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Abstract 

Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles 
in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for 
improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability 
and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells 
utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Addition-
ally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy 
against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in 
on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we compre-
hensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release 
studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute 
to further improvements in clinical practice.
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Background
Cancer is one of the leading causes of death worldwide, 
and despite the current arsenal of anticancer strategies, 
the number of patients is continuously increasing [1, 2]. 
Statistics have shown that one in 6 women and one in 5 
men worldwide develop a tumor in their lifetime [3, 4] 
which accounts for nearly 1 in 6 deaths. The main rea-
son behind the poor treatment efficacy is the low target-
ing ratio of therapeutics which can also induce severe 
side effects on healthy tissues [5, 6]. Therefore, there is 

an urgent need for site-specific delivery of therapeutic 
agents to the tumor region. For this reason, nanotech-
nology-based formulations have been the focus of a large 
body of research as effective approaches for overcoming 
the bottlenecks of undirected biodistribution, undesired 
side effects and high-dose administration [7].

With the increased uptake in nanomedicine, various 
versatile nanoformulations with excellent biocompat-
ibility and pharmacokinetic properties, such as micelles, 
liposomes, nanoparticles, and nanoemulsions, have 
exhibited great potential for the delivery of novel anti-
cancer drugs (Fig.  1) [8–10]. These nanoparticles can 
effectively address the poor water solubility and unde-
sired adverse effects often observed during the delivery 
of therapeutic agents and prolong their blood circulation 
time for enhanced tumor accumulation, thereby mark-
edly facilitating their use as therapeutic agents for tumor 
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therapies [10–12]. Importantly, these novel nanomedi-
cines generated by encapsulating specific therapeutic 
agents in nanocarriers can achieve satisfactory tumor 
targeting by utilizing the EPR effect-mediated pas-
sive targeting strategy [13, 14]. Furthermore, active tar-
geting can also be effectively achieved by conjugating 
nanomedicines with ligands that can specifically target 
overexpressed receptors on the tumor cells [15–17]. The 
inclusion of active targeting ligands over the surface of 
nanoparticles improves their targeting toward tumor 
cells (on-targets) rather than healthy cells (off-targets). 
Therefore, this feature of ligands not only increases the 
therapeutic index but also minimizes the associated side 
effects.

Recently, stimuli-responsive nanoparticles have also 
been proposed as a promising active targeting strategy 
for tumor treatment [18–22]. Specifically, an acidic envi-
ronment, high levels of reactive oxygen species (ROS) 
and glutathione (GSH), and overexpression of specific 
enzymes in the tumor microenvironment (TME) can 
contribute to the development of stimuli-responsive 
nanoparticles for targeted drug delivery, as these nano-
particles maintain their stealth features in the normal 
physiological environment but upon homing to targeted 
sites or the local microenvironment are responsive and 
release encapsulated agents [18–21]. Moreover, func-
tionalized nanoparticles can also be activated by external 
stimuli including magnetic fields, light, and ultrasound, 
to realize efficient tumor accumulation and controlled 
drug release in a temporal and spatial-specific fashion 
[22]. It should be noted that these stimuli-responsive 

nanoparticles also overcome many of the disadvantages 
of conventional nanoagents by site-specific tumor tar-
geting and controlled drug release, such as providing 
improved therapeutic agent delivery, overcoming the off-
target side effects and enhancing the therapeutic benefits.

For these reasons, smart targeting nanoparticles for 
efficient tumor accumulation and controlled release 
of therapeutic agents are gaining widespread attention 
as personalized treatment regimens [23]. This review 
focuses on important recent advances in versatile target-
ing strategies for tumor treatment, including receptor-
mediated and stimuli-responsive targeting nanoparticles, 
which present exceptional potential as multimodal deliv-
ery platforms against cancer. Special emphasis has been 
given to stimuli-responsive nanoparticles as novel tar-
geting strategies and their potential to support paradigm 
changes in cancer treatment. Furthermore, the current 
challenges and future prospects of receptor-mediated 
and stimuli-responsive targeting nanoparticles are also 
discussed.

Receptor‑mediated active targeting strategy
Nanoparticles can be used to overcome the TME barri-
ers and deliver pharmaceutical active ingredients to the 
tumor sites by either passive or active targeting strategies 
(Fig. 2). Passive targeting involves the transport of nano-
particles through the leaky tumor vasculature-mediated 
EPR effect, leading to nonspecific tumor accumula-
tion. In active targeting strategies, specialized chemical 
moieties or ligands can be conjugated to the surface of 
nanoparticles and are capable of site-specific delivery to 
tumor sites. Generally, these ligands are chosen based 
upon expression levels of specific receptors and their 
internalization at the target site. It should be noted that 
these receptors or cell surface markers should be overex-
pressed on target cells, facilitating the homing action of 
nanoparticles. Additionally, stimuli-responsive nanopar-
ticles have also been considered a promising active tar-
geting strategy for tumor treatment, as they enable the 
safe delivery of the agents while controlling their release 
at the target sites.

A number of receptors are overexpressed on the tumor 
cell surface, which enables them to be distinguished from 
healthy cells at the molecular level. Moreover, the pro-
gressive use of tumor proteomics and bioinformatics has 
contributed significantly to the discovery of these specific 
receptors [24]. The addition of specific ligands on the 
nanoplatform surfaces allows them to selectively target 
tumor cells. Once bound to specific receptors, the encap-
sulated therapeutic agent nanoplatform can be effectively 
taken up into tumor cells through receptor-dependent 
endocytosis (Fig.  3). Therefore, strategies for targeting 
drugs to tumor cell surface receptors to enhance tumor 

Fig. 1  The main drug delivery systems in tumor treatment
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accumulation have attracted extensive attention in recent 
years. Table 1 summarizes some of the specific receptors 
overexpressed on various tumor cells along with their 
related ligands. Utilizing cell surface active targeting 
strategies has greatly advanced tumor treatment. Some 
of these approaches are summarized in the following 
sections.

Epidermal growth factor receptor (EGFRs)‑based active 
targeting
The EGFR, a transmembrane protein, is involved in the 
occurrence of several types of cancers, including lung, 
pancreatic, colorectal, and breast cancers [24]. Activation 
of the EGFR is triggered by the binding of ligands, includ-
ing EGF, transforming growth factor-α (TGF-α), epireg-
ulin, heparin-binding EGF, betacellulin, amphiregulin, 
and neuregulin G2β. This enables protein kinase (PK) to 
transfer a phosphate molecule from adenosine triphos-
phate (ATP) to the tyrosine residues, resulting in phos-
phorylation of the intracellular domain, which mediates 
a signaling cascade pathway [25, 26]. Eventually, this pro-
cess can result in tumorigenesis and cancer progression, 
thereby making EGFR one of the main anticancer tar-
gets [27, 28]. The most commonly used EGFR targeting 

agents in clinical use are monoclonal antibodies (mAbs) 
and small molecule tyrosine kinase inhibitors (TKIs). 
The mAbs can be directly applied to deliver therapeu-
tic agents to tumor cells through drug-Ab complexes or 
modified on the surface of the nanoplatform-loaded ther-
apeutic agents [29, 30].

Recently, EGFR-based nanoplatforms have been widely 
explored against cancers [31–35]. These nanoparticles 
are generally internalized into the cells through an EGFR-
mediated endocytosis process, resulting in the formation 
of lysosomes and release of encapsulated drugs for cancer 
treatment. As an exemplar, Nan and co-workers prepared 
versatile nanoplatforms capable of specific codeliv-
ery of DOX and cisplatin to tumor sites by utilizing an 
EGFR-targeted approach [33]. These targeted nanopar-
ticles showed high stability with sustained cargo release, 
showing satisfactory killing effects in lung cancer mod-
els. In a similar approach, Liang et al. prepared versatile 
nanoplatforms functionalized with anti-EGFR Ab for 
lesion-specific delivery of carmustine to malignant glio-
blastomas for growth suppression [34]. Confirming the 
role of the EGFR, Shuai and co-workers reported higher 
internalization of an anti-EGFR monoclonal antibody-
conjugated nanoplatform in EGFR-positive human skin 

Fig. 2  Schematic representation of receptor-mediated active targeting and passive targeting through the EPR effect
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squamous cell carcinoma compared to EGFR-negative 
breast cancer [35]. Furthermore, Choi and co-work-
ers demonstrated that binding EGFR-targeting Abs to 

gemcitabine (Gem) encapsulated nanoplatforms could 
effectively inhibit tumor growth [36]. Gupta and col-
leagues constructed a Gem encapsulated nanoplatform 

Fig. 3  Schematic representation of receptor-mediated endocytosis

Table 1  The overexpressed receptors on various tumor cells and their ligands

Receptor Ligands Tumor Refs.

Folate Folic acid Breast, lung, cervical cancer, hepatocellular carcinoma [414–419]

CD14 anti-CD14 mAb Prostatic cancer [420]

CD22 anti-CD22 mAb Lymphoma cancer [421, 422]

CD44 HA, chondroitin sulfate Breast, Melanoma [423–426]

αvβ3 integrin RGD peptide Endothelial, glioma, lung, melanoma, breast cancer [427–434]

Transferrin TfR ligand, transferrin Breast cancer, Glioblastoma [435–438]

HER2 Trastuzumab Breast anti-HER2 scFv neu peptide (FCDG-
FYACYADV) KCCYSL (P6.1 peptide)

Breast cancer [439–441]

Estrogen Estrone, 17 β-Estradiol, tamoxifen Breast cancer [442–446]

Chemokine (CXCR4) LFC131 peptide, anti-CXCR4 mAb, Peptide R, Peptide 
T22

Breast, lung cancer, hepatocellular carcinoma, Lym-
phoma

[447–454]

LHRH Peptide Breast cancer [106, 107]

Biotin Biotin Breast, lung, cervical cancer, hepatocellular carcinoma [455–460]

PSMA A10 PSMA Apt, anti-PSMA Prostatic cancer [461–463]

VEGF anti-VEGF mAb Pancreatic cancer [464, 465]

IL4 AP1 peptide Colon, glioblastoma [466–468]

IL4 Pep-1 Lung cancer [469–471]

IL13 IL13 peptide Glioblastoma [472–474]

Asialoglycoprotein 
receptor (ASGPR)

Lactobionic acid, galactose Hepatocellular carcinoma [475, 476]
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against pancreatic cancer through covalent binding to 
EGFR antibodies [37], presenting higher cytotoxicity of 
the designed nanoplatform for EGFR-overexpressing 
pancreatic cell lines. Moreover, anti-EGFR functionalized 
Fe2O3 nanoparticles can be used as magnetic resonance 
imaging contrast agents for tumor diagnosis [38, 39]. In 
an interesting review article, Yi and colleagues discussed 
the role of EGFR tyrosine kinase inhibitors in targeted 
nanoplatforms for tumor treatment [40].

Supported by the rapid advancement of nanomedi-
cine, these inhibitor-loaded nanoparticles are showing 
improved bioavailability, prolonged blood circulation, 
enhanced tumor accumulation and reduced off-tar-
get side effects, leading to significant augmentation of 
therapeutic efficacy [41, 42] supporting their continued 
development.

αvβ3 integrin receptor‑mediated active targeting
Integrin receptors, consisting primarily of transmem-
brane glycoproteins, can mediate cell–cell and cell-
extracellular matrix adhesion [43]. More than 23 integrin 
heterodimers have been identified in humans to date 
[44]. These receptors control the connection between the 
extracellular matrix (ECM) and the cell cytoskeleton as 
well as maintaining communications between cells [43, 
45]. The extracellular domains of integrins have strong 
affinity for the proteins (collagen, fibronectin, laminin 
and vitronectin) in the ECM. Furthermore, integrins 
can play a significant part in several signaling pathways 
involved in cell proliferation after combining with the 
ECM [46]. It is possible to target integrin receptor-pos-
itive tumor cells through functionalized nanoparticles 
containing an integrin targeting motif (such as RGD-
containing peptides and polymers). This approach has 
been extensively explored [47–53]. For example, Lu and 
co-workers prepared cyclic RGD peptide-functionalized 
nanoplatforms for paclitaxel (PTX) delivery to glio-
blastoma cells overexpressing αvβ3, resulting in antitu-
mor effects in in  vivo models [49]. In another example, 
Li et  al. prepared RGD-conjugated resveratrol loaded 
human serum albumin nanoparticles, which showed 
higher internalization efficiency (approximately 3.6-fold 
higher) as well as improved tumor suppression features 
compared to the non-functionalized formulation [50]. 
Amreddy and co-workers developed RGD-functional-
ized nanoparticles for the delivery of therapeutic agents 
(PTX and cisplatin) to αvβ3 integrin receptor-over-
expressing lung cancer cells and found that the RGD-
targeted nanoformulations showed higher endocytosis 
efficiency (approximately 1.4-fold higher) compared with 
non-RGD-functionalized formulations [51]. Pan and 
co-workers developed RGD-modified fluorescent nano-
platforms for simultaneous fluorescence-guided and 

targeted delivery of epirubicin to overexpressed αvβ3 
integrin in esophageal cancer, resulting in the designed 
nanoplatforms not only reducing epirubicin-induced 
cardiotoxicity but also improving the therapeutic effect 
in comparison to free agents [52]. Recently, Roy et  al. 
prepared pH-responsive nanoparticles for the effec-
tive delivery of raloxifene to breast cancer cells through 
RGD-modified nanocarriers. The designed nanoparticles 
showed good cytotoxicity and antitumor efficacy toward 
αvβ3 positive breast cancer cells and a 4T1-bearing 
mouse model [53]. In another recent study, Wang’s group 
reported a bispecific assembling peptide antiCD3-G7-
RGD for tumor immunotherapy [54]. The RGD was used 
to improve tumor accumulation and cell internalization 
via the integrin receptor-mediated endocytosis process. 
The anti-CD3 was designed to target the CD3 receptor 
on T lymphocytes and induce a T cell-mediated immune 
response against tumor cells overexpressing integrin 
αvβ3, resulting in satisfactory antitumor effects. In sum-
mary, nanoparticles can preferentially and effectively tar-
get integrin binding sites in tumors (e.g., the RGD motif ), 
thereby providing a solid basis for developing precision 
tumor treatment strategies [55].

