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Abstract: Anthocyanins are important pigments in peach fruit and are beneficial to human health.
Sugars are both energy-storing and signaling molecules and their roles in inducing anthocyanin
biosynthesis have received a great deal of research attention. However, the mechanism by which
sugars induce anthocyanin biosynthesis in peach fruit is unknown. In order to understand this
induction mechanism, comprehensive transcriptome and metabolome were performed in fruit flesh
treated with four different sugars for 12 and 24 h, respectively. Here, we found that cyanidin-3-
O-(6-O-p-coumaroyl) glucosides accumulated in fruit flesh treated with glucose, sucrose, sorbitol,
and fructose in vitro. Two key structural genes of the anthocyanin biosynthesis pathway, namely,
PpDFR and PpUFGT, were upregulated in the flesh of sugar-treated peach fruit. By contrast, the two
main transcription factors (TFs) PpMYB10.1 and PpBL regulating anthocyanin biosynthetic genes
in peach fruit were not upregulated accordingly. Interestingly, two MYB family genes (PpMYB6
and PpMYB44-like) and three bHLH family genes (PpbHLH35, PpbHLH51, and PpbHLH36-like) were
upregulated. A dual luciferase assay revealed that PpMYB6 strongly activated the PpUFGT promoter
when it was co-infiltrated with PpbHLH35, PpbHLH51, and PpbHLH36-like. When PpMYB44-like
was co-infiltrated with PpbHLH35, it also potently activated the PpUFGT promoter. The results of
this study help clarify the molecular mechanisms by which glucose, sucrose, sorbitol, and fructose
regulate anthocyanin accumulation in peach fruit.

Keywords: anthocyanin; bHLH TF; dual luciferase assay; MYB TF; sugar treatment

1. Introduction

Anthocyanins are flavonoid end-products and are abundant in leaves, flowers, fruits,
and seeds. Their colors range from red to blue-purple in these plant organs [1,2]. The
anthocyanin core structures are aglycones and include pelargonidin, cyanidin, delphinidin,
peonidin, and malvidin [3,4]. Anthocyanins cause red pigmentation which improves fruit
appearance and attracts insects and animals that propagate seeds [5,6]. They also play
vital roles in plant resistance to biotic stress (such as pest insect infestations and microbial
pathogen infection) and abiotic stress (such as drought and salinity) [7].

Anthocyanins are synthesized in the cytoplasm and then vacuolated via glutathione
S-transferase (GST) [8]. Anthocyanin biosynthesis is catalyzed by a multi-enzyme com-
plex including phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-
coumaroyl:CoA-ligase (4CL), chalcone synthase (CHS), chalcone flavanone isomerase
(CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol
4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), UDP-glucose: flavonoid
3-O-glucosyltransferase (UFGT), and glutathione S-transferase (GST) [9].
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Anthocyanin biosynthesis is regulated at the transcriptional level by R2R3-myeloblastosis
(MYB), basic helix–loop–helix (bHLH), and WD40 that form the MBW complex [8]. In
apples, the MYB transcription factors MdMYB10 and MdMYB110a control anthocyanin
accumulation by forming homodimers with MdbHLH [10]. In grape, several MYB tran-
scription factors have been identified, such as VvMYBA1-1, VvMYBA1-2, VvMYBA1, and
VvMYBA2. Of these, VvMYBA1 and VvMYBA2 regulate anthocyanin accumulation in the
fruit skin [11,12]. In citrus, the MYB transcription factor CcRuby plays an important role in
the red flesh trait [13]. PyMYB10, PyMYB114, and PybHLH3 in pear [14,15], FvMYB10 and
FvbHLH33 in wild strawberry [16], and AtMYB75 (PAP1), AtMYB90 (PAP2), AtMYB113,
and AtMYB114 in Arabidopsis [9,17] participate in anthocyanin accumulation.

