinkles around
the eyes of women in their 50s, on average, to determine whether LpEVs can restore the
aging index in aging skin (Table 2). We applied LpEVs (or placebo EVs) to the wrinkles
around the eye, and the wrinkles were measured at 0, 2, and 4 weeks with the Antera 3D.
The indentation index value (A.U.), which determines the degree of wrinkles around the
eyes, decreased by 8.9% at 2 weeks and 15.89% at 4 weeks compared to week 0, whereas
there was no change in the placebo group (Figure 6A). Skin elasticity improved by 14.76%
at 2 weeks and by 27.07% at 4 weeks (Figure 6B). The Antera 3D image showed that
treatment of LpEVs gradually decreased the distribution and formation of wrinkles at 2 and
4 weeks. In contrast, it was difficult to confirm a significant wrinkle change in the placebo
group (Figure 6C). These results suggest that LpEV treatment improves skin elasticity and
suppresses wrinkle formation.
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Table 2. Subject information of clinical trials.

Subjects of Clinical Trials (IRB Number: KDRI-IRB-20936) *

Gender Age Average Age

Female
40’s 50’s

Age 50n = 6 n = 10

Total n = 16
*: Each data partner obtained the necessary Institutional Review Board (IRB) approval or exemption.

Figure 6. Evaluation of the effects of LpEVs on wrinkle formation: (A) eye-wrinkle improvement
assessments in clinical trials; (B) epidermidis elasticity improvement results in clinical trials; and (C)
Antera 3D image (Wrinkle: Small) from clinical trials.

3.6. LpEV Treatment Moisturizes Skin and Enhances Skin Density

A major characteristic of skin aging is the change in moisture content and skin density.
The moisture content of the skin decreases as the skin barrier weakens, and skin density is
also reduced due to a decrease in the ECM [45,48,49]. Therefore, we tried to assess whether
LpEVs can affect and improve the water content and density in the skin. Unlike the placebo
group, which had no significant effect, the LpEVs increased water content by 10.79% at
2 weeks and 21.40% at 4 weeks (Figure 7A). We confirmed that skin density increased at
the 2-week and 4-week assessments in both groups, using ultrasound (Figure 7B). Image
quantification images showed an increase in skin density, but the increased rate of the
density (39.30%) of the LpEV group was higher than that of the placebo (15.19%) (Figure 7C).
Therefore, we confirmed that LpEVs suppress the reduction in skin moisture content and
increase skin density.
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Figure 7. Evaluation of the effects of LpEVs on moisture contents and skin density: (A) skin moisture
improving effects; (B) ultrasound images; and (C) a numerical graph of the skin density improvement rate.

3.7. LpEV Treatment Suppresses Skin Pigmentation Caused by Aging

Another factor of skin aging is skin pigmentation [50]. We investigated whether the
LpEVs had a whitening effect that suppressed pigmentation caused by aging. As a result,
for patients treated with LpEVs, unlike the placebo, the pigmentation of the lesion sites
was decreased at the 2-week and 4-week assessments (Figure 8A,C). In the LpEV treatment
group, skin density improved by 3.87% at 2 weeks and 8.7% at 4 weeks (Figure 8B).
Therefore, these data showed that LpEVs have an effect on pigmentation caused by skin
aging. Consequently, LpEVs have a great anti-aging effect.

Figure 8. Evaluation of the effects of pigmentation reduction through image analysis (Mark Vu) with
LpEVs in clinical trials: (A) Mark Vu image; (B) the numerical graph of the skin density improvement
rate of (A); (C) degree of reduction in pigmentation in visual reading.

4. Discussion

Skin aging is caused by external factors such as UV rays and internal factors, which
include telomere shortening [51–53]. Recently, studies on the skin microbiome have at-
tracted considerable interest, because it has been identified as a factor that can impact
skin aging [54,55]. The difference in the microbiome composition of young and aged skin
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suggests that the microbiome may be involved in skin aging [56]. The microbiome has
direct contact with the outermost skin, and also interacts with the skin cells by secreting
extracellular vesicles (EVs), such as exosomes, that contain biologically active molecules [4].
Therefore, we hypothesized that differences in the microbiome between women in their 20s
and 50s, on average, would be related to skin aging.

LpEVs have an effect on the cell proliferation of CCD986sk dermal fibroblasts (Figure 4A).
It is known that many EVs have an anti-aging effect, and can increase skin density by restoring
or increasing the proliferation of fibroblasts [57]. Likewise, the data showed that the EVs of
L. plantarum increased cell proliferation. We then investigated the LpEVs in this experiment-
induced processes that inhibited ECM degradation (Figure 4B,C) and increased the expression
of proteins related to ECM such as collagen, filaggrin and HAS2 (Figure 5). Based on our
results, we suggest that L. plantarum could be applied to help prevent skin aging.