Folate receptor (FR)‑mediated active targeting
FRs, a class of glycoproteins, have been classified into 
three subtypes namely FRα, FRβ and FRγ. It should be 
noted that FRα and FRβ can closely bind to the tumor 
cell membrane via a glycosylphosphatidylinositol anchor, 
while FRγ has only been reported in hematopoietic cells 
[4, 56–58]. Among them, FRα is the most widely gener-
ated FR subtype and is overgenerated in various tumor 
cells, especially in breast, lung, kidney, cervical, and ovar-
ian cancer [59–61]. Moreover, FR can transport folate 
into tumor cells via the receptor-mediated endocytosis 
process [62]. For this reason, a number of FA-based nan-
oplatforms have been prepared for increased internaliza-
tion of therapeutic agents by tumor cells [63–65]. In one 
example, Murgia et  al. prepared an organic/inorganic 
hybrid nanoplatform modified by FA-chitosan conju-
gates to load upconverting NaYF4 nanoparticles and dau-
norubicin for tumor therapy [62]. The FA modification 
significantly improved the cellular uptake of the nano-
particles, and an in vivo xenograft model also showed a 
positive antitumor effect. In another example, Wang et al. 
designed an FA-conjugated chitosan loaded rutin pre-
pared palladium nanoplatform for FA-mediated target-
ing treatment. The introduction of FA into the designed 
nanoplatform significantly improved the endocytosis 
efficiency of the nanoparticles in breast cancer cells. The 
designed nanoplatform was shown to considerably sup-
press cell proliferation as evidenced by a cell viability 
assay [66]. Mechanistically, FRs can identify and bind to 
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extracellular FA-modified nanoparticles and then trans-
port them into the tumor cells through a FR-mediated 
endocytosis process [67]. In these nanoparticles, the FA 
portion is used as a tumor-targeting ligand. On bind-
ing to the FR on tumor cells, the cell membrane can 
invaginate and pinch off to form endosomes which sub-
sequently reach lysosomes or other organelles. The drug-
encapsulated nanoparticles can dissociate from the FR 
and effectively release the encapsulated drug at the TME 
for tumor treatment.

Transferrin (Tf) receptor‑mediated active targeting
As the critical Fe3+ pool in the body, Tf plays an impor-
tant role in Fe metabolism and delivery. To meet the 
growing requirements of Fe for maintaining cell growth 
and division, transferrin receptors (TfR) are frequently 
overexpressed on the surface of a number of tumors 
including pancreas, breast, prostate, colon, and lung can-
cer, with high affinity to Tf [68–71]. This has prompted 
scientists to use the TfR as an active targeting site in 
the design of novel anti-cancer delivery platforms. TfR 
can be employed either for Tf-mediated targeting and 
internalization of therapeutic agents or to block normal 
receptor function, resulting in cell death [72–74]. In an 
interesting recent article, Zhang et al. developed a novel 
transferrin protein corona (Tpc)-modified CuGd nano-
platform (Tpc-CuGd) for tumor-targeting photothermal 
and chemodynamic synergistic therapy [75].

In summary, various Tf-modified nanoparticles have 
been developed for the targeted delivery of therapeutic 
agents to tumor sites, which can preferentially deliver 
therapeutics into TfR-overexpressing tumor cells by 
receptor-mediated internalization [76], showing excellent 
antitumor effects with few side effects.

Human epidermal growth factor receptor 2 
(HER2)‑mediated active targeting
The HER family, comprising HER1, HER2, HER3, and 
HER4, plays a crucial part in the pathogenesis of vari-
ous tumors including gastric and breast cancer [77, 78]. 
HER-targeting-based strategies may address tumor 
chemoresistance as their associated receptors usually 
possess tyrosine kinase catalytic activity [79]. Among 
these, the HER2 receptor is commonly studied in breast 
cancer as it is overexpressed > 20% of patients [80]. While 
the HER2 receptor does not have a natural ligand, it can 
dimerize with other ErbB family receptors, which results 
in activation of the HER signaling pathways [79]. A sig-
nificant challenge in developing targeted drugs has been 
the identification and preparation of HER2-specific 
artificial ligands with specificity and colloidal stability. 
Recently, a variety of monoclonal antibodies (Abs) and 
their fragments, as well as some peptide drugs, have been 

integrated as targeting units on nanoparticles against 
HER2 overexpressing cancer. The introduction of trastu-
zumab (TZ), a humanized anti-HER2 Ab, endows nano-
particles with excellent therapeutic efficacy for breast 
cancer treatment [81]. It can block cell cycle arrest and 
reduce angiogenesis by disturbing downstream HER2 
signaling activity. The interaction between TZ and HER 
blocks receptor cleavage and activates the response of 
Ab-dependent cellular cytotoxicity and receptor degrada-
tion following internalization of the TZ-HER2 complex. 
Pertuzumab (PZ), another humanized mAb, has been 
used to suppress heregulin-mediated activation of HER2 
phosphorylation and tumor proliferation [82]. Nanopar-
ticles functionalized with anti-HER2 Abs or its fragments 
can be effectively used for specific delivery of therapeu-
tic agents to HER2-overexpressed tumor cells by the 
HER2 receptor-mediated endocytosis process [83] which 
enhances therapeutic efficacy with fewer side effects.

Estrogen receptor‑mediated active targeting
Estrogen is a steroid hormone that plays a critical part in 
maintaining reproductive system function, bone homeo-
stasis, brain development, and cardiovascular remodeling 
[84]. Among the three forms (estrone (E1), estradiol (E2), 
and estriol (E3)), E2 is the crucial for the progression of 
breast, endometrial, and ovarian cancers [85, 86]. Estro-
gen function relies primarily on its binding and subse-
quent activation of two structurally different estrogen 
receptors (ERα and ERβ) [87]. Therefore, these related 
receptors are considered members of the nuclear recep-
tor superfamily.

It has been reported that following intracellular uptake 
of estrogen-modified nanoparticles by receptor-mediated 
endocytosis, intracellular ERs can carry these nanopar-
ticles toward the nucleus for nuclear targeting [88]. Fur-
thermore, these receptors have been found overexpressed 
on several tumor cell surfaces. In a recent application, 
Kapara and co-workers [89] reported a straightforward 
and non-destructive 3D surface-enhanced Raman spec-
troscopy (SERS) imaging strategy to track the cellular 
internalization of AuNPs modified with an anti-ERα Ab 
in MCF-7 cells. It was found that these modified nano-
particles were effectively internalized by tumor cells 
using the ERα receptor-mediated endocytosis process for 
enhanced tumor treatment.

Cluster of differentiation (CD) receptor‑mediated active 
targeting
The CD receptor family comprises surface receptors 
mainly present on cancer stem cells (CSCs), including 
CD14, CD22, CD36, CD44, and CD133, which can be 
used as promising delivery targets against tumor metas-
tasis. Among them, CD44, a transmembrane adhesion 
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glycoprotein, has been commonly used to target recep-
tors for targeted tumor treatment [90–92]. Hyaluronic 
acid (HA), a ligand with good biocompatibility, has been 
widely used in CD44 receptor-mediated active target-
ing delivery systems. It can be readily obtained due to 
its abundance as a natural polymer compared with poly-
mers that require multiple step chemical synthesis [93, 
94]. HA-functionalized nanoplatforms can effectively 
deliver therapeutic agents to tumor cells through CD44 
receptor-mediated active targeting, with an excellent 
cytotoxic profile and tumor kill. For example, Kim et al. 
[94] reported a HA modified, trio-stimuli receptive and 
on-demand triggerable nanoplatform for multimodal 
cancer treatment. These HA-enveloped nanoparticles 
effectively suppressed tumor growth in comparison to 
groups without HA modification. In general, HA is modi-
fied on the surface of nanoparticles to specifically bind 
to CD44 receptors that are overexpressed in tumor cells, 
thus mediating tumor endocytosis. In addition, HA has 
the tendency to be degraded to smaller fragments in 
the presence of hyaluronidase which is also abundantly 
present in the TME [95]. The versatile characteristics of 
HA as a targeted and enzyme-responsive ligand make 
it a promising candidate for application in specific drug 
delivery systems.

Other receptor‑mediated active targeting systems
In addition to the receptors mentioned above, other recep-
tors have also been used to design targeted anti-cancer 
nanoplatforms, including chemokine, biotin, and lutein-
izing hormone-releasing hormone (LHRH) receptors [96–
100]. For example, chemokine receptor type 4 (CXCR4) 
is a class of G-protein-coupled receptor that plays an 
important part in tumor metastasis by gathering tumor 
cells along chemokine gradients. Several peptide-func-
tionalized nanoplatforms have been prepared for targeting 
CXCR4 receptor-positive cancers. For example, Alberi-
cio et  al. developed circular peptide T22-functionalized 
mesoporous silica for the effective delivery of chemothera-
peutic agents to tumor cells [101]. Wang and co-workers 
prepared epirubicin-encapsulated polymeric nanoparticles 
that clearly improved therapeutic efficacy in hepatocellular 
carcinoma by conjugating the LFC131 peptide to increase 
the affinity [102]. Similarly, Murakami’s group also devel-
oped cellulose nanoparticles with the LFC131 peptide 
for targeted tumor treatment [103]. Xiao et al. designed a 
novel nanoplatform to target CXCR-4 to effectively induce 
p53 expression in hepatocellular carcinoma models. Com-
bining the CXCR4-targeted p53 mRNA nanoplatform with 
anti-PD-1 treatment effectively induced cellular repro-
gramming and immune components of the tumor micro-
environment in established hepatocellular carcinoma 
models [104]. It should be noted that the suppression of 

chemokine signaling can modulate the normal immune 
function in epithelial cells because CXCR4 plays a signifi-
cant role in normal cell growth and angiogenesis [105]. 
There is there an urgent need to design novel chemokine 
inhibitors that do not disturb the function of healthy cells. 
A number of LHRH receptors have been found in breast, 
ovarian and prostate cancer, but their expression is low 
or absent in the corresponding healthy tissues [106, 107]. 
Therefore, several nanoplatforms modified with LHRH 
peptides have been explored for the targeted delivery of 
therapeutic agents [108–111]. For instance, LHRH pep-
tide conjugated nanoparticles prepared by Tang and co-
workers enhanced cellular uptake and tumor suppression 
in comparison to the non-LHRH targeted formulations 
[112]. Moreover, Taheri and co-workers designed LHRH 
peptide-functionalized methotrexate-encapsulated nano-
particles with higher therapeutic efficacy against cancer 
[113]. In addition, Zhang’s group reported the anti-cancer 
ability of LHRH receptor-targeted mitoxantrone-encapsu-
lated versatile nanoplatforms in vivo, demonstrating aug-
mented tumor suppression with the targeted liposomes in 
comparison to non-targeted formulations [111]. Although 
these receptor-mediated strategies have shown potential 
advantages for drug delivery, several factors, such as ligand 
stability, orientation, and density, must be taken into con-
sideration to preserve the function of the targeting ligand.

Stimuli‑responsive targeting strategies
Unique features of the TME include an acidic envi-
ronment, a high concentration of GSH and ROS, and 
increased expression of specific enzymes (MMP-2/cath-
epsin B). Therefore, nanoparticles incorporating TME-
responsive components can pave the way for targeted 
drug delivery and tumor treatment. In response to these 
endogenous stimuli, alterations in molecular function 
and dispersion behavior, morphology, and degradation 
kinetics can be induced. This facilitates either intracel-
lular internalization or escape from endosome/lysoso-
mal degradation and release of pharmaceutical active 
ingredients [114]. In addition to endogenous respon-
sive nanosystems, some exogenous stimuli-responsive 
nanoparticles also show beneficial targeting behavior by 
utilizing controllable external factors, such as lasers, tem-
perature, ultrasound, and magnetism. Several examples 
of endogenous and exogenous responsive nanoplatforms 
are presented below (Fig. 4).