Sugars are both energy-storing and signaling molecules and their roles in promoting
anthocyanin biosynthesis have received extensive research attention. The shoots of Clematis
pitcheri cultured in the presence of high sucrose concentrations and nitrogen accumulated
high anthocyanin levels [18]. Exogenous sucrose induced anthocyanin accumulation more
effectively than a 1:1 fructose: glucose mixture in the hypocotyls and roots of red radish
seedlings [19]. Glucose more effectively induced anthocyanin accumulation than sucrose
and without exogenous sugar treatment in blackberry fruit [20]. Strawberry fruit treated
with sucrose displayed high levels of pelargonidin derivatives and upregulation of the
genes participating in the phenylpropanoid and flavonoid pathways [21]. In Arabidopsis,
sucrose induces anthocyanin accumulation in a concentration-dependent manner [22].

Anthocyanins accumulate in two ways during peach fruit development. First, peak an-
thocyanin content occurred at the late stages of fruit development in the blood-flesh peach
cultivars ‘Beijingyixianhong’, ‘Wuyuexian’, and ‘Tianjin Shui Mi’. The associated antho-
cyanin biosynthesis-encoding genes PpPAL, PpUFGT, PpCHI, PpF3H, PpDFR, PpANS, and
PpCHS reached their highest transcription levels during the early-to-middle stages of fruit
development [2,23]. Second, the anthocyanin content reached its highest levels during the
early stages of fruit development in the blood-flesh peach cultivars ‘Heiyoutao,’ ‘Sanguine
Pilat,’ and ‘Sanguine Vineuse.’ The aforementioned anthocyanin biosynthesis-encoding
genes had lower transcription levels in these cultivars than they did in ‘Beijingyixianhong’
and ‘Wuyuexian’ [23,24]. Both anthocyanin accumulation mechanisms are determined by
two alleles. The former is determined by the NAC family gene PpBL mapped atop linkage
group five. PpBL and MYB10.1 promote the transcription of the anthocyanin biosynthesis-
regulating genes which leads to anthocyanin accumulation in blood-flesh fruit [25,26]. The
latter is determined by a recessive locus (bf ) mapped to linkage group four [23]. However,
cyanidin-3-glucoside was the main anthocyanin component in both types of blood-flesh
peach fruit.

Glucose, sucrose, sorbitol and fructose are the major sugar compositions in peach
fruit [27]. Sugar induction of anthocyanin in fruit is very important, it will provide a
scientific basis to promote the accumulation of anthocyanin in fruits, and also an important
way to achieve the goal of regulating fruit color development. Studies on induction of
peach fruit by different sugars have been reported. For example, sucrose more effectively
stimulated anthocyanin accumulation than either glucose or fructose in media-cultured red
leaf peach shoots [28]. In the ‘Tenshin Suimitsuto’ blood-flesh peach fruit cultivar, 100 mM
sucrose induced anthocyanin biosynthesis [29].

In summary, the anthocyanins biosynthesis and regulation have been studied very
thoroughly in peach and other species. Moreover, sugar as signaling molecules also have
been received extensive attention in promoting anthocyanin biosynthesis in many horticul-
tural crops. However, few studies have been focused on peach anthocyanins induction by
exogenous sugars and the corresponding induction mechanism. In the present study, we
mainly focused on how different sugars induce anthocyanins accumulation in peach fruit
flesh. We subjected the blood-flesh peach fruit cultivar ‘Tianjin ShuiMi’ to various sugar
treatments. We found two MYB family genes: PpMYB6 (Prupe.5G065500), PpMYB44-like
(Prupe.8G134900), and three bHLH family genes: Pp bHLH35 (Prupe.1G074400), Pp bHLH51
(Prupe.2G252600) and Pp bHLH36-like (Prupe.3G131500). (https://www.rosaceae.org/, (ac-
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cessed on 12 July 2021)). Functional analysis indicates that these TFs have the potential in
promoting anthocyanin biosynthesis in four different sugar treated fruits. This will help clarify
the molecular mechanisms by which glucose, sucrose, sorbitol, and fructose regulate antho-
cyanin accumulation in peach fruit. PpMYB6PpMYB44-likePpbHLH35PpbHLH51PpbHLH36-like