We conducted clinical assessments on women that were in their 50s women, on
average, and confirmed the aging index, which is caused by a decrease in skin elasticity and
wrinkle formation. We found that LpEVs could reduce wrinkle formation (Figure 6). The
loss of moisture content in the skin arises from damage to the skin barrier [48]. Interestingly,
LpEVs increased the moisture content of the skin (Figure 7). However, future studies are
required to assess whether the LpEVs restore the skin barrier or the moisture content is
increased by the ECM improvements, such as collagen and hyaluronic acid. In addition,
another characteristic caused by damage to the skin barrier is an increase in the amount of
water loss in the skin. Therefore, it is important to also assess the amount of moisture loss
in the skin.

We also determined that LpEVs suppressed pigmentation caused by aging skin for
women in their 50s, on average (Figure 8). Our results showed that the LpEVs can influence
aging-induced pigmentation. Further studies on the depigmentation effect can further
elucidate the applications for LpEVs.

In this study, we demonstrated that women in their 20s had a higher population of
L. plantarum in their skin microbiome than women in their 50s, on average. Additionally,
LpEVs could suppress aging factors (Figure 9). Consequently, the results suggest that LpEVs,
which are components of the skin microbiome, can be applied as an effective anti-aging
agent to improve skin aging, and also as an effective anti-pigmentation agent.

Figure 9. The anti-aging effects of extracellular vesicles derived from Lactobacillus plantarum isolated
from the skin of women in their 20s.
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16. Surman, M.; Drożdż, A.; Stępień, E.; Przybyło, M. Extracellular Vesicles as Drug Delivery Systems-Methods of Production and
Potential Therapeutic Applications. Curr. Pharm. Des. 2019, 25, 132–154. [CrossRef]

http://doi.org/10.3402/jev.v2i0.20384
http://www.ncbi.nlm.nih.gov/pubmed/24009897
http://doi.org/10.3390/ijms20225695
http://www.ncbi.nlm.nih.gov/pubmed/31739393
http://doi.org/10.1016/j.cell.2016.01.043
http://doi.org/10.1152/physiol.00045.2018
http://doi.org/10.1155/2018/3634563
http://www.ncbi.nlm.nih.gov/pubmed/30148165
http://doi.org/10.1039/D1RA01576A
http://doi.org/10.1093/hmg/dds317
http://doi.org/10.1136/gutjnl-2018-317726
http://doi.org/10.1128/CDLI.10.2.259-266.2003
http://www.ncbi.nlm.nih.gov/pubmed/12626452
http://doi.org/10.1093/jac/dkt307
http://doi.org/10.1038/nrmicro3074
http://doi.org/10.3389/fmicb.2018.01502
http://doi.org/10.7150/thno.37097
http://doi.org/10.3390/pharmaceutics12111006
http://doi.org/10.2174/1381612825666190306153318


Curr. Issues Mol. Biol. 2022, 44 539

17. Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Karamanos, Y. Targeting and Crossing the Blood-Brain Barrier with
Extracellular Vesicles. Cells 2020, 9, 851. [CrossRef]

18. Agarwal, S.; Agarwal, V.; Agarwal, M.; Singh, M. Exosomes: Structure, Biogenesis, Types and Application in Diagnosis and Gene
and Drug Delivery. Curr. Gene Ther. 2020, 20, 195–206. [CrossRef] [PubMed]

19. Edem, E.E.; Nathaniel, B.U.; Nebo, K.E.; Obisesan, A.O.; Olabiyi, A.A.; Akinluyi, E.T.; Ishola, A.O. Lactobacillus plantarum
Mitigates Sexual-Reproductive Deficits by Modulating Insulin Receptor Expression in the Hypothalamic-Pituitary-Testicular Axis
of Hyperinsulinemic Mice. Drug Metab. Pers. Ther. 2021. [CrossRef] [PubMed]

20. Passos, F.V.; Fleming, H.P.; Ollis, D.F.; Felder, R.M.; McFeeters, R.F. Kinetics and Modeling of Lactic Acid Production by
Lactobacillus plantarum. Appl. Environ. Microbiol. 1994, 60, 2627–2636. [CrossRef] [PubMed]