Endogenous Stimuli‑responsive targeting strategies
Redox‑responsive targeting strategies
Redox species in tumor cells form a complex antioxidant 
defense system to modulate redox homeostasis, play-
ing an important role in the cell life cycle [115]. Com-
mon reactive oxygen species (ROS) include hydroxyl 
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radicals (·OH), singlet oxygen (1O2), and hydrogen perox-
ide (H2O2). It should be noted that H2O2 is a stable and 
nontoxic ROS, while others have a short half-life and can 
be effectively transformed into powerful toxic reagents 
[116, 117]. On the one hand, H2O2 can be used as a sub-
strate for O2 production with the aid of a specific enzyme 
to alleviate tumor microenvironment hypoxia in some 
O2-demanding therapeutic strategies [118]. On the other 
hand, the H2O2 can also be converted into other highly 
active ROS, including 1O2, O2·− and ·OH [116]. This 
increased ROS can result in oxidative stress, such as lipid 
peroxidation (LPO), and protein and DNA impairment 
[119]. In addition, glutathione (GSH), as an antioxidant, 
is commonly distributed in tumor cells at concentrations 
up to 2–10 mM, playing a significant role in consuming 
ROS and modulating redox homeostasis [120, 121]. Fur-
thermore, a high GSH concentration can make tumor 
cells resistant to various treatments [122]. Therefore, it 
is advantageous to develop redox-sensitive nanoparti-
cles for the delivery of therapeutic agents to trigger treat-
ments such as chemodynamic therapy (CDT) (Fig. 5). In 
addition, to further improve the therapeutic profile, ROS 
generation combined with GSH depletion can effectively 
disturb redox homeostasis to augment oxidative stress, 
thus resulting in tumor cell apoptosis [123]. ROS are gen-
erated by the partial reduction of O2 which is necessary 
for maintaining the normal function of aerobic organisms 
using energy provided from four electron reduction reac-
tion [124–129]. As shown in Table  2, most efforts have 
been to develop ROS-responsive building blocks, which 
can be combined with chemotherapeutics to achieve 
excellent antitumor activity with few side effects.

ROS‑responsive targeting strategies  Hypoxia, which can 
cause tumorigenesis and cancer progression, has been 
considered as a significant biomarker in cancer theranos-
tics and targeted treatment. Moreover, it is controlled by 
the overgeneration of VEGF and hypoxia induced factor 
(HIF-1α) in tumor cells [130], resulting in decreased sen-
sitivity of cancers to radiotherapy (RT), causing chemore-
sistance and also greatly affecting the efficacy of O2-related 
treatments, such as photodynamic therapy (PDT) and 
sonodynamic therapy (SDT) [131]. Recently, researchers 
have developed versatile ROS-responsive nanoparticles 
through catalase (CAT)-mediated tumor site-specific 
O2 generation to alleviate hypoxia for enhancing tumor 
treatment [132]. For instance, Zhang et  al. developed 
liposomes loaded with a cisplatin-prodrug functional-
ized phospholipid and CAT [133], alleviating the chem-
oresistance caused by hypoxia. Further, the liposome 
encapsulation also endowed the prepared nanoplatforms 
with satisfactory biocompatibility and a high tumor accu-
mulation profile. Treatment with the designed liposomes 
induced the highest level of DNA impairment in tumor 
cells exposed to X-rays in comparison to the control 
group. In addition, a range of nanocarriers with CAT 
mimicking activity, including MOF, MnO2, CeO2, Pt, and 
Pd [131, 134–138], have also shown greatly potential in 
nanomedical applications. It should be noted that MnO2 
is well known to convert H2O2 into O2 under the action of 
the acidic TME with the disruption of MnO2-based nano-
particles [138, 139]. These ROS-responsive nanoparticles 
capable of stimulating tumor site-specific O2 production 
provide a practical strategy for improving the sensitivity 
of RT and chemotherapy.

Fig. 4  Schematic representation of exogenous and endogenous stimuli-responsive nanoplatforms for tumor therapy
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Hydroxyl radicals (·OH) are not only an important 
component of ROS, but also the main product of the Fen-
ton reaction for tumor-targeted therapy [140]. Moreover, 
the unique characteristics of slight acidity and overpro-
duction of H2O2 in the TME offer a suitable environ-
ment and reactants for the Fenton reaction compared to 
normal cells. Tang et  al. reported on the use of chemo-
dynamic therapy (CDT using Fenton or Fenton-like reac-
tions for ·OH-producing tumor treatment [141]. Another 
promising application of endogenous H2O2 in the TME 
is to activate CDT for specific cancer treatment [142]. 
To achieve this, a number of H2O2-sensitive nanopar-
ticles have been developed, and many efforts have also 

been devoted to replenishing H2O2 in tumor cells [143]. 
Among these strategies, iron-based nanoparticles have 
been widely applied to generate highly toxic ·OH for 
tumor treatment. As the intratumoral H2O2  concentra-
tion (50 – 100 Μm) is not sufficient to generate adequate 
amounts of ·OH, Gao et  al. prepared Au-Fe3O4-based 
nanoparticles for nanocatalytic cancer treatment. In this 
nanosystem, Au first catalyzes intracellular glucose oxi-
dation into gluconic acid and H2O2. The Fe3O4-triggered 
Fenton reaction then converts H2O2 into ·OH radicals 
inducing tumor cell death [144]. Both in vitro and in vivo 
results confirmed that the designed nanoparticles pre-
sented a satisfactory tumor inhibition ratio. Many other 

Fig. 5  (A) Schematic illustration of amplified oxidative stress based on intracellular ROS for incurring tumor cell apoptosis. B Schematic illustration 
of the anti-metastasis performance of the GSH-responsive nanoplatforms
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iron-free Fenton nanocatalysts including transition 
metal-based, precious-metal-based, sulfide-based nano-
catalysts and their composites multifunctional radical 
therapeutics have been developed [145].

Recently, Chen and colleagues prepared copper per-
oxide (Cu2O2) nanoparticles with the features of revers-
ible degradation to generate self-supplying H2O2 through 
changes in Ph [146]. The H2O2 could be effectively cata-
lyzed by Cu2+ to generate highly toxic ·OH. These nano-
particles showed improved tumor inhibition efficacy in 
comparison to the controls. Additionally, H2O2 has also 
been used for NO-based gas treatment. This has been 
called a “green” treatment approach for cancer therapy, as 
it shows minimal toxicity for normal tissues while offer-
ing metabolic benefits that are not achievable through 
chemotherapy or other traditional therapeutic modali-
ties [147]. For example, Chen and colleagues developed 
mesoporous silica nanoparticles as biocompatible nano-
vehicles for the delivery of arginine and glucose oxidase 
(Gox) [148]. These nanoparticles used encapsulated Gox 
to provide a degrading glucose reaction to increase intra-
cellular H2O2 concentration, which can then oxidize argi-
nine into NO under the action of specific NO synthase. 
As the levels of glucose increase, the tumor microenvi-
ronment became more acidic, allowing H2O2 to facilitate 
the NO production. After treatment with the designed 
nanoparticles, tumor volumes were considerably reduced 
and the mice had longer survival times. In another mode, 
H2O2 can be used as a stimulus for the disruption of nan-
oparticles, leading to controllable release. For instance, 
a novel oxidation-sensitive polymeric carrier has been 
used to prepare antitumors nanoplatforms [149]. Among 
them, poly (propylene sulfide) as a hydrophobic block 

promotes H2O2-sensitive transformation from insoluble 
to soluble forms. Poly (propylene sulfide) conjugated with 
PEG can rapidly self-assemble into nanoparticles and 
decompose upon confrontation with H2O2, suggesting 
great promise as a delivery platform. Overall, nanopar-
ticles containing H2O2-sensitive groups are expected to 
become more widely used in stimuli-triggered disintegra-
tion and specific cancer treatment [150, 151].

Reactive nitrogen species (RNS)‑responsive targeting strat‑
egies  NO, the first gas molecule for therapy, has attracted 
attention because of its excellent diffusivity and cell mem-
brane penetration, endowing it with broad biological 
activities and therapeutic potential [152–158]. It has been 
reported that matrix metalloproteinases (MMPs), which 
comprise a family of enzymes that can degrade matrix 
proteins, are capable of depletion of collagen through acti-
vation of NO, resulting in improved penetration ability of 
the prepared nanoparticles [159, 160]. In addition, NO 
can react with 1O2 to generate highly toxic peroxynitrite 
(ONOO−) which has a stronger tumor cell killing abil-
ity [161]. ONOO- can convert pro-MMPs into MMPs to 
degrade the extracellular matrix to enhance the penetra-
tion ability of nanoparticles and induce DNA impairment. 
NO and ONOO- can cause mitochondrial dysfunction by 
reducing mitochondrial membrane potential and inhib-
iting the generation of ATP, which effectively suppresses 
ATP-related tumor-derived vesicles and tumor metas-
tasis [162]. Moreover, the derived RNS and superoxide 
can effectively kill cancer cells by inducing nitrosative or 
oxidative stress, DNA or mitochondrial impairment and 
improving inflammatory reactions, resulting in acceler-
ated cell apoptosis [147, 163–165]. However, there are still 

Table 2  ROS-responsive building blocks for cancer treatment

Type of chemical bond Nanoplatform Tumor model Therapy strategies Refs.

Thioketal linker Polyprodrug NPDOX/Cy Breast cancer Chemotherapy [493]

Phenylboronate ester G5.NHAc-Toy@TF nanocomplexes Breast cancer Chemotherapy, CDT [494]

pPBA(TL)-MN Breast cancer Immunotherapy [495]

Bilirubin Dox@bt-BRNPs Cervical carcinoma Chemotherapy [496]

TH-302@BR-Chitosan NPs Cervical carcinoma Chemotherapy PTT [497]

Gallic acid-ferrous nanocomplex BSO/GA–Fe(II)@ liposome Breast cancer CDT [119]

Ru nanoparticle HA-Ru NAs Breast cancer PTT, PDT, CDT [498]

FePt nanoparticle FePt/MoS2-FA nanocomposites Breast cancer Immunotherapy, PTT [499]

Manganese ferrite nanoparticle (MFN) MFMSN-Ce6 Melanoma SDT [500]

Horseradish peroxidase Lipo@HRP&ABTS Breast cancer PTT [501]

PEG-TiO1+x NRs Breast cancer SDT, CDT [502]

Catalase CAT@Pt (IV)-liposome Breast cancer Chemotherapy, RT [133]

CAT@HA-HMME NPs Colorectal cancer SDT [503]

Bis(3,4,6-trichloro-2-(pentyloxycarbonyl) 
phenyl) oxalate

POCL Cervical carcinoma PDT [504]
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some concerns regarding the delivery of NO by different 
nanomaterials due to difficulties in obtaining efficient 
encapsulation and precise release [166]. To overcome the 
drawbacks of the current NO delivery carriers and NO 
donors, an interesting approach was reported to transport 
NO for tumor treatment using prodrug self-assembling 
nanoplatforms of NO donors. Briefly, phenylsulfonyl-
furoxan was used as the NO donor in the synthesis of a 
prodrug using ester and disulfide bonds. The insertion of 
disulfide bonds facilitates the self-assembly of polymers 
in solution. Subsequently, the multiresponsive tumor-
targeting NO nanoparticles can be obtained by adding FA 
onto the surface, which can achieve the effective delivery 
of NO to tumor regions, leading to accurate NO release 
and inducing tumor cell apoptosis [167]. Researchers have 
also developed other NO donors, such as Roussin’s black 
salt, metal NO complexes, and S-nitrosothiols [168–171].

NO may also relieve hypoxia in the tumor area through 
vasodilation, which promotes PDT efficacy [172], further 
improving the combined effects of PDT and NO in can-
cer therapy. To improve penetration into tumor tissue in 
PDT-mediated tumor treatment, researchers typically 
combine rare-earth up-conversion nanomaterials with 
different photosensitive therapeutic agents [173, 174]. 
However, this poses new risks in the preparation and 
biosecurity of such nanoparticles. The combination of 
ROS and RNS responsive strategies into the same nano-
particles with good biological safety can be expected to 
provide an efficient and all-in-one anticancer treatment.

GSH‑responsive targeting strategies  A number of nano-
carriers comprised of disulfide bonds, carbon-diselenide 
bonds, diselenide bonds, or a sulfonyl group [175–182] 
have been prepared by cross-linking reactions. Overgen-
erated GSH can effectively break various disulfide bonds, 
thus causing disintegration of nanoparticles and accurate 
cargo release in cancer cells. It should be noted that nano-
platforms with disulfide bonds embedded in mesoporous 
silica nanoparticles show fast biodegradation and are 
emerging as promising nanovehicles [183].

For the development of GSH-sensitive nanoplatforms, 
the co-assembly of amphipathic block copolymers and 
therapeutic agents with GSH-responsive groups into sev-
eral nanosystems (such as liposomes, nanoparticles, and 
micelles) has been considered as a potential application 
approach [184]. Nanoplatforms bearing GSH-cleavable 
prodrugs have also been developed, which can be effec-
tively modulated to toxic therapeutic agents by exces-
sive intracellular GSH [185–188]. For example, Sun et al. 
loaded a trimeric prodrug into FA functionalized polylac-
tic-coglycolic acid hybrid nanoparticles, where the chem-
otherapeutic camptothecin (CPT) was conjugated to 
NIR croconaine dyes through disulfide bonds [189]. This 

novel nanoprodrug had a high CPT loading efficiency 
and exhibited rapid drug release when exposed to GSH. 
Additionally, the photothermal effect of the cocaine dyes 
further facilitated disulfide linker cleavage. The encap-
sulated croconaine dyes endowed this nanoparticle with 
NIR fluorescence and photoacoustic imaging properties 
for tumor treatment.