2. Results
2.1. Levels of Metabolites Involved in Anthocyanin Biosynthesis

There were 24,228 metabolites in the flesh of peach fruit treated with sugars. Of
these, 3923, 3091, 4038, and 3938 were upregulated, while 7537, 7699, 8067, and 7807
were downregulated in the flesh of peach fruit treated with glucose, sucrose, sorbitol, and
fructose, respectively, for 12 h. Moreover, 5023, 5062, 4952, and 5490 were upregulated
while 7602, 7444, 7734, and 7870 were downregulated in the flesh of peach fruit treated
with glucose, sucrose, sorbitol, and fructose, respectively, for 24 h (Tables S1 and S2). The
top 100 upregulated metabolites in the flesh of peach fruit treated with sugar for 12 h
were associated with ‘Biosynthesis of secondary metabolites’, ‘Metabolic pathways’, and
‘Flavonoid biosynthesis’, while the top 100 downregulated metabolites in the flesh of
peach fruit treated with sugar for 12 h were associated with ‘Biosynthesis of antibiotics’,
‘Metabolic pathways’, and ‘Zeatin biosynthesis’ (Figures S1, S2 and Tables S9–S16). Of all
these metabolites detected from LCMS and high-resolution tandem mass spectrometer,
the top 100 upregulated metabolites in the flesh of peach fruit treated with sugar for
24 h were associated with ‘Biosynthesis of secondary metabolites’, ‘Metabolic pathways’,
‘Biosynthesis of phenylpropanoids’, ‘Flavone and flavonol biosynthesis’, ‘Isoflavonoid
biosynthesis’, and ‘Flavonoid biosynthesis’, while the top 100 downregulated metabolites
in the flesh of peach fruit treated with sugar for 24 h were associated with ‘Biosynthesis of
antibiotics’, ‘Biosynthesis of secondary metabolites’, and ‘Metabolic pathways’ (Figures S3,
S4 and Tables S17–S24).

As the sugar-treated fruit was picked from the ‘Tianjin Shui Mi’ blood-fleshed peach
landrace, we focused mainly on flavonoids in the anthocyanin biosynthetic pathway.
Figure 1, Tables S3 and S4 shows that the metabolites dihydroquercetin and cyanidin-3-O-
(6-O-p-coumaroyl) glucoside were upregulated markedly in flesh samples of peach fruit
treated with glucose, sucrose, sorbitol, and fructose for 12 h and 24 h. The p-coumaroyl
CoA, chalcone, and cyanidin 3-O-glucoside levels were lower in the peach fruit treated
with the sugars for 12 h and 24 h than they were in the control. All other metabolites had
similar levels in both the sugar-treated and control peach fruit. These results indicated that
glucose, sucrose, sorbitol, and fructose all had similar effects on metabolite accumulation
in vitro. Moreover, after four sugars treatment for 12 and 24 h, anthocyanins were not
accumulated as cyanidin 3-O-glucoside, the main components in blood-flesh peach fruits,
but as cyanidin-3-O-(6-O-p-coumaroyl) glucoside.

2.2. Expression Levels of Genes Regulating the Anthocyanin Biosynthesis Pathway

As anthocyanins accumulated in the flesh of the peach fruit treated with the sugars,
we analyzed the expression of the genes involved in anthocyanin biosynthesis, based
on the transcriptome data. Most of these genes were upregulated in the flesh of the
peach fruit treated with sugars for 12 h and 24 h in vitro (Figure 2). The key structural
genes PpDFR and PpUFGT were reported to be upregulated by the transcription factors
PpMYB10.1 and PpBL, and their expression levels were also significantly higher in the
flesh of the sugar-treated peach fruit compared with those of the control (Tables S5 and
S6). By contrast, the key regulatory genes PpMYB10.1 and PpBL were not upregulated in
the flesh of the sugar-treated peach fruit compared with those of the control. In fact, PpBL
was downregulated in the flesh of the sugar-treated peach fruit (Tables S5 and S6). Further
quantitative PCR verification was performed, and the results were similar as that of the
transcriptome data. Hence, we speculated that other transcription factors might upregulate
anthocyanin biosynthesis-related genes in response to sugar induction.
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Metabolite names are shown on the side of the map. Metabolite content increases with blue and 
yellow color intensity in the square within the heat map. The red rectangle indicates that the metab-
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treated peach fruit than that of the untreated control. 
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Figure 1. Metabolites involved in the anthocyanin biosynthesis pathway were determined in positive
mode. Heat maps on the left and right indicate the metabolite content (M/Z) in the flesh of peach
fruit treated with exogenous glucose, sucrose, sorbitol, and fructose for 12 h and 24 h, respectively.
The numbers at the top of the picture indicate log10 (M/Z), which was listed in Tables S3 and
S4. Metabolite names are shown on the side of the map. Metabolite content increases with blue
and yellow color intensity in the square within the heat map. The red rectangle indicates that the
metabolite content was higher in the flesh of the sugar-treated peach fruit than that of the untreated
control. The green rectangle indicates that the metabolite content was lower in the flesh of the
sugar-treated peach fruit than that of the untreated control.