21. Nguyen, T.; Kang, J.H.; Lee, M.S. Characterization of Lactobacillus plantarum PH04, a Potential Probiotic Bacterium with Cholesterol-
Lowering Effects. Int. J. Food Microbiol. 2007, 113, 358–361. [CrossRef]

22. Zheng, Z.; Cao, F.; Wang, W.; Yu, J.; Chen, C.; Chen, B.; Liu, J.; Firrman, J.; Renye, J.; Ren, D. Probiotic Characteristics of
Lactobacillus plantarum E680 and its Effect on Hypercholesterolemic Mice. BMC Microbiol. 2020, 20, 1–9. [CrossRef]

23. Prakoeswa, C.; Herwanto, N.; Prameswari, R.; Astari, L.; Sawitri, S.; Hidayati, A.N.; Indramaya, D.M.; Kusumowidagdo, E.R.;
Surono, I.S. Lactobacillus plantarum IS-10506 Supplementation Reduced SCORAD in Children with Atopic Dermatitis. Benef.
Microbes 2017, 8, 833–840. [CrossRef]

24. Nagata, Y.; Yoshida, M.; Kitazawa, H.; Araki, E.; Gomyo, T. Improvements in Seasonal Allergic Disease with Lactobacillus plantarum
no. 14. Biosci. Biotechnol. Biochem. 2010, 74, 1869–1877. [CrossRef]

25. Wang, J.; Zeng, Y.; Wang, S.; Liu, H.; Zhang, D.; Zhang, W.; Wang, Y.; Ji, H. Swine-Derived Probiotic Lactobacillus plantarum Inhibits
Growth and Adhesion of Enterotoxigenic Escherichia coli and Mediates Host Defense. Front. Microbiol. 2018, 9, 1364. [CrossRef]

26. Dinev, T.; Beev, G.; Tzanova, M.; Denev, S.; Dermendzhieva, D.; Stoyanova, A. Antimicrobial Activity of Lactobacillus plantarum
against Pathogenic and Food Spoilage Microorganisms: A Review. Bulg. J. Vet. Med. 2018, 21, 253–268. [CrossRef]

27. Valdez, J.C.; Peral, M.C.; Rachid, M.; Santana, M.; Perdigon, G. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa
in Vitro and in Infected Burns: The Potential use of Probiotics in Wound Treatment. Clin. Microbiol. Infect. 2005, 11, 472–479.
[CrossRef]

28. Chen, Y.E.; Fischbach, M.A.; Belkaid, Y. Skin Microbiota–host Interactions. Nature 2018, 553, 427–436. [CrossRef] [PubMed]
29. Tsai, W.; Chou, C.; Chiang, Y.; Lin, C.; Lee, C. Regulatory Effects of Lactobacillus plantarum-GMNL6 on Human Skin Health by

Improving Skin Microbiome. Int. J. Med. Sci. 2021, 18, 1114. [CrossRef] [PubMed]
30. Nam, B.; Kim, S.A.; Park, S.D.; Kim, H.J.; Kim, J.S.; Bae, C.H.; Kim, J.Y.; Nam, W.; Lee, J.L.; Sim, J.H. Regulatory Effects of

Lactobacillus plantarum HY7714 on Skin Health by Improving Intestinal Condition. PLoS ONE 2020, 15, e0231268. [CrossRef]
[PubMed]

31. Kolarsick, P.A.; Kolarsick, M.A.; Goodwin, C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses Assoc. 2011, 3, 203–213.
[CrossRef]

32. Kammeyer, A.; Luiten, R.M. Oxidation Events and Skin Aging. Ageing Res. Rev. 2015, 21, 16–29. [CrossRef]
33. Scharffetter–Kochanek, K.; Brenneisen, P.; Wenk, J.; Herrmann, G.; Ma, W.; Kuhr, L.; Meewes, C.; Wlaschek, M. Photoaging of the

Skin from Phenotype to Mechanisms. Exp. Gerontol. 2000, 35, 307–316. [CrossRef]
34. Cole, M.A.; Quan, T.; Voorhees, J.J.; Fisher, G.J. Extracellular Matrix Regulation of Fibroblast Function: Redefining our Perspective

on Skin Aging. J. Cell Commun. Signal. 2018, 12, 35–43. [CrossRef] [PubMed]
35. Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and

Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [CrossRef] [PubMed]
36. Verdier-Sévrain, S.; Bonté, F. Skin Hydration: A Review on its Molecular Mechanisms. J. Cosmet. Dermatol. 2007, 6, 75–82.