Platinum drugs (e.g., cisplatin, carboplatin and oxali-
platin) currently remain the most commonly used 
chemotherapeutic agents against a number of tumors 
[190, 191]. However, there are numerous problems with 
these drugs in clinical use, such as lack of specificity and 
severe side effects on normal organs. Therefore is a grow-
ing tendency to develop prodrug-based nontoxic Pt(IV)
s that can be converted into highly toxic Pt(II) through 
the reduction of GSH [192]. Farokhzad’s group developed 
self-assembled nanoparticles comprised of PEGlipid and 
Pt (IV) prodrug for tumor treatment [193]. On one hand, 
this nanoscale strategy facilitated the delivery of cargoes 
across cell membranes into cells by endocytosis. On 
another other, these prodrugs had a GSH-depleting fea-
ture, resulting in the release of Pt(II) to act on DNA and 
trigger tumor cell apoptosis.

In addition to the above GSH-responsive nanoparti-
cles, multivalent metal ions such as Fe2+ and Fe3+ Cu+ 
and Cu2+ and Mn2+ and Mn4+also show GSH-responsive 
behavior due to a shift in valency, [194]. These reduced 
metal ions can be further applied for diagnosis or 
improved treatment. In one example, ultrasmall (4  nm) 
cerium oxide nanoparticles (CeO2 NPs) were rapidly 
etched, leading to the opening of nanochannels in the 
mesoporous silicon nanoparticles when exposed to vita-
min C or GSH, resulting in controlled antitumor drug 
release [195]. Recently, our group prepared versatile Cu-
MOF nanoparticles loaded with VK3 for enhanced CDT 
by regulating GSH and H2O2 in the tumor microenviron-
ment [196, 197]. Cu+ and Cu2+ showed better catalytic 
capability than classical Fe-dependent Fenton agents. 
The satisfactory antitumor effects presented by these Cu-
based nanoparticles, and the cascade-enhanced chemo-
chemodynamic therapy approach provide an opportunity 
for the application of such novel nanoplatforms for HCC 
treatment. Furthermore, future advancements, such 
as improved targeting, can effectively improve the effi-
cacy and use of such approaches, which should be ben-
eficial to cancer treatment [196, 197]. Additionally, the 
consumption of GSH plays an important role in metal-
based chemodynamic therapy. For instance, Liu et  al. 
developed advanced metal-based nanoparticles through 
chemodynamics for multimodal tumor treatment [198]. 
GSH acted on the designed nanoparticles and effectively 
reduced Mn4+, Mn3+, and Cu2+ into Mn2+ and Cu+, 
accompanied by GSH consumption. Inductively coupled 
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plasma optical emission spectrometry (ICP-OES) was 
used to support the rapid release of Cu and Mn from the 
nanoparticles in an acidic environment containing GSH. 
The nanoparticles displayed specific recognition and 
homotypic targeting profiles to MCF-7 cells. Combin-
ing metal ions with GSH-consumption in the TME could 
become a more promising targeted strategy for CDT

ROS and  GSH dual‑responsive tumor‑targeting strat‑
egy  As mentioned above, intracellular redox regulation 
has been considered an effective strategy against cancer. 
However, the ROS produced from the catalytic oxida-
tion of H2O2 can be removed by the overgenerated GSH, 
compromising therapeutic interventions. To overcome 
this, selective enhancement of oxidative stress through 
depleting GSH levels and simultaneously elevating ROS 
concentrations can be a specific and promising strategy in 
cancer treatment [199]. For instance, Liang and colleagues 
designed an oxidative stress-amplified nanoplatform for 
disturbing mitochondrial redox balance, which com-
prised atomically dispersed Au anchored onto a carbon-
dot surface modified with cinnamaldehyde and triph-
enylphosphine [200]. The acidity of endosomes facilitates 
the dissociation of cinnamaldehyde. Subsequently, the 
nanoparticles rapidly react with GSH, accompanied by 
ROS generation, resulting in the elevation of ROS and the 
simultaneous reduction of GSH. As a result, levels of mito-
chondrial GSH in tumor cells were obviously decreased 
after incubation with the prepared nanoparticles. In addi-
tion, the prepared nanoparticles with enhanced oxida-
tive stress possessed excellent anticancer effects against 
HepG-2 tumors. These groups of designed nanoparticles 
also showed prolonged survival times and few side effects 
against various tumor models, which can be attributed to 
the fact that normal tissues, unlike the TME, do not have 
high redox levels.

pH‑responsive targeting strategies
pH-sensitive nanocarriers have been extensively explored 
to design versatile nanoplatforms for targeted drug deliv-
ery. The TME usually has a lower extracellular pH (pHex) 
with a mean value of ~ 6.5 in comparison to healthy tis-
sue [201]. Generally, compared with healthy cells, tumor 
cells rapidly consume glucose for glycolysis with rapid 
lactate production to obtain the energy required for 
maintaining their proliferation regardless of oxygen 
content; consequently, the higher metabolism rate of 
tumor cells has been recognized as a major cause of the 
acidic TME [202]. Additionally, tumor cell, lysosomes 
and endosomes also have a lower pH (endosomal pH 
(pHen)) in comparison to pHex [203, 204]. Therefore, 
pH-responsive nanoplatforms have been developed as 
an effective tumor treatment tool, greatly enhancing the 

tumor accumulation of the loaded therapeutic agents and 
facilitating the release of cargoes in the acidic tumoral 
microenvironment [205]. Currently, researchers typically 
use changes in chemical structure (such as changes in 
hydrophilicity through deprotonation and protonation) 
and acid-sensitive chemical bonds to design pH-respon-
sive nanoplatforms (Fig.  6). Additionally, the designed 
pH-sensitive formulations usually have the ability to pro-
tect several therapeutic agents and vehicles for tumor 
therapy from being trapped in endosomes [206, 207]. 
Generally, the encapsulation of chemotherapeutics inside 
pH-responsive nanoparticles is an efficient approach for 
prolonging the blood circulation time of the encapsu-
lated agents and their retention inside the nanoparticles 
in a physiological environment. Moreover, pH-responsive 
nanoparticles are also able to improve the pharmacoki-
netics and biodistribution of the encapsulated payload. 
This is essential for delaying metabolism and the subse-
quent release of drugs.

Protonation and  deprotonation‑based nanoplat‑
forms  Protonation and deprotonation are widely used 
mechanisms for pH-sensitive nanocarriers in tumor 
treatment. pH-responsive nanoplatforms including 
polyelectrolytes, such as poly(aspartic acid-graft-imi-
dazole), cationic poly(β-amino ester) (PBAE), anionic 
poly(Asp), PDMAEMA, polysulfonamide, poly(histidine) 
(poly(His)), and poly(acrylic acid) (PAA), are shown in 
Table 3. In an advanced strategy to design biocompatible 
nanoparticles, it has also been proposed that biodegrad-
able materials such as enzyme-responsive chitosan and 
certain polypeptides can be used for protonation and 
deprotonation-based nanomaterials through function-
alization with an acid-responsive group to the backbone 
of biodegradable materials [208–210]. These materials 
generally contain –COOH as anionic groups and –NH2 
as cationic groups combined with other hydrophobic 
or hydrophilic molecules, which can be further used in 
pH-responsive nanoplatforms through protonation and 
deprotonation.

Cationic materials with -NH2 groups can effectively 
protonate in an acidic environment and show excellent 
hydrophilicity, while they can deprotonate in a neu-
tral environment to show hydrophobicity. In contrast, 
anionic materials with –COOH groups [211–214] can 
also deprotonate and protonate in the opposite way. 
For instance, the groups of imidazole can be easily pro-
tonated under acidic conditions, as they have a pair of 
electrons on the unsaturated N atoms, leading to the con-
version of hydrophobic to hydrophilic states, which can 
incur disintegration of the nanocarriers and consequently 
release the loaded therapeutic agents. Besides, poly(His)-
PEG shows obvious nanoscale core–shell micelles in a 
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neutral environment consisting of the hydrophilic PEG 
shell and hydrophobic cores of poly(His) by deprotona-
tion. However, the protonation of poly(His) responds 
to His groups and destabilizes micelles because of the 
reduced hydrophobicity of poly(His) at pHex. Further, 
the poorly soluble therapeutic agents encapsulated in 
the core of the pH-responsive micelles can be effectively 

released in an acidic environment because of the destruc-
tion of the hydrophobic cores. In another example, Oh 
et al. also prepared pH-responsive micelles using amphi-
philic polyelectrolytes for docetaxel delivery. Similarly, 
the prepared micelles exhibited good colloidal stabil-
ity under physiological conditions, while they became 
unstable due to protonation of the imidazole group under 

Fig. 6  Schematic illustration of pH-responsive nanoplatforms for the delivery of therapeutic agents. The nanoplatforms can effectively accumulate 
in the tumor sites via the EPR effect. In the tumor microenvironment, acidic conditions can effectively trigger drug release for tumor treatment
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acidic conditions. Therefore, the docetaxel-encapsulated 
micelles have pH-responsive release behavior due to 
structural changes induced by protonation of the imi-
dazole groups in the amphiphilic polyelectrolytes. pH-
responsive release can also lead to high stability in blood 
circulation, a decrease in the toxicity of healthy tissues, 
and increased drug availability.

Additionally, some materials with anionic polyelectro-
lytes have also been used to prepare pH-sensitive nano-
carriers for drug delivery [215]. However, the strategy 
of taking advantage of anionic amphiphilic molecules 
to prepare pH-responsive and tumor-targeted nanocar-
riers can be different from that utilizing cationic mate-
rials. Under acidic conditions, such as pHen and pHex, 
anionic polymers containing -COOH groups can exist as 
protonated (hydrophobic) units and are not applicable 
to tumor-targeted micelles from amphiphilic polymer 
blocks rich in anionic groups. As a result, anionic poly-
mers can be encapsulated with some chemotherapeutics 
such as DOX using hydrophobic interactions in physi-
ological environments, and therapeutic agents can be 
effectively released for specific tumor treatment under 
acidic conditions via weakened interactions owing to 
protonation.

Acid‑sensitive bond cleavage‑based nanoparticles  As 
previously described, the acidity differences between the 
various compartments of tumor cells and between tumors 
or healthy tissues have received widespread consideration 
for designing pH-responsive chemical structures. In par-

ticular, acid-sensitive chemical bonds have been inten-
sively investigated for pH-responsive nanocarriers, such as 
esters, imines, and hydrazine. These acid-sensitive bond-
based nanoplatforms have been proven to be relatively 
stable in physiological environments but are easily bro-
ken via nucleophilic substitution reactions under acidic 
conditions [216]. Further, the acid-sensitive bonds can 
be directly conjugated to the therapeutic agents as labile 
groups in nanoparticles. For example, with the protona-
tion of labile compounds containing C=N bonds (such as 
hydrazone bonds, imine groups, and oxime bonds) under 
acidic conditions, they can be readily susceptible to nucle-
ophilic substitution by H2O because of the increased elec-
trophilicity of carbon atoms [217–220]. Hydrazone link-
ages in particular, with satisfactory acid responsiveness 
and a fast degradation rate, have been widely used in dif-
ferent pH-responsive nanoplatforms such as liposomes, 
nanoparticles, and micelles [210, 221–225]. Additionally, 
acid-responsive groups can also be applied to improve 
the limited cargo release from the nanoparticle core and 
target-cell interactions because of PEGylation. For exam-
ple, Wu et al. synthesized hydrazone linker-functionalized 
liposomes to address the problems with PEGylation. As 
expected, the hydrazone bond-functionalized liposomes 
exhibited satisfactory lysosomal escape properties and 
enhanced tumor accumulation in comparison to normal 
liposomes [226]. However, imine bonds have poor stabil-
ity under physiological environments due to the loss of 
mesomeric effects in comparison to hydrazone bonds 
[227]. Therefore, researchers have made significant efforts 

Table 3  pH-responsive building blocks for tumor treatment

pH-sensitive building block Therapeutic agent Tumor model Therapeutic application Refs.

Poly(2-(hexamethyleneimino)ethyl methacrylate siBRD4-loaded TCPA2-NPs Prostatic cancer LNCaP-bearing mouse GT [477]

HRNMs Glioblastoma Chemotherapy [478]

Poly(diisopropanol amino ethyl methacrylate) GPDPA NPs Glioblastoma Chemotherapy PTT [479]

Benzoic-imine bond CA-MTX NPs Cervical carcinoma Chemotherapy [480]

nBSA-Dox Hepatocellular carcinoma Chemotherapy [481]

NdIIIIP-N = CH-PEG Cervical carcinoma Chemotherapy PTT [482]

DOX-ICM Glioblastoma Chemotherapy [483]

Au@PP/RA/siRNA Pancreatic cancer Chemotherapy [484]

Pyridine-2-imine Gold nanomachine Breast cancer PTT [485]

PMNP-DOX@RBC Breast cancer Chemotherapy, CDT [486]

Amide bond DOX-CC-NP Squamous cell carcinoma Chemotherapy [19]

PDNBF NPs Breast cancer Chemotherapy PTT [487]

Nanodrug complex MONCs Breast cancer Chemotherapy PDT [488]

B780/Qu NPs Breast cancer Chemotherapy PDT, PTT [98]

Gadolinium oxide Gd2O3 NSs Melanoma Chemotherapy [489]

FS-GdNDs Breast cancer PTT [490]

Triplex DNA sequence NLNs/DOX Breast cancer Chemotherapy [491]

DNA Conjugated AuNPs Breast cancer Chemotherapy PTT [492]
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to improve the stability of imine bonds by introducing 
strong π–π conjugated systems such as benzene rings 
[228, 229]. For example, Wang et  al. prepared versatile 
biomimetic nanoparticles based on formyl benzoic acid-
PEG-maleimide functionalized mesoporous silica against 
metastatic triple-negative breast cancer. After loading of 
immune adjuvant and photothermal therapeutic agents, 
the immune peptide was then linked to the surface of 
nanoparticles through acid-responsive benzoic-imine 
bonds. It was applied to the therapy of metastatic triple-
negative breast cancer through immune remodeling and 
photothermal ablation [230]. Taken together, these low-
pH-responsive nanoparticles can effectively release the 
encapsulated chemotherapeutic agents upon encounter-
ing the acidic TME in targeted cancer therapy.