2.3. Identification of Regulatory Genes Associated with High Expression Levels of Anthocyanin
Biosynthesis-Related Genes in the Flesh of Sugar-Treated Peach Fruit

To identify the regulatory genes involved in anthocyanin biosynthesis in the flesh of
sugar-treated peach fruit, we used the corresponding transcriptome data with fold change
> 2.0 in the analysis. The results indicated that 120, 120, 124, and 116 of the upregulated TFs
were identified in the flesh of the peach fruit treated with glucose, sucrose, sorbitol, and
fructose, respectively, for 12 h. Then, 105 of these TFs were selected (Figure 3). Furthermore,
106, 108, 106, and 114 of the upregulated TFs were identified in the flesh of the peach
fruit treated with glucose, sucrose, sorbitol, and fructose, respectively, for 24 h. Then,
98 of these TFs were selected, and 84 of the TFs common to both treatments had the
potential in promoting anthocyanin biosynthesis, and these were thus selected for the
subsequent analysis (Figure 4). Of these, the majority were WRKY- and EREBP-like gene
family members and heat shock TFs ranked second. There were also eight MYB and bHLH
gene family members. As MYB and bHLH family genes have been reported to regulate
anthocyanin accumulation in the development of blood-flesh fruit [26], we selected two
MYB genes designated PpMYB6 and PpMYB44-like and three bHLH genes designated
PpbHLH35, PpbHLH51, and PpbHLH36-like according to their relative high expression to
determine whether they regulate anthocyanin accumulation (Figure 5).
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2.4. Prediction of the Selected MYB and bHLH TFs Using a Tobacco Leaf Dual Luciferase Assay

To validate PpMYB6, PpMYB44-like, PpbHLH35, PpbHLH51, and PpbHLH36-like
regulation in anthocyanin biosynthesis, we analyzed their phylogenetic relationships with
other MYB and bHLH TFs that are known to upregulate this process (Figure 6A). PpMYB6
was phylogenetically related to OsMYB while Pp.8G134900 was more closely associated
with PeMYB11. The bHLH TFs PpbHLH35, PpbHLH51, and PpbHLH36-like were clus-
tered together and were near GhMYC1 (Figure 6B). Therefore, PpMYB6, Pp.8G134900,
PpbHLH35, PpbHLH51, and PpbHLH36-like probably activated anthocyanin biosynthesis.
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Figure 6. Phylogenetic analyses of amino acid sequences of MYB (A) and bHLH (B) TFs. Full MYB
and bHLH TF amino acid sequence alignment and phylogenetic tree construction with MEGA-X soft-
ware (Available online: https://www.megasoftware.net/dload_win_gui (accessed on 21 June 2021)).
Numbers before binary structures indicate bootstrap test results for 1000-replicate analysis. PpMYB6,
PpMYB44-like, PpbHLH35, PpbHLH51, and PpbHLH36-like are highlighted by solid red rectangles.
National Center for Biotechnology Information (NCBI) accession numbers are as follows: OsMYB
(CAA45509); PeMYB2 (AIS35919); DhMYB2 (AQS79852); PeMYB11 (AIS35928); LhMYB12 (BAJ05398);
MdMYB1 (ABK58138); MdMYB10 (ABB84753); VvMYBA1 (BAD18977); AtPAP1 (NP-176057); At-
PAP2 (NP-176813); PhAN2 (AAF66727); NtAN2 (ACO52472); SlMYB (AAQ55181); AmROSEA1
(ABB83826); GhMYB10 (CAD87010); VvMYC (NP-001267954.1); MdbHLH33 (ABB84474.1); AmDEL
(AAA32663.1); LjbHLH (BAJ10680.1); ZmLC (P13526.1); AtTT8 (OAO98324.1); BjTT8 (AIN41653.1);
MtTT8 (AKN796061); PsbHLHA (E3SXU4.1); MdbHLH3 (ADL36597.1); FabHLH3 (AFL02463.1);
PhAN1 (AAG259281); NtAN1a (AEE992571); DkMYC1 (AEC03343.1); OsRc (BAF42667); and Gh-
MYC1 (CAA07615).