[CrossRef]
37. Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14,

e1002533. [CrossRef]
38. Grice, E.A.; Segre, J.A. The Skin Microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [CrossRef]
39. Orland, C.; Emilson, E.J.; Basiliko, N.; Mykytczuk, N.C.; Gunn, J.M.; Tanentzap, A.J. Microbiome Functioning Depends on

Individual and Interactive Effects of the Environment and Community Structure. ISME J. 2019, 13, 1–11. [CrossRef] [PubMed]
40. Findley, K.; Grice, E.A. The Skin Microbiome: A Focus on Pathogens and their Association with Skin Disease. PLoS Pathog. 2014,

10, e1004436. [CrossRef]
41. Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [CrossRef] [PubMed]
42. Macia, L.; Nanan, R.; Hosseini-Beheshti, E.; Grau, G.E. Host-and Microbiota-Derived Extracellular Vesicles, Immune Function,

and Disease Development. Int. J. Mol. Sci. 2020, 21, 107. [CrossRef]
43. Wang, A.S.; Dreesen, O. Biomarkers of Cellular Senescence and Skin Aging. Front. Genet. 2018, 9, 247. [CrossRef] [PubMed]
44. McGrath, J.A.; Uitto, J. The Filaggrin Story: Novel Insights into Skin-Barrier Function and Disease. Trends Mol. Med. 2008, 14,

20–27. [CrossRef]
45. Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic Acid: A Key Molecule in Skin Aging. Derm.-Endocrinol. 2012, 4,

253–258. [CrossRef] [PubMed]
46. Baumann, L. Skin Ageing and its Treatment. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2007, 211, 241–251. [CrossRef]

http://doi.org/10.3390/cells9040851
http://doi.org/10.2174/1566523220999200731011702
http://www.ncbi.nlm.nih.gov/pubmed/32787759
http://doi.org/10.1515/dmpt-2021-1000195
http://www.ncbi.nlm.nih.gov/pubmed/34002580
http://doi.org/10.1128/aem.60.7.2627-2636.1994
http://www.ncbi.nlm.nih.gov/pubmed/16349339
http://doi.org/10.1016/j.ijfoodmicro.2006.08.015
http://doi.org/10.1186/s12866-020-01922-4
http://doi.org/10.3920/BM2017.0011
http://doi.org/10.1271/bbb.100270
http://doi.org/10.3389/fmicb.2018.01364
http://doi.org/10.15547/bjvm.1084
http://doi.org/10.1111/j.1469-0691.2005.01142.x
http://doi.org/10.1038/nature25177
http://www.ncbi.nlm.nih.gov/pubmed/29364286
http://doi.org/10.7150/ijms.51545
http://www.ncbi.nlm.nih.gov/pubmed/33526970
http://doi.org/10.1371/journal.pone.0231268
http://www.ncbi.nlm.nih.gov/pubmed/32275691
http://doi.org/10.1097/JDN.0b013e3182274a98
http://doi.org/10.1016/j.arr.2015.01.001
http://doi.org/10.1016/S0531-5565(00)00098-X
http://doi.org/10.1007/s12079-018-0459-1
http://www.ncbi.nlm.nih.gov/pubmed/29455303
http://doi.org/10.3390/ijms17060868
http://www.ncbi.nlm.nih.gov/pubmed/27271600
http://doi.org/10.1111/j.1473-2165.2007.00300.x
http://doi.org/10.1371/journal.pbio.1002533
http://doi.org/10.1038/nrmicro2537
http://doi.org/10.1038/s41396-018-0230-x
http://www.ncbi.nlm.nih.gov/pubmed/30042502
http://doi.org/10.1371/journal.ppat.1004436
http://doi.org/10.1038/nrmicro.2017.157
http://www.ncbi.nlm.nih.gov/pubmed/29332945
http://doi.org/10.3390/ijms21010107
http://doi.org/10.3389/fgene.2018.00247
http://www.ncbi.nlm.nih.gov/pubmed/30190724
http://doi.org/10.1016/j.molmed.2007.10.006
http://doi.org/10.4161/derm.21923
http://www.ncbi.nlm.nih.gov/pubmed/23467280
http://doi.org/10.1002/path.2098


Curr. Issues Mol. Biol. 2022, 44 540

47. Fujimura, T.; Haketa, K.; Hotta, M.; Kitahara, T. Loss of Skin Elasticity Precedes to Rapid Increase of Wrinkle Levels. J. Dermatol.
Sci. 2007, 47, 233–239. [CrossRef]