Enzyme‑responsive targeting strategies
Enzymes, being a significant component of the nano-
biotechnology toolbox, have exceptional biorecognition 
abilities as well as excellent catalytic properties. Gener-
ally, abnormal enzyme expression observed in cancer 
provides many opportunities for designing targeted nan-
oparticles modified with enzyme-responsive linkages. 
Recently, many smart nanoparticles have been prepared 
for intracellular as well as extracellular tumor-specific 
drug delivery based upon enzyme expression at the target 
site.

MMP‑responsive nanoplatforms  Matrix metallopro-
teinases (MMPs), which are overexpressed in various 
types of tumors, are closely related to cancer patho-
physiology. MMP-2 and MMP-9 in particular have been 
explored for preparing enzyme-responsive nanoplatforms 
[231, 232]. For example, Yamada et al. prepared two PTX 
prodrugs by conjugating an octapeptide (AcGPLGIAGQ) 
with PTX at different sites that could be effectively broken 
down by MMP2 in the tumor microenvironment. These 
nanoparticles can effectively release PTX to inhibit can-
cer cell proliferation [233]. Among various natural materi-
als, gelatin is an example of a biocompatible polymer that 
can be degraded by MMPs and promote cargo release in 
tumor sites. For instance, Wang et  al. developed MMP-
responsive PVA-peptide conjugates for achieving self-
assembly with enhanced tumor accumulation, capable 
of improving PD-L1 blocking efficiency for augmented 
immunotherapy. Once the self-assembled nanoplatforms 
entered the TME, the enzyme-cleavable peptide could be 
immediately degraded under the action of overexpressed 
MMPs to effectively release cargoes for cancer treatment 
[234]. Furthermore, gelatin-functionalized DOX-loaded 
mesoporous silica nanoparticles have been applied for the 
delivery of therapeutic agents against MMP-9 overgener-
ated in cancer. As expected, the prepared nanoformula-

tion showed clearly enhanced DOX release under simu-
lated tumor microenvironment conditions and in tumor 
cell models [235]. In addition, Zhang’s group synthesized 
camptothecin-encapsulated mesoporous silica nanopar-
ticles surface functionalized with targeting cRGD and 
MMP-2 responsive fluorescence imaging groups, acting as 
a diagnostic platform as well as for tumor location. These 
advanced nanoplatforms were able to efficiently undergo 
enzymatic hydrolysis in overexpressed MMP-2 environ-
ments to improve tumor treatment by the release of their 
cargoes [236]. Further, some amphiphilic block copoly-
mers (such as PCL-PEG) are suitable for the preparation 
of versatile delivery platforms against cancer. For instance, 
PTX-encapsulated PEG-PCL nanoparticles function-
alized with activated low molecular weight protamine 
showed satisfactory targeted glioma effects. Further, these 
advanced nanoparticles also exhibited enhanced MMP-
dependent cellular internalization, increased cytotoxic-
ity, and augmented tumor suppression in glioma models 
[237]. In another study, Yang et  al. prepared a versatile 
nanoparticle based on MMP-sensitive Au nanoparticles 
for tumor-specific photoacoustic imaging-guided tumor 
treatment and drug delivery. The Au nanoparticles could 
be further grafted with complementary DNA strands, 
functionalized with PEG and conjugated with therapeutic 
agents through MMP-responsive peptides and thermal-
sensitive linkers, respectively. As a result, the developed 
nanoparticles showed augmented efficiency in tumor 
treatment and photoacoustic imaging in comparison to 
MMP-inert nanoparticles [238]. Similarly, hydrophilic 
siRNA and poorly soluble drugs could be effectively code-
livered using versatile micelles prepared by MMP-2-re-
sponsive copolymers. The prepared nanoplatform showed 
satisfactory colloidal stability and enhanced endocytosis 
efficiency in different tumor cell lines and significant pas-
sive targeting behavior in tumor-bearing models. Mallik 
et al. prepared an MMP-9 responsive nanoplatform using 
collagen-simulated lipoprotein conjugated to PEG cleav-
able polymers to encapsulate Gem. The designed enzyme 
stimuli-responsive nanoparticles demonstrated a faster 
Gem release rate treated with MMP-9 and a higher tumor 
inhibition ratio in comparison to MMP-inert nanoparti-
cles [239]. Yang’s group [240] designed an advanced MMP 
stimuli-responsive nanoplatform encapsulated with the 
chemotherapeutic agent curcumin using a block copoly-
mer with surface-adsorbed peptides that could improve 
endocytosis. The prepared nanoplatform showed a sus-
tained curcumin release behavior under physiological 
conditions, while release could be accelerated under con-
ditions that mimic the tumor microenvironment. There is 
no doubt that these designed MMP-responsive nanopar-
ticles present excellent tumor specificity and therapeutic 
efficacy in cancer models with few side effects
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Heparanase‑responsive nanoplatforms  Glycosamino-
glycans and structural proteins together constitute the 
matrix of the tumor tissues, of which the main compo-
nent of glycosaminoglycans is heparan sulfate proteogly-
can [241]. Furthermore, heparan sulfate proteoglycan is 
actively involved with various biological factors (including 
VEGF, TGF-β, and b-FGF) that play an important role in 
the interaction between normal cells and tumors. In addi-
tion, some reports have pointed out that highly metastatic 
and malignant cancers frequently over generate hepara-
nase-1, which can degrade HSPGs in the tumor micro-
environment, causing enhanced secretion of the above 
bioactive factors and the consecutive triggering of related 
pathways resulting in cancer metastasis, epithelial-mes-
enchymal transition, and neovascularization. Addition-
ally, the new spaces formed in the matrix can also result 
in cancer invasion and metastasis [242]. It has also been 
reported that heparanase-1 can effectively degrade hepa-
rin, suggesting a potential novel nanovehicle with hepara-
nase sensitivity for drug delivery.

An example of utilizing heparin-prepared nanoplat-
forms is to bind heparin molecules via GSH-responsive 
disulfide bonds to construct heparin-based nanogels 
[243]. Another approach involved the construction of a 
nanocomplex through electrostatic interactions between 
protamine and heparin for effective loading of positively 
charged therapeutic agents. Researchers have devel-
oped similar versatile nanoparticles with polyelectrolyte 
complexes encapsulating small therapeutic agents [244]. 
Isothermal titration calorimetry and real-time dynamic 
swelling spectroscopy have been used to explore the 
underlying mechanisms and principles for the fabrication 
of advanced nanoplatforms via intermolecular electro-
static interactions [245]. During optimization of the man-
ufacturing process, the polyelectrolyte nanocomplex can 
be developed with appropriate negative surface charges 
and particle size [246]. 1,2-Dioleoyl-3-trimethylammo-
nium-propane (DOTAP), a positively charged phospho-
lipid compound widely applied to construct cationic 
liposomes, has been applied to encapsulate hydrophobic 
chemotherapeutic agents through liposomes formation 
[247]. When codelivered therapeutic agents nanoplat-
forms enter the tumor microenvironment, overexpressed 
heparanase-1 can rapidly recognize the outer heparin 
shell and cleave it, resulting in the release of cargoes 
for tumor cell kill [242]. This also causes the positively 
charged nanoparticle core to be exposed to the cancer 
cells, and efficient endocytosis of nanoparticles by tumor 
cells can be achieved with this approach.

Cathepsin‑sensitive nanocarriers  Recently, researchers 
have demonstrated that a variety of cathepsins are overex-
pressed in different types of tumors. These are found not 

only in tumor cells but also in tumor-related endothelial, 
fibroblast, myoepithelial, and osteoclast cells as well as 
leukocyte cells [248]. A great number of studies have been 
undertaken on the design and development of cathepsin-
responsive nanoplatforms, particularly on Gly-Phe-Leu-
Gly, which has been commonly applied as a spacer that 
can be effectively degraded in overexpressed cathepsin B 
environments [249]. For example, Xia et al. prepared a pH 
and cathepsin B dual-responsive nanovaccine that specif-
ically targeted endosomal Toll-like receptors (TLRs) for 
enhanced tumor vaccination. In vivo results showed excel-
lent prophylactic and antitumor effects of the nanovac-
cine against tumor-bearing mice. This endosome-targeted 
responsive nanovaccine approach provides a promising 
delivery platform for adjuvants to promote the design 
and preparation of cancer nanovaccines [250]. Accurate 
assessment of cathepsin B expression in  vivo may pro-
vide a potential approach for early tumor diagnosis [251]. 
Taking advantage of precise photoacoustic imaging, an 
intelligent photoacoustic probe Cypate-CBT, which could 
effectively assemble into cypate-containing nanoprobes in 
response to overgenerated GSH and cathepsin B in tumor 
cells, was prepared by Liang’s group [251] for the accurate 
and specific monitoring of cathepsin B. In comparison 
to unmodified Cypate, this nanoprobe showed a higher 
photoacoustic signal in cathepsin B-positive breast can-
cer models, supporting the intracellular accumulation of 
the nanoprobes after cathepsin B-triggered self-assembly. 
The cathepsin B-responsive nanoprobe can be employed 
as an efficient photoacoustic imaging agent for the early 
diagnosis and targeted therapy of cancer.

Hypoxia‑responsive targeting strategies
Hypoxia, considered a significant hallmark of solid 
tumors, has been observed in more than 60% of cancers 
[252, 253]. The partial pressure of O2 (pO2) is generally 
approximately 40–60  mm Hg in normal tissues while it 
is less than 10 mm Hg in tumor tissues, and even as low 
as 0–2.5 mm Hg in some cases [254–256]. The O2 con-
sumed by tumor cells exceeds supply leading to this path-
ological phenomenon. Abnormally vigorous metabolism 
and cell growth in tumor cells can deplete intracellular 
O2. Secondly, the vascular system in the tumor tissue 
is disordered, resulting in an insufficient supply of O2. 
Finally, the short O2 diffusion distance (less than 200 μm) 
cannot meet the demand of tumor cells further away 
from the blood vessels [257–259]. To better adapt to this 
harsh living environment, hypoxic cancer cells must alter 
some of their biological characteristics, such as upregu-
lating the levels of HIF-1α, carbonic anhydrase IX (CA 
IX), and other enzymes [260].

As a result, enhanced cancer metastasis and poor ther-
apeutic effects are usually evident in hypoxic-stimulated 
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tumors [261, 262]. For instance, the hypoxic microenvi-
ronment can result in overexpression of HIF-1α, which 
is capable of modulating gene expression relevant to 
tumor proliferation, invasion and metastasis to facilitate 
the resistance to O2-dependent antitumor strategies, 
such as chemotherapy, PDT and RT [263–266]. In addi-
tion, hypoxia-adapted tumor cells generally do not have 
the rapid division characteristics of normal tumor cells, 
so they are not sensitive to conventional chemotherapeu-
tic agents that interfere with DNA replication [267, 268]. 
Further, O2 plays an important part in repairing DNA 
dysfunction after radiation treatment (such as X-ray and 
γ-ray) during RT, and it is the source of PDT or SDT-
mediated ROS applied to fight tumors [267, 269–273]

Hypoxia of tumor tissue is generally considered to 
indicate poor prognosis for tumor treatment, but par-
ticular biological features can make it a specific target for 
cancer therapy. In fact, tumor cells prefer aerobic glycol-
ysis to obtain energy rather than the conventional oxida-
tive phosphorylation pathway due to the Warburg effect. 
Therefore, many enzymes related to electron donation or 
reduction response are overgenerated in hypoxic tumor 

cells, such as azoreductase, nitroreductase, methio-
nine synthase reductase, inducible nitric synthase and 
DT-diaphorase (DTD) [274, 275]. Hence, considerable 
efforts have been made to develop hypoxia-responsive 
nanoplatforms that can be activated by these enzymes 
for enhanced tumor treatment based on the above find-
ings [274, 276, 277]. Hypoxia-responsive chemical bonds 
(Table  4), including nitro groups, azo groups, quinone 
and N-oxide compounds, are also applied in the con-
struction of hypoxia-responsive nanoparticles. They can 
change their conformation and physicochemical char-
acteristics such as hydrophobic features and electron 
affinity by gaining or losing their electrons [278, 279]. As 
anticipated, such hypoxia-responsive nanoparticles have 
been found to exhibit satisfactory performance for drug 
delivery. They have great potential for tumor treatment 
including hypoxia-responsive cargo release, prolonged 
blood circulation time, and enhanced tumor penetra-
tion and accumulation. Below we discuss the chemical 
structures that can be used to design effective hypoxia-
responsive nanoparticles and the strategies for taking 

Table 4  Hypoxia-selective chemical bond-triggered nanoplatforms

Type of chemical 
bond

Therapeutic agent Therapy method Tumor model Refs.