A dual luciferase assay was conducted on tobacco leaves that were transiently infil-
trated with mixed GV3101 suspension. PpMYB6 activated the promoter PpUFGT when it
was co-infiltrated with PpbHLH35, PpbHLH51, and PpbHLH36-like. When PpMYB44-like
was co-infiltrated with PpbHLH35, it also activated PpUFGT. By contrast, PpMYB44-like did
not activate PpUFGT even when it was co-infiltrated with PpbHLH51 and PpbHLH36-like
(Figure 7). These results indicated that PpMYB6, PpMYB44-like, PpbHLH35, PpbHLH51,
and PpbHLH36-like upregulation induced anthocyanin accumulation in the flesh of sugar-
treated peach fruit.

https://www.megasoftware.net/dload_win_gui
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3. Discussion

Sugars promote anthocyanin accumulation in many plants. Cyanidin-3-glucoside was
accumulated in Clematis pitcheri shoots in response to high sucrose concentrations [18].
Pelargonidin 3-glucoside, pelargonidin 3-rutinoside, pelargonidin 3-malonylglucoside, and
pelargonidin 3-methylmalonyglucoside increased in postharvest strawberry fruit treated
with 50 mM sucrose [21]. Sucrose, glucose, fructose, and sorbitol induced similar degrees
of cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside accumulation in the fruit of the red-
blushed apricot cultivar [30]. Sucrose most strongly induced pelargonidin-3-O-glucoside
accumulation in the hypocotyls and roots of red radish seedlings. By contrast, 1:1 fruc-
tose:glucose only weakly activated anthocyanin accumulation in the same crop [19]. The
cyanidin-3-glucoside content increased in the mesocarp disks of blood-fleshed peach fruit
treated with 100 mM sucrose [29]. The foregoing reports demonstrated that anthocyanins
accumulated as glycosides in fruit pulp. In this study, the glucose, sucrose, sorbitol, and fruc-
tose treatments all increased the relative anthocyanin content of blood-fleshed peach fruit.
However, the anthocyanins accumulated in the form of cyanidin-3-O-(6-O-p-coumaroyl)
glucoside rather than cyanidin 3-O-glucoside. After analyzing the transcriptome data, we
found that there were three acyltransferase genes which might be associated with the acyla-
tion of ayanidin- 3-O-glucoside (Tables S7 and S8). The peach cultivar, exogenous sugar
concentrations, treatment times, and cultivation temperatures were similar between the
present study and that of Rumainum et al. However, while we harvested our fruits before
ripening, Rumainum et al. collected theirs at maturation. This sampling time discrepancy
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might account for the observed differences in anthocyanin accumulation between these
studies.

Anthocyanin biosynthesis can be regulated by MYB and bHLH transcription factors
(TFs). In Arabidopsis, AtPAP1, AtPAP2, AtMYB113, AtGL3, AtEGL3, and AtTT8 posi-
tively influenced anthocyanin biosynthesis [9,17]. In apple fruit, MdMYB10 promoted
anthocyanin biosynthesis by interacting with both MdbHLH3 and MdbHLH33 [10]. In
strawberry fruit, when FvMYB was co-infiltrated with FvbHLH33, it activated the FvDFR
and FvUFGT promoters [16]. In peach fruit, PpMYB10.1, PpMYB10.2, PpMYB10.3, and
Pp bHLH3 induced anthocyanin biosynthesis by upregulating the structural genes PpDFR
and PpUFGT [25,26]. In the present study, two MYB TFs and three bHLH3 TFs were
identified based on metabolome and transcriptome data. All of them were phylogenetically
near OsMYB, PeMYB11, and GhMYC1 which upregulate anthocyanin biosynthesis [31–33].
Thus, they are probably anthocyanin biosynthesis activators in sugar-treated peach fruit
flesh.