48. Leyden, J.J. Clinical Features of Ageing Skin. Br. J. Dermatol. 1990, 122, 1–3. [CrossRef]
49. Rawlings, A.V.; Harding, C.R. Moisturization and Skin Barrier Function. Dermatol. Ther. 2004, 17, 43–48. [CrossRef] [PubMed]
50. Helfrich, Y.R.; Sachs, D.L.; Voorhees, J.J. Overview of Skin Aging and Photoaging. Dermatol. Nurs. 2008, 20, 177–183.
51. Kosmadaki, M.G.; Gilchrest, B.A. The Role of Telomeres in Skin Aging/Photoaging. Micron 2004, 35, 155–159. [CrossRef]
52. Blasco, M.A. Telomere Length, Stem Cells and Aging. Nat. Chem. Biol. 2007, 3, 640–649. [CrossRef]
53. Gilchrest, B.A.; Eller, M.S.; Yaar, M. Telomere-Mediated Effects on Melanogenesis and Skin Aging. J. Investig. Dermatol. Symp.

Proc. 2009, 14, 25–31. [CrossRef]
54. Li, Z.; Bai, X.; Peng, T.; Yi, X.; Luo, L.; Yang, J.; Liu, J.; Wang, Y.; He, T.; Wang, X. New Insights into the Skin Microbial Communities

and Skin Aging. Front. Microbiol. 2020, 11, 2603. [CrossRef] [PubMed]
55. Zapata, H.J.; Quagliarello, V.J. The Microbiota and Microbiome in Aging: Potential Implications in Health and Age-related

Diseases. J. Am. Geriatr. Soc. 2015, 63, 776–781. [CrossRef] [PubMed]
56. Shibagaki, N.; Suda, W.; Clavaud, C.; Bastien, P.; Takayasu, L.; Iioka, E.; Kurokawa, R.; Yamashita, N.; Hattori, Y.; Shindo, C.

Aging-Related Changes in the Diversity of Women’s Skin Microbiomes Associated with Oral Bacteria. Sci. Rep. 2017, 7, 10567.
[CrossRef]

57. Glady, A.; Vandebroek, A.; Yasui, M. Human Keratinocyte-Derived Extracellular Vesicles Activate the MAPKinase Pathway and
Promote Cell Migration and Proliferation in Vitro. Inflamm. Regen. 2021, 41, 4. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jdermsci.2007.05.002
http://doi.org/10.1111/j.1365-2133.1990.tb16118.x
http://doi.org/10.1111/j.1396-0296.2004.04S1005.x
http://www.ncbi.nlm.nih.gov/pubmed/14728698
http://doi.org/10.1016/j.micron.2003.11.002
http://doi.org/10.1038/nchembio.2007.38
http://doi.org/10.1038/jidsymp.2009.9
http://doi.org/10.3389/fmicb.2020.565549
http://www.ncbi.nlm.nih.gov/pubmed/33193154
http://doi.org/10.1111/jgs.13310
http://www.ncbi.nlm.nih.gov/pubmed/25851728
http://doi.org/10.1038/s41598-017-10834-9
http://doi.org/10.1186/s41232-021-00154-x
http://www.ncbi.nlm.nih.gov/pubmed/33526070

	Introduction 
	Materials and Methods 
	Isolation of Microorganisms 
	16S rRNA Gene Sequence and Phylogenetic Analysis 
	Microorganism Preparation 
	Extracellular Vesicle Isolation 
	Nanoparticle Tracking Analysis (NTA) 
	Cell Culture 
	Cell Viability Assay 
	LpEV Treatment Induces Elastase Inhibitory Activity 
	mRNA Expression Analysis with Reverse Transcript PCR (RT-PCR) 
	Protein Expression Analysis with Western Blot 
	Preparation of Skin Application Solutions 
	Volunteer Recruitment and Selection 
	Skin Contour Measurement 
	Skin Image Measurement 
	Skin Wrinkles, Elasticity, and Dermal Density Measurements 
	Statistical Analysis 

	Results 
	S rRNA and Phylogenetic Analysis of Lactobacillus plantarum 
	Lactobacillus plantarum Actively Secretes EVs 
	LpEV Treatment Induces Cell Proliferation and Regulates ECM Degradation-Associated Gene Expression 
	LpEV Treatment Induces ECM Production-Associated Gene Expression 
	LpEV Treatment Suppresses Wrinkle Formation in Clinical Trials 
	LpEV Treatment Moisturizes Skin and Enhances Skin Density 
	LpEV Treatment Suppresses Skin Pigmentation Caused by Aging 

	Discussion 
	References