Nitro DOX/CP-NI NPs Chemotherapy, PDT Cervical carcinoma [505]

DOX@HMs Chemotherapy, RT Breast cancer [506]

DOX/FOBD liposome Chemotherapy Cervical cancer [507]

HRNP/siRNA Chemotherapy Breast cancer [286]

HC/PN/DOX NPs Chemotherapy, PDT Lung cancer [508]

NCs/DOX + Ce6 micelles Chemotherapy, PDT Breast cancer [509]

ALP-(MIs)n/DOX Chemotherapy, RT Glioma [510]

Gd-Au DENPs-Nit RT Nasopharyngeal carcinoma [511]

Azo DOX@AMOFs@ DRHC/CPPs Chemotherapy Breast cancer [306]

mPEG-AzoPAsp-IM micelles PDT Lewis lung carcinoma [294]

DOX@NP Chemotherapy Lung cancer [512]

CPs-CPT-Ce6 NPs Chemotherapy, PDT Cervical carcinoma [300]

PEG-Azo-PEI-DOPE Chemotherapy Cervical carcinoma [513]

CAGE Immunotherapy, PDT Melanoma [514]

ALN-HR-PMs/DOX Chemotherapy Prostate cancer [320]

N-oxide TPZ/UCSs Photodynamic/Chemo/ immuno-
therapy

Colorectal cancer [515]

HAS-GOx-Fe3+-TA (HGTFT) Chemotherapy, CDT Breast cancer [516]

TENAB NPs Chemotherapy, PTT, PDT Cervical carcinoma [517]

Lip/Ce6/TPZ NPs Chemotherapy, PDT Breast cancer [518]

UiO-66-H-P NMOFs Chemotherapy, PDT Glioblastoma [519]

HA@AQ4N-Cu (II)-gossypol NPs Chemotherapy Prostatic cancer [520]

YS-DMONs-AQ4N- GOx Chemotherapy Prostatic cancer [326]

Mn-APPMSF Chemotherapy, PTT Hepatocellular carcinoma [521]

AQ4N-64Cu-hCe6- liposome Chemotherapy, PDT Breast cancer [325]
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advantage of these nanoparticles for enhanced tumor 
treatment.

Hypoxia‑responsive drug delivery  Nitro compounds
In hypoxic cancer cells, the -NO2 group can be effec-
tively converted into -NH2 via a series of biochemi-
cal reactions involving NADPH and nitroreductase. It 
should be noted that the first intermediate -NO can be 
reversely oxidized to the original -NO2 under normal 
conditions [277]. Based on the above bioreduction reac-
tions, polymers with -NO2 groups (such as 2-nitroimi-
dazole and nitrobenzyl alcohol) have been applied to 
design hypoxic-responsive nanovehicles for the delivery 
of therapeutic agents. One significant profile of 2-nitro-
imidazole is the conversion from a hydrophobic to hydro-
philic state after its reduction to 2-aminoimidazole in a 
hypoxic environment. If functionalized with a hydro-
philic block copolymer, the hydrophobic nitroimidazole 
groups can allow the block copolymer to form encapsu-
lated therapeutic agent nanocarriers through intermolec-
ular hydrophobic interactions. However, the hydrophobic 
nitroimidazole groups can be effectively transformed into 
hydrophilic aminoimidazole groups, leading to disassem-
bly of nanocarriers and the release of loaded therapeutic 
agents in hypoxic tumor cells. For example, Thambi et al. 
developed hypoxic-responsive nanoplatforms based on 
nitroimidazole-functionalized block co-polymers for 
encapsulating and controlling the release of therapeu-
tic agents [280]. As expected, the cumulative release of 
therapeutic agents from the designed nanoplatforms was 
relatively slow under normoxic conditions but was obvi-
ously accelerated under hypoxic conditions. In addition 
to the transformation from a hydrophobic to a hydro-
philic. Currently, researchers have also developed other 
strategies to take advantage of the hypoxia-sensitive 
potential of nitroimidazole [281–283]. Tseng et al. [284] 
reported bioreduction-responsive nanoplatforms func-
tionalized with HA conjugated with 6-(2-nitroimidazole)
hexylamine to encapsulate lactate oxidase and a virus for 
use in tumor therapy. In this nanoparticle, lactate oxidase 
can oxidize lactate resulting in O2 depletion inside tumor 
cells. Subsequently, bioreduction of the 2-nitroimidazole 
of the nanocarriers converts it into a hydrophilic group 
and dissociates the carrier backbones to release the anti-
cancer virus. Furthermore, Shi et al. [285] also designed 
a nanocarrier by co-assembly of 2-nitroimidazole-func-
tionalized peptides and cationic lipid-like copolymers 
for siRNA delivery to silence the expression of a hypoxia-
relevant protumorigenic gene (CDC20) against breast 
cancer.

Azobenzene (AZO) compounds
In hypoxic environments, AZO compounds can be 
effectively reduced by NAD(P)H quinone dehydroge-
nase 1 (NQO1) and azoreductase into two separate 
aniline groups, rendering them suitable for preparing 
hypoxic-responsive nanoplatforms [286–288]. Moreo-
ver, matching the hypoxia-responsive features and the 
broad absorption wavelength of the AZO groups with 
the therapeutic bio-optical window can lead to more 
efficient stimulus responses. Therefore, the AZO group 
has been applied as an ideal linker allowing biologi-
cal rupture under appropriate hypoxic stimulus condi-
tions [289–292]. For these hypoxic stimuli-responsive 
nanoplatforms, the AZO groups are generally used to 
link hydrophilic and hydrophobic moieties in amphiphi-
lic molecules, which can self-assemble into nanoparti-
cles under physiological conditions and disassemble to 
release the loaded contents under hypoxic conditions by 
breaking the AZO groups [293–297]. Therefore, break-
age of the AZO linker can cause the cleavage of hydro-
philic groups when the designed nanoparticles reach the 
hypoxic tumor microenvironment, leading to enhanced 
cellular internalization and tumor accumulation of nano-
particles [294, 298, 299]. For example, Zhang et al. [300] 
synthesized a hypoxic-degradable nanocarrier func-
tionalized with AZO-containing hydrophobic groups 
to encapsulate the chemotherapeutic agent camptoth-
ecin and photosensitive therapeutic agent chlorin e6 for 
laser-augmented synergistic chemo-photodynamic 
therapy. In this designed nanoplatform, chlorin e6-medi-
ated PDT can exacerbate tumor hypoxia, allowing the 
hypoxia-responsive nanocarriers to rapidly disintegrate 
and release the encapsulated camptothecin. Continu-
ous O2 consumption during PDT or SDT can mediate 
an extremely hypoxic environment, giving potential for 
the design of azoreductase-triggered nanoplatforms 
acting in the local tumor region [301–304]. For exam-
ple, Zhang et  al. [300] reported a versatile AZO-based 
nanoplatform resulting in a synergistic action of chemo-
photodynamic therapy. Because of the O2 consumption 
stimulated by PDT, Azo groups in the nanoparticles can 
be effectively cleaved by overexpressed azoreductase to 
trigger a faster release of chemotherapeutics in hypoxic 
microenvironments. Using a similar strategy, Huang 
et  al. [305] developed smart supramolecular micelles to 
codeliver a photosensitizer and hypoxia-sensitive prod-
rug to enhance the antitumor effects. Satisfactory can-
cer cell killing in  vitro and vivo demonstrated that the 
designed micelles not only offered a new platform for the 
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codelivery of therapeutic agents to tumors, but also pro-
vided novel ideas for designing and preparing advanced 
materials for multimodality tumor treatment.

Azoreductase-sensitive organic ligands can also be 
used to construct nanoscale coordination complexes and 
bring hypoxia-sensitive characteristics to nanothera-
nostics for tumor diagnosis and treatment. For example, 
Huang et  al. [306] prepared an azoreductase-triggered 
nanocomplex where the encapsulated chemotherapeu-
tic DOX and siRNA were capable of downregulating the 
expression of HIF-1α, thus reducing multidrug resist-
ance. 4,4′-Azobisbenzoinc acid, as the main ligand of 
the nanocomposites, was effectively reduced by azore-
ductase to release the encapsulated DOX and siRNA 
in the hypoxic tumor cells. In another example, Zhou 
et  al. [292] reported on an aptamer/antibody nanofor-
mulation functionalized with hypoxia-sensitive AZO 
compounds capable of decreasing off-target effects. In 
this nanoformulation, a conditional aptamer was conju-
gated with hydrophilic polymers containing AZO groups 
which played an important role in preventing binding 
to normal cells. The hydrophilic block polymers could 
be detached from the nanoparticles through the reduc-
tion of AZO, allowing aptamer/antibody recognition of 
the cancer cell surface in a hypoxic microenvironment. 
Mesoporous silica nanoparticles are another important 
platform as inorganic drug delivery carriers for tumor 
treatment. They have the advantages of low side effects, 
good biocompatibility and stability, relatively uniform 
size and a large specific surface area [307, 308]. For exam-
ple, Jang and colleagues developed hybrid mesoporous 
silica nanoparticles functionalized with β-cyclodextrin 
and 4-(phenylazo) benzoic acid for improved on-demand 
drug release. As expected, the nanoparticles displayed 
improved selective drug release and significant cytotoxic-
ity in comparison to nonresponsive nanoparticles [309].

Oxide groups
The N-oxide group can also be used in the design and 
preparation of hypoxia-responsive nanoplatforms for 
effective tumor treatment [310]. Tirapazamine and ban-
oxantrone dihydrochloride are the most studied agents. 
Tirapazamine is an aromatic N-oxide compound while 
banoxantrone dihydrochloride is an aliphatic N-oxide 
derivative, exhibiting higher cytotoxicity in hypoxic can-
cer cells than in normal cells [311–315].

In hypoxic tumor cells, tirapazamine can produce radi-
cal species that break DNA through a single-electron 
reduction reaction catalyzed by various intracellular 
reductases, leading to irreversible damage and apoptosis 
[316]. Because of the specific responsive strategy, nano-
particles that elevate tumor hypoxia can significantly 
enhance the antitumor effects of tirapazamine [317]. Guo 

et al. designed a novel nanoplatform capable of regulat-
ing the tumor microenvironment via Fenton reaction-
based chemodynamic therapy. This nanoplatform utilizes 
glucose-mediated continual O2 consumption to create a 
localized hypoxic microenvironment for enhanced tira-
pazamine-mediated chemotherapy. The production of 
exogenous H2O2 by GOx facilitates the release of Fe3+ 
from the nanoparticles to convert H2O2 into the highly 
cytotoxic ∙OH. This versatile nanoplatform showed 
enhanced tumor accumulation and excellent antitumor 
efficacy in tumor-bearing models [318]. Yang et  al. pre-
pared nanoparticles capable of enhancing tumor hypoxic 
levels by loading vascular disruption agents that cut off 
the O2 supply. As a result, the designed nanoparticles 
not only suppressed tumor proliferation but also effec-
tively inhibited tumor metastasis [319]. Moreover, PDT 
can be used as an excellent strategy to enhance tumor 
hypoxia and improve tirapazamine-mediated chemo-
therapeutic effects through the transformation of 3O2 to 
1O2. For example, Yan et  al. encapsulated tirapazamine 
into the pores of porphyrinic-based MOFs on the sur-
face of lanthanide-doped upconversion nanoparticles to 
prepare a versatile nanotheranostic agent. The cell and 
animal experiment data showed that the combination 
of tirapazamine and PDT yielded enhanced therapeu-
tic efficacy. Further, the integration of nanotheranostic 
agents with anti-programmed death-ligand 1 (anti-PD-
L1) clearly decreased the tumor volume at distant sites by 
improving immune infiltration [320].

Banoxantrone dihydrochloride (AQ4N) can not only be 
selectively activated in hypoxic tumor cells but can also 
be reduced under the action of reductases [321, 322]. The 
protonated form (1,4-bis([2-(dimethylamino-N-oxide)
ethyl]amino)5,8-dihydroxy-anthracene-9,10-dine (AQ4) 
containing two tertiary amine groups) can utilize DNA 
intercalation to strongly suppress topoisomerase II [323, 
324]. Thus, Feng et al. prepared a multipurpose liposome 
to encapsulate soluble banoxantrone dihydrochloride and 
poorly soluble 64Cu-hCe6 into the cavity and lipid layer of 
the liposomes, respectively. Severe local hypoxia induced 
by Ce6 under laser irradiation could activate the antican-
cer activity of banoxantrone dihydrochloride, resulting in 
improved therapeutic efficacy in tumor-bearing models 
[325].