Arabidopsis uses different signal transduction pathways for sucrose and neutral sug-
ars such as glucose and fructose. Glucose signaling molecules are sensed by the hexokinase
HXK1 in Arabidopsis. HXK1 regulates the expression of sugar-related genes such as CAB1
(chlorophyll a/b-binding protein), PC (plastocyanin), and rbcS (ribulose-1,5-bisphosphate
carboxylase small subunit) [34]. Sucrose represses ATB2/AtbZIP11 (leucine zipper (bZIP)-
type transcription factor) translation via an open reading frame (ORF) encoding 42 amino
acids. By contrast, glucose and fructose are relatively less effective in this process [35].
Sucrose also upregulates certain genes controlling anthocyanin biosynthesis whereas glu-
cose and fructose have weak or no impact on their expression levels [36]. However, we
found that glucose, sucrose, fructose, and sorbitol all had similar effects on anthocyanin
accumulation. Therefore, they might activate the anthocyanin biosynthesis-specific TFs,
which further contribute to anthocyanin biosynthesis in peach fruit flesh.

As signaling molecules, sugars control regulatory genes associated with anthocyanin
biosynthesis [37]. In Arabidopsis seedlings, the regulatory genes AtMYB75/AtPAP1 in-
volved in anthocyanin biosynthesis are upregulated by sucrose induction [22]. This sig-
naling system is induced independently of hexokinase (HXK1) systems. In apple fruit, the
energy sensor MdSnRK1.1 interacts with MdJAZ18, which is a repressor in the jasmonate
signaling pathway. MdJAZ18 is then phosphorylated and degraded, MdbHLH3 is released,
and its sucrose-induced anthocyanin accumulation activity is recovered [38]. It has been
reported that MdbHLH3 can interact with the MYB transcription factors MdMYB9 and
MdMYB11 to facilitate anthocyanin biosynthesis in apple [39,40]. Hence, MdMYB9 and
MdMYB11 might participate in sucrose-induced anthocyanin accumulation. In the present
study, the MYB transcription factors PpMYB6 and PpMYB44-like and the bHLH transcrip-
tion factors PpbHLH35, PpbHLH51, and PpbHLH36-like were identified and activated
the expression of the key anthocyanin structural gene PpUFGT. Hence, the foregoing TFs
have positive influences on anthocyanin accumulation. However, the key regulatory genes
PpMYB10.1 and PpBL [25,26] were not upregulated. By contrast, they were highly expressed
at the late stage of blood-flesh peach fruit development. They participate in anthocyanin
accumulation by upregulating the important structural genes PpDFR and PpUFGT. Thus,
we propose that the regulatory mechanism of anthocyanin accumulation differs between
fruits subjected to exogenous sugar treatment in vitro and those that naturally ripen on a
tree.

Based on the foregoing findings, we propose a model for anthocyanin accumulation
in the flesh of peach fruit treated with glucose, sucrose, sorbitol, and fructose in vitro
(Figure 8).
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4. Materials and Methods
4.1. Plant Materials

The 14-year-old blood-fleshed peach cultivar ‘Tianjin Shui Mi’ was used in this study.
It is an ancient Chinese landrace and contains abundant of anthocyanin compared with
other cultivars. The anthocyanin content of this landrace is about 50 times that of other
main cultivars. The trees were normally cultivated and managed. Ten fruits distributed
along the outer crown of each tree were promptly picked at 80 d post-anthesis to measure
their anthocyanin content in response to sugar treatment.

4.2. Metabolite Production of Fruit Flesh Induced by Sugars In Vitro

The fruit flesh was cut into small pieces (2 mm × 2 mm × 2 mm) and incubated at
room temperature (25 ◦C) in 2-(4-morpholino)ethanesulfonic acid (MES) culture medium
(pH 6.5) containing various sugars (glucose, sucrose, fructose, or sorbitol) (Solarbio Beijing
China). The control was sugar-free MES medium. The MES medium consisted of 100 mM
MES (pH 5.5), 5 mM CaCl2, 1 mM EDTA, 10 mM vitamin C (ascorbic acid), and 100 mM
glucose, sucrose, fructose, or sorbitol. After 12 h and 24 h, peach fruit flesh was immersed
in liquid nitrogen and stored at −80 ◦C.

4.3. Metabolomics Analysis

Three replicates of the flesh from sugar-treated and the control peach fruit were used
in the metabolomics analysis. Twenty-five milligrams of peach fruit flesh were placed in
a 1.5 mL centrifuge tube (Eppendorf GmbH, Hamburg, Germany) containing 800 µL of
an aqueous methanol solution and pulverized in TissueLyser (QIAGEN Shanghai China)
with a steel ball at 55 Hz for 4 min. The powder was then centrifuged at 30,000× g for
20 min and the supernatant was transferred to a new EP tube. The EP tube was placed
in the LC-MS (liquid chromatograph-mass spectrometer) system (ACQUITY UPLC BEH
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C18; 100 mm × 2.1 mm; 1.7 mm; Waters Corp., Milford, MA, USA) for reversed-phase
separation. The column oven temperature was kept constant at 50 ◦C, the flow rate was
0.4 mL/min, and the mobile phase consisted of solvent A (water + 0.1% (v/v) formic acid)
and solvent B (acetonitrile + 0.1% (v/v) formic acid). The gradient elution conditions were
100% phase A, 0–2 min; 0–100% phase B, 2–11 min; 100% phase B, 11–13 min; and 0–100%
phase A, 13–15 min. The sample injection volume was 10 µL [41].

The metabolites eluted from the column were detected by mass spectrometry (Xevo G2
XS QTOF; Waters Corp.). The Q-TOF (quadrupole time-of-flight) was used in both positive
and negative ion modes. The cone voltages were set to 3 kV–40 V and 1 kV–40 V for the
positive and negative ion modes, respectively. The TOF mass arrangement was 50–1200 Da
and the scan time was 0.2 s. For MS/MS detection, all precursors were fragmented using
20–40 eV and the scan time was set to 0.2 s. The MS data were acquired in centroid MSE mode
and identified according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
Metabolites differentially expressed between the sugar treatments and the control were selected
based on the parameters fold-change (sugar treatment/control) > 1.2 or < 0.8333 [42].

4.4. RNA Sequencing

Total RNA was extracted with a kit (Waryong, Beijing, China), treated with RNase-
free DNAase (Takara, Dalian, China), and reverse-transcribed with a Supremo III RT kit
(BioTeKe, Beijing, China). Total RNA concentration and purity were assessed with an
Agilent Bioanalyzer 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and
NanoDrop 2000 (Thermo, Waltham, MA, USA), respectively.

Magnetic beads with Oligo (dT)s were used to enrich mRNA from 5 mg total RNA.
The mRNA was randomly fragmented with fragmentation buffer and first-strand cDNA
was synthesized with random hexamers. Double-stranded cDNA was then synthesized
with dNTPs, RNase H, and DNA polymerase I. The double-stranded cDNA was enriched
by adding poly-(A)s and PCR amplification. The enriched cDNA was linked to a vector,
which was used to construct sequencing library, and analyzed in an Agilent Bioanalyzer
2100 system (Agilent Technologies). The cDNA library sequencing was performed in a
HiSeq 2500 system (Illumina, San Diego, CA, USA). All peach fruit flesh samples were
sequenced in three biological replicates. The low-quality reads were removed and the
high-quality data were aligned to the peach reference genome (Lovell 2.0) with TopHat2
using its default parameters [43]. The gene expression levels were calculated as fragments
per kilobase per million reads (FPKM). Gene ontology (GO) annotations were analyzed
according to Blast2GO [44] and WEGO [45]. Differentially expressed upregulated genes
were selected according to the criteria of sugar treatment FPKM > 1 and fold change (sugar
treatment/control) > 2.0. The upregulated transcription factors (TFs) were selected for the
samples of flesh of peach fruit exposed to the sugars for 12 h. The TFs common to all four
data types were screened. For the samples of peach fruit flesh exposed to the sugars for
24 h, the upregulated TFs were selected in the same manner as those identified for the
samples of peach fruit flesh exposed to the sugars for 12 h. The upregulated TFs common
to both foregoing treatments were selected for the subsequent analysis.