In another study, Yang et  al. prepared novel organo-
silica nanoparticles containing tetrasulfide bonds to 
encapsulate banoxantrone dihydrochloride and GOx for 
tumor treatment [326]. Overexpressed GSH in tumor 
cells can effectively cleave the tetrasulfide bonds to dis-
rupt the nanoparticles leading to the release of banox-
antrone dihydrochloride and GOx. Subsequently, GOx 
can consume O2 and glucose to produce H2O2, thereby 
exacerbating the hypoxia and further promoting the 
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transformation of banoxantrone dihydrochloride into 
highly toxic AQ4. Furthermore, the consumption of 
GSH through the action of tetrasulfide bonds can greatly 
enhance oxidative stress leading to tumor cell death. This 
combinatorial strategy showed satisfactory in  vivo and 
in vitro results.

The near-infrared fluorescence of banoxantrone dihy-
drochloride also plays an important role in monitoring 
therapeutic agent release and biodistribution for tumor 
diagnosis and treatment. Shen et  al. [327] prepared 
multifunctional carrier-free nanoparticles loaded with 
banoxantrone dihydrochloride to realize fluorescence 
imaging-guided tumor treatment. There was no obvi-
ous fluorescence when banoxantrone dihydrochloride 
was encapsulated into nanoparticles due to aggregation-
induced quenching. However, strong fluorescence was 
observed after the collapse of the nanoparticles which 
released banoxantrone dihydrochloride into the acidic 
tumor microenvironment.

Quinone compounds
Quinone compounds and their derivatives have been 
used in developing responsive tumor treatments because 
of their excellent electronic and chemical characteristics, 
particularly in hypoxia-activated prodrugs and fluores-
cence imaging probes. Due to the particular redox poten-
tial properties of quinone compounds, they can produce 
semiquinones or hydroquinones via one or two-electron 
reduction, respectively [328]. For example, the elimina-
tion of indolequinones can be achieved under hypoxic 
environments with the aid of the DT-diaphorase NQO1, 
which is overexpressed in various cancer cells and plays a 
crucial role in bioreduction [329, 330]. Taking advantage 
of this property, Tanabe et al. [331] designed 19F nuclear 
magnetic resonance (NMR) monitor nanoprobes to 
detect the biological reduction effects of indolequinones. 
A single new signal was observed when the nanoprobes 
were incubated with β-NADPH and NADPH-dependent 
cytochrome P450 reductase in hypoxic environments in 
comparison to the preincubation groups. This hypoxic-
responsive probe could become a valuable candidate 
for magnetic resonance imaging of cancers. In addition, 
Jiho et  al. reported on an enzyme-responsive prodrug 
generated by the chemical bonding of dopaquinone and 
5-fluorodeoxyuridine. The results of in vitro assays dem-
onstrated that this prodrug increased the hypoxia target-
ing capability of 5-fluorodeoxyuridine while significantly 
reducing the cytotoxicity to normal cells [332]. Cho et al. 
developed versatile nanocarriers functionalized with ben-
zoquinone groups [333] for the redox-responsive release 
of therapeutic agents. Overall, there is clearly potential 
for using the unique characteristics of these compounds 
and their derivatives for the design and development of 

novel hypoxia-sensitive nanoplatforms for enhanced 
tumor treatment.

Hypoxia‑responsive O2 release  The effective delivery of 
O2 to the tumor microenvironment shows great potential 
in tumor therapy. Hyperbaric oxygen has been applied 
to enhance the O2 concentration and reduce the side 
effects of hypoxia during radiotherapy [334, 335]. How-
ever, some adverse effects of hyperbaric oxygen, includ-
ing hyperoxic seizures and barotrauma, have limited its 
clinical application [336–339]. Nanoparticles offer alter-
natives for the precise delivery of O2 to the TME where 
it can be effectively released and diffused into hypoxic 
lesions. Perfluorocarbon has been widely applied for the 
construction of versatile nanoparticles that can carry O2 
which it can dissolve. Song et al. [340] reported the sur-
face modification of nanoparticles with the radiosensi-
tizer tantalum oxide (TaOx) and functionalization of the 
nanoplatforms with PEG. These designed nanoparticles 
highly enhanced tumor cell oxygenation and solved the 
problems of RT in in  vivo models. Hemoglobin, rich in 
red blood cells (RBCs), has been commonly applied as an 
O2 carrier because of its excellent O2-carrying capability 
[341–343]. For instance, Liu et al. [342] prepared versatile 
nanoparticles  engineered from recombined RBC mem-
branes for the integration of hemoglobin and other thera-
peutic agents to enhance therapeutic efficacy. The extreme 
hypoxic microenvironment in tumor cells can effectively 
promote the release of O2 from the designed nanoparti-
cles. As expected, these nanoparticles significantly allevi-
ated the hypoxic environment and enhanced the thera-
peutic efficacy. Overall, such chemical approaches can be 
used to design effective hypoxia-targeted nanoparticles 
for enhanced tumor treatment.

Hypoxia‑mediated O2 production  Enhancing O2 pro-
duction in the hypoxic tumor microenvironment has 
been considered another important approach to address 
problems with radio- and photodynamic therapy. Utiliz-
ing the significant characteristics of the hypoxic tumor 
microenvironment, including high redox potential and 
acidic conditions, nanoplatforms can effectively produce 
O2 in situ by the catalysis of H2O2. This approach can be 
divided into two categories: the utilization of the high 
intracellular H2O2 levels in the hypoxic tumor microenvi-
ronment and the utilization of carrying groups to generate 
H2O2 locally. Metal nanoparticles are commonly applied 
in catalysis [344, 345], imaging [346–348], and medi-
cal applications [349, 350] because of their high specific 
surface area, nanoscale size and unique physicochemical 
profiles. Under the acidic conditions of the hypoxic tumor 
microenvironment, the catalytic ability of many metal 
nanoparticles can be activated to transform H2O2 into O2 
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and H2O or hydroxyl radicals. Various theranostic nano-
agents have been developed based on manganese (Mn) to 
induce Fenton-like reactions.

Recently, Chen et al. designed an excellent TiO-porphy-
rin-based nanoplatform (FA-TiOPs) by loading TiO-por-
phyrin in FA-modified liposomes. These liposomes could 
effectively catalyze H2O and overexpress H2O2, in  situ 
producing active ROS. Furthermore, TiO-porphyrin 
could photo-split H2O to generate H2O2, ∙OH radicals, 
and O2. The increased O2 concentration not only allevi-
ated the hypoxic tumor microenvironment but could also 
be further converted by TiO-porphyrin into 1O2 to kill 
cancer cells. Furthermore, researchers have reported that 
the high energy of TiO-porphyrin in the excited state and 
the narrow gap energy between the triplet excited state 
and the excited state may facilitate effective photocata-
lytic reactions. In addition, overgenerated H2O2 in tumor 
cells could also be catalyzed to produce 1O2, particu-
larly in an acidic environment, exerting active antitumor 
effects and preventing damage to healthy tissues. Overall, 
tumor-targeted liposomes provided adequate ROS to the 
tumor through several in  situ photocatalytic reactions 
that are O2 dependent and achieve effective cancer inhi-
bition. Other therapeutic agents such as immunostimu-
latory or chemotherapy drugs can also be encapsulated 
into such hypoxia-responsive nanoparticles through con-
jugation or loading strategies for effective tumor-targeted 
therapy.

Other hypoxia‑responsive nanoplatforms  With increas-
ing attention being paid to the hypoxic TME, a growing 
number of strategies have been developed using external 
stimuli, such as lasers. Xu et  al. [351] designed an NIR 
laser-controlled O2/Pt2+ self-producing prodrug (UCPP) 
to enhance PDT efficacy in the hypoxic TME allow-
ing combined photo-chemotherapy. The nanosystem 
included Pt4+ and Ce6, in which upconversion nanoparti-
cles were encapsulated to transform 980 nm near-infrared 
light into 365  nm and 660  nm emissions  to decompose 
Pt4+ and initiate Ce6-mediated PDT. The decomposition 
of Pt4+ produced O2 for depletion in the PDT process 
and released Pt2+ for chemotherapy. Therefore, this novel 
nanosystem achieved enhanced tumor accumulation and 
satisfactory tumor suppression in mouse xenograft mod-
els with no recurrence.

Another emerging method is the use of lasers to 
decompose abundant water molecules in living organ-
isms to relieve hypoxic TME. Thus, Zheng et  al. [352] 
prepared C3N4-based versatile nanoparticles to trigger 
the decomposition of H2O and produce O2 after expo-
sure to 630  nm laser irradiation to reverse hypoxia-
mediated PDT tolerance. In another example, Jiang et al. 
[353] reported that prepared ultrathin graphdiyne oxide 

nanoparticles could also decompose water to generate 
O2 following laser irradiation, and subsequently trans-
form O2 into toxic 1O2 for tumor kill. The excellent pho-
tothermal conversion efficiency significantly enhanced 
blood circulation to the hypoxic tumor microenviron-
ment. Additionally, Tang et al. designed a nanosensor for 
the tracking and assessment of non-small cell lung can-
cer using near-infrared excited hypoxia imaging in which 
the acceptor and donor pairs within a biological MOF 
matrix are precisely controlled to rationalize upconver-
sion Förster resonance energy transfer. It was found to be 
beneficial both in vitro and in in vivo zebrafish models.

To overcome the limitations of hypoxia treatment 
using photodynamic therapy, several radical generators 
[354] that do not consume O2 have been developed. For 
example, Dong et  al. [355–357] have developed several 
advanced organic superoxide radical photo-generators 
to effectively address problems existing in hypoxia treat-
ment with PDT. In one instance, they formed highly 
efficient photosensitizers to carry out type I PDT elimina-
tion of hypoxic tumor tissues by vascular disruption. The 
in  vitro and in  vivo results showed that these nanopar-
ticles could not only overcome the hypoxia paradox but 
also suppress cancer metastasis through treatment with 
type I PDT in 4TI breast cancer cell mouse models [355]. 
pH-sensitive zinc (II) metalated porphyrin nanoparti-
cles were also prepared by this group to track and treat 
cervical cancer tumor-bearing mice. Interestingly, they 
observed that the phototherapy effects of the prepared 
nanoparticles could be effectively activated by increased 
acidity [357]. Taken together, these hypoxia-responsive 
nanoparticles are making substantial progress in target-
ing tumor sites and enhancing therapeutic efficacy.

Interstitial fluid pressure (IFP)‑related targeting strategies
The IFP in healthy tissues is only about 0–3  mm Hg, 
while tumors show an IFP of around 5–130 mm Hg [358]. 
It should be noted that interstitial fibrosis and abnor-
mal lymph vessels and blood are considered the primary 
reasons for increased IFP [358, 359]. Elevated IFP can 
serve as an obstacle to the delivery of therapeutic agents, 
because of drops in convection between the extravas-
cular and intravascular spaces, resulting in restricted 
drug delivery to the tumor tissues. Further, it also cor-
relates with high recurrence rates in some tumors (such 
as gynecological cancers) [360, 361]. Recently, some pre-
liminary studies have reported that appropriate hyper-
thermia can effectively decrease intratumoral IFP to 
facilitate tumor treatment. The intravenous administra-
tion of chemotherapeutic agent-encapsulated liposomes 
has been applied in combination with two ablative heat-
ing approaches to appropriate hyperthermia and coagu-
lative ablation. For example, Zhao et  al. reported that a 
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two-step ablation (45 ℃ for 2 min and 70 ℃ for 3 min) in 
conjunction with liposomes could obtain a survival ben-
efit in comparison to administering nanoformulations 
with a single heating approach in a Balb/c mice bearing 
4T1 tumor  model [359]. Designing a versatile hyper-
thermia therapeutic nanoparticle appears to provide a 
promising potential approach for the improvement of the 
targeted drug delivery.

ATP‑responsive targeting strategies
ATP, which has been called “the energy currency of the 
cell,” is fundamental to various cellular signal cascades. 
ATP concentrations can reach up to 10  mM in tumor 
cells, while it is only approximately 5  mM in the extra-
cellular fluid. Therefore, a concentration gradient of ATP 
levels between extracellular and intracellular levels has 
been used to develop ATP-responsive nanoplatforms for 
tumor treatment. For instance, Kataoka’s group reported 
ATP-responsive micelles for the delivery of siRNA to 
tumors. Because of competitive binding between micelles 
and ATP, the designed micelles could be crosslinked with 
extracellular ATP but collapsed because of intracellular 
ATP, resulting in the efficient release of loaded siRNA 
[362]. Aida et al. developed protein-based nanoplatforms 
to release ATP-sensitive agents for tumor treatment. 
The nanocarrier was prepared using various barrel-
shaped chaperonin groups assembled via coordination 
with Mg2+ into tubular structures that protected loaded 
therapeutic agents from biological metabolism and deg-
radation [363]. Upon internalization by tumor cells, 
hydrolysis of ATP to form ADP can trigger protein con-
formational changes and collapse of the nanoparticles, 
resulting in the selective release of the contents [363].

ATP ligands have been developed for monitoring ATP 
using several sensors, including electrochemical, colori-
metric, and fluorescent platforms [364–368]. Wang et al. 
prepared nanoparticles complexed with PEI hybridized 
with the ATP-responsive ligands, siRNA and DOX. The 
prepared nanoparticles using a gradient of ATP concen-
trations showed rapid cargo release in an ATP-respon-
sive manner. An enhanced anti-proliferative effect was 
observed, possibly due to enhanced cell apoptosis in 
mitochondria-mediated pathways and cell cycle arrest 
at the G2 phase [369]. In another example, Gu et  al. 
designed ATP-binding aptamer DNA functionalized 
with polymeric nanocarriers encapsulated with chemo-
therapeutics for targeted delivery to ATP overgenerated 
environments. In comparison to non-ATP responsive 
nanogels, the ATP-responsive nanogels achieved sig-
nificant therapeutic effects in various tumor cell lines. 
Furthermore, functionalization with hyaluronic acid for 
tumor-specific targeting accompanied by ATP respon-
siveness improved tumor inhibition in tumor-bearing 

mouse models [370]. Tang and co-workers prepared 
switchable aptamer micelle flares conjugated to a diacyl 
lipid chimera, which can monitor intracellular ATP [371]. 
These micelles showed benefits for cell permeability and 
molecular imaging, with potential for tumor diagnosis 
and targeted delivery. In summary, ATP can be consid-
ered an efficient stimulus to promote release of preloaded 
drugs from nanoparticles for specific cancer treatments 
and for diagnostic purposes

Exogenous stimuli‑responsive targeting strategies

Temperature stimuli‑responsive targeting strategies
Temperature stimuli-responsive nanoplatforms have 
been designed for tumor treatment. Ideal tempera-
ture-responsive materials with a lower critical solution 
temperature include poly(2-oxazo line)s (POxs), poly-
N-isopropylacrylamide (PNIPAAm), poly(methyl vinyl 
ether) (PMVE), and poly(vinyl caprolactam) (PNVCL), 
which can readily undergo solid-to-liquid phase transi-
tions according to external conditions [372–376]. Among 
these materials, PNIPAAm has been most commonly 
used for preparing nanoplatforms as it has a lower critical 
solution temperature of approximately 30 ℃. As an exam-
ple, Grüll and co-workers prepared temperature stimuli-
responsive liposomes loaded with therapeutic agents for 
high intensity focused ultrasound-mediated targeted 
delivery. As expected, temperature stimuli-responsive 
release of cargoes was observed along with enhanced 
endocytosis of therapeutic agents by the tumor cells 
[377]. In another example, Deng et  al. prepared DOX-
encapsulated temperature stimuli-responsive liposomes 
surface functionalized with iRGD peptide (CCRGDKG-
PDC) for targeted tumor treatment. In combination with 
high intensity focused ultrasound-mediated temperature 
stimuli-responsive DOX release, the designed liposomes 
were specifically internalized by αvβ3-positive tumor 
cells, with good treatment efficacy [378]. As explained 
above, temperature stimuli-responsive nanoparticles 
can have a significant impact at the cellular level, which 
potentiates the cytotoxicity of certain active pharma-
ceutical ingredients, mostly explained by changes in 
the pharmacokinetics of the agent under hyperthermic 
conditions and associated cellular changes, resulting in 
increased nanoparticle uptake.

Magnetic stimuli‑responsive targeting strategies
Over the past few decades, magnetic stim  [379–381]. 
Moreover, considering that magnetic nanoparticles have 
excellent physiochemical performances and biological 
effects, they have been proposed as ideal platforms for a 
number of tumor theranostics [382]. Encapsulated super-
paramagnetic Fe2O3 nanoparticles (SPIONs) present an 
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excellent magnetic moment and satisfactory biocompat-
ibility in comparison to other magnetic stimuli-respon-
sive nanoplatforms. Furthermore, magnetic molybdenum 
disulfide (mMoS2) can be modified by liposomes with a 
phospholipid bilayer membrane structure to construct 
magnetically responsive nanoplatforms which do not 
easily aggregate in physiological solutions, and have 
good biocompatibility, thereby showing great promise for 
nanomedicine applications [383].

Successful application of magnetically responsive nan-
oplatforms includes encapsulation/immobilization of 
therapeutic agents into magnetic-responsive nanoplat-
forms, injection of the magnetic stimuli-responsive nano-
platforms into the body and taking advantage of external 
magnetic fields to recruit and activate the magnetic stim-
uli-responsive nanoplatforms at the lesions of interest 
[384–386]. Recently, Shuai et  al. [387] reported a GSH-
responsive MOF to effectively load IDO inhibitor, and 
NO donor s-nitrosothiol groups for improving antitumor 
immunotherapy. In this nanoplatform, the high T1 relax-
ivity endows magnetic resonance (MR) imaging capabili-
ties to detect the in  vivo biodistribution of nanoagents. 
Shi et  al. reported a versatile nanodiagnostic based on 
DOX-encapsulated tannic acid-Fe networks (TAFs) 
functionalized with fibronectin for combination cancer 
treatment under the guidance of MR imaging. In this sys-
tem, the TAF network allows the nanodiagnostic to have 
excellent r1 relaxivity for T1-weighted MR cancer imag-
ing [388]. The development of magnetic stimuli-respon-
sive nanoparticles with imaging properties will help to 
determine when there is good tumor accumulation.

Ultrasound stimuli‑responsive targeting strategies
Ultrasound has become an excellent external stimu-
lus capable of facilitating the disruption of nanoparti-
cles and releasing their cargoes at the lesions of interest 
[389]. Ultrasound stimuli-responsive nanoplatforms can 
therefore be a valuable tool for enhancing therapeutic 
agent accumulation in tumors with low EPR effects. For 
example, SDT-based nanoparticles capable of continu-
ous production of CO2 have been recently developed to 
accomplish ultrasound-mediated inertial cavitation 
(UIC) to augment ROS accumulation against cancer 
[390]. The in  vitro and vivo results indicated that con-
tinuous UIC accelerated a massive generation of ROS, 
resulting in the improvement of SDT using a single 
nanoplatform. Furthermore, the highly-accumulative 
ROS arising from continuous UIC have been shown to 
induce robust immunogenic cell death (ICD), which is 
typically represented by increased antigen exposure and 
presentation, enhanced DC maturation and more acti-
vated CD8+T cell infiltration in tumors [391]. Price et al. 
prepared cisplatin encapsulated solid lipid nanoparticles 

guided by ultrasound stimuli. Under ultrasound treat-
ment, the designed nanoparticles exhibited satisfactory 
drug release, cellular uptake and other pharmacokinetic 
characteristics, as well as superior antitumor efficacy in 
glioma models [392]. Zheng’s group prepared ultrasound 
stimuli-responsive DOX-loaded mesoporous silica nano-
particles featuring the ultrasound-responsive release of 
cargoes for glioma treatment.  They showed an obvious 
suppression in tumor invasiveness and growth, as well as 
increased survival in a mouse glioma model [393]. Mura-
gaki’s group developed epirubicin-encapsulated micelles 
as tumor sonosensitizers. Using HIFU, the nanoparticles 
could be disrupted to allow drug release in canine spon-
taneous chondrosarcoma, osteosarcoma, hepatocellular 
and prostate cancer [394]. Biocompatible piezoelectric 
nanoparticles have also been encapsulated with DSPE-
PEG and modified with anti-HER2 Ab for targeted breast 
cancer treatment. As anticipated, these designed ultra-
sound stimuli-responsive nanoplatforms can effectively 
release encapsulated  active pharmaceutical ingredients 
in a controlled manner, interfering with cell division and 
inhibiting tumor proliferation

Laser stimuli‑responsive targeting strategies
Laser stimuli can break light-sensitive functional bonds 
or groups, including coumarinyl ester, truxylic acid and 
pyrenyl methyl ester. Much work has focused on employ-
ing these laser-responsive nanoplatforms to deliver 
chemotherapeutic agents by destroying the nanovehi-
cle at the lesions [395–399]. For example, Chen et  al. 
prepared a photolabile spherical nucleic acid for light-
responsive codelivery of antisense oligonucleotide and 
siRNA. Upon exposure to an NIR laser, the prepared 
nanoplatforms rapidly oxidized and dissociated with con-
tinuous responsive release, resulting in a positive effect 
on tumor treatment [400]. Xu et al. designed a light stim-
uli-responsive nanoparticle to achieve long blood circu-
lation, enhanced tumor accumulation and penetration, 
and rapid body elimination in an imaging-guided treat-
ment. After the nanoplatform accumulated in the tumor 
regions, the cargoes could be effectively released by laser 
irradiation. Importantly, the released therapeutic agents 
could effectively penetrate the whole tumor tissue with a 
diameter of approximately nine millimeters giving tumor 
suppression [401]. Additionally, Kim’s group prepared a 
laser-responsive and biomimetic nanoplatform for deep 
tumor penetration [402]. In this study, the in vitro drug 
release profile and tumor cell inhibition rate were signifi-
cantly improved after laser irradiation. The use of lasers 
as an exogenous stimulus can effectively improve the 
therapeutic effect and reduce the side effects by control-
ling the drug release behavior.
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Hybridization and combination of cancer 
nanomedicine
Designing smart targeting nanoparticles with stimuli-
responsive profiles has proved promising for providing 
site-specific, accurate, and systemic drug administra-
tion. Moreover, stimuli-responsiveness can substantially 
increase the diverse utility of such systems by integrating 
drug administration with other features, such as sensing, 
imaging, or monitoring. The designed smart nanoparti-
cles can accumulate in the tumor region through either 
passive targeting behavior (EPR effects) or receptor-
mediated active targeting strategies. Subsequently, such 
nanoparticles provide yet another possibility to fine tune 
their response toward each stimulus individually, ena-
bling drug release to be precisely controlled under the 
cumulative effect of multiple stimuli. In these nanopar-
ticles, multiple impulses are integrated to activate nano-
particles in the TME by introducing exogenous stimuli, 
such as laser and ultrasound. In such systems, one of 

these stimuli will be employed to load the drug into the 
nanoparticles and trigger the drug release. Additionally, 
the activation of drug release under external stimuli, 
including a magnetic field, temperature, light or ultra-
sound, can also be achieved at the targeted site. Owing 
to the complex TME, including the abnormal expression 
of multiple receptors, high redox potential, and abnor-
mal metabolic conditions, smart nanoparticles have been 
specially developed for anticancer medication. Studies 
using stimuli-responsiveness and targeting strategies are 
detailed in Table 5.

For example, a smart dual-responsive and target-
ing nanoplatform was prepared for the codelivery of 
chemotherapeutics (DOX and PTX) for treatment of 
lung adenocarcinoma [403] (Fig.  7). In this nanoplat-
form, FA was used as a receptor-mediated targeting mol-
ecule to facilitate the entry of these nanoplatforms into 
tumor cells. Moreover, acid-liable block copolymers and 
disulfide bonds endowed the nanoplatform with pH and 

Table 5  The hybridization and combination of cancer nanomedicine

Targeting strategy Stimuli-responsiveness Therapeutic agent Tumor type Refs

FA pH PEG-FA/(DOX + VER)@ZIF-8 Melanoma [522]

GSH FA-S–S-PLGA NPs Lung cancer [523]

ROS Lut/FA-Oxi-αCD NPs Breast cancer [524]

MMP2 F/TMSP-NLC Fibrosarcoma [525]

pH and GSH PsEEL-DOX/PTX NMs Lung cancer [403]

pH and ROS DT-NP Breast cancer [527]

pH and laser HM-Bi@PEG-FA NSs Lung cancer [528]

HA GSH HL/MOS@M780&LOD NPs Breast cancer [526]

pH HA/(R837 + 1 MT)@ZIF-8 Melanoma [529]

Laser DOX/ICG-CuS@MnO2/HA NPs Breast cancer [530]

pH and GSH DOX/siGCN5@HPMSNs Breast cancer [531]

GSH and hypoxia PaHAsC Melanoma [91]

RGD GSH RGD/MoS2/DOX Cervical cancer [532]

pH Met/GOx@His/ZIF-8∼RGD Breast cancer [533]

MMP-2 RHMH18@AuD NPs Ovarian cancer [534]

Laser SPIOCs@HSA(PTX)-RGD Glioma [535]

pH and esterase IR825@IRI-ATRA/RGD NPs Breast cancer [536]

pH and GSH CuS DENPs Breast cancer [537]

Biotin pH B780/Qu NPs Breast cancer [98]

GSH SS-biotin-Ppy NWs Breast cancer [538]

Transferrin Temperature TMNP Breast cancer [80]

GSH DMSN@PMAsh-Tf Lung cancer [539]

pH/temperature LF-PNIPAM-co-AA Breast cancer [540]

LHRH GSH PTX-LHRH-DCMs Breast cancer [97]

pH, HIFU, and ultrasound LHRH-ELP-DOX Breast cancer [541]

EPR effects pH and cathepsin B TNV Melanoma and colon 
cancer

[250]

P2, pH and ROS SRF/Ce6-loaded PEG-M-PPMT NPs Lung cancer [542]

RGD and EPR effects Laser and GSH RDG/shRNA Breast cancer [543]
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GSH-responsive drug release behavior in the TME. It 
should be noted that the prepared nanoplatforms exhib-
ited a surface charge switch from negative to positive 
during transmission from physiological environment to 
the TME, which can enhance tumor cells internalization. 
Subsequently, endosome escape of the nanoplatforms 
was achieved in the acidic endo/lysosome environment 
via the "proton-sponge" effect. As expected, this smart 

nanoplatform showed good biocompatibility, excellent 
cellular internalization, and improved tumor