4.5. Dual-Luciferase Tobacco Leaf Assay

The promoter sequence of Pp.UFGT from ‘Tianjin Shui Mi’ was synthesized at Beijing
Liuhe Bgi Co. Ltd. (Beijing, China) and infused into pGreenII 0800LUC vector [26,46].
The sequence of promoter of PpUFGT was taken from GDR database (Available online:
https://www.rosaceae.org (accessed on 12 July 2021)). The coding sequences (CDS) of
PpMYB6, PpMYB44-like, PpbHLH35, PpbHLH51, and PpbHLH36-like selected from the
transcriptome analysis were also synthesized at Beijing Liuhe Bgi Co. Ltd. and inserted
into the pBI121 vector under the control of the 35 s promoter. The GUS gene was infused
into the pBI121 vector as a negative control [26]. All recombinant vectors were transformed
into A. tumefaciens GV3101 and incubated at 28 ◦C for 2 d. Individual transformants were
resuspended in 1.0 mL Luria-Bertani (LB) medium (Solarbio Beijing China) containing

https://www.rosaceae.org
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50 mg/mL kanamycin for 10 h. Ten microliters were placed in 15 mL LB medium containing
50 mg/mL kanamycin and shaken at 28 ◦C for 8–12 h. After centrifuging and removing the
medium, we adjusted the agrobacteria OD to 0.4–0.6 with infiltration buffer comprising
0.5 M MES, 1.0 mM MgCl2, and 1.0 µM acetosyringone. The suspension was injected into
three young leaves per tobacco (Nicotiana benthamiana) plant. The leaves injected with
agrobacteria were excised after 2.5 d, immersed in D-luciferin sodium salt solution for
10 min, and placed in a multifunctional imaging analysis system (Tanon, Shanghai, China)
to measure luminosity.

5. Conclusions

‘PpMYB6 and PpbHLH35′, ‘PpMYB6 and PpbHLH51′, ‘PpMYB6 and PpbHLH36-like’,
and ‘PpMYB44-like and PpbHLH35′ might participate in anthocyanin accumulation via up-
regulating key structural gene (PpUFGT) in the flesh of peach fruit treated with exogenous
glucose, sucrose, sorbitol, and fructose in vitro.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants11040507/s1. The metabolome and transcriptome analysis original data were deposited
in the Figshare database (Available online: https://doi.org/10.6084/m9.figshare.15071700.v1 (ac-
cessed on 15 September 2021)). Figure S1: Pathway enrichment analysis of top 100 upregulated
metabolites in flesh of peach fruit treated with glucose, sucrose, sorbitol, and fructose for 12 h,
Figure S2: Pathway enrichment analysis of top 100 downregulated metabolites in flesh of peach fruit
treated with glucose, sucrose, sorbitol, and fructose for 12 h, Figure S3: Pathway enrichment analysis
of top 100 upregulated metabolites in flesh of peach fruit treated with glucose, sucrose, sorbitol, and
fructose for 24 h, Figure S4: Pathway enrichment analysis of top 100 downregulated metabolites in
flesh of peach fruit treated with glucose, sucrose, sorbitol, and fructose for 24 h, Table S1: Metabolites
generated through LC-MC system in flesh of peach fruit treated with glucose, sucrose, sorbitol, and
fructose for 12 h, Table S2: Metabolites generated through LC-MC system in flesh of peach fruit
treated with glucose, sucrose, sorbitol, and fructose for 24 h, Table S3: Flavonoids in the anthocyanin
pathway, which were identified in flesh of peach fruit treated with glucose, sucrose, sorbitol, and
fructose for 12 h, Table S4: Flavonoids in the anthocyanin pathway, which were identified in flesh of
peach fruit treated with glucose, sucrose, sorbitol, and fructose for 24 h. Table S5: Relative expression
(FPKM) of major anthocyanin biosynthesis and regulatory genes in flesh of sugar-treated and un-
treated peach fruit after 12 h, Table S6: Relative expression (FPKM) of major anthocyanin biosynthesis
and regulatory genes in flesh of sugar-treated and untreated peach fruit after 24 h, Table S7: Relative
expression (FPKM) of acyltransferase genes which might be associated with the acylation of cyanidin
3-O-glucoside in sugar treated flesh for 12 h, Table S8: Relative expression (FPKM) of acyltransferase
genes which might be associated with the acylation of cyanidin 3-O-glucoside in sugar treated flesh
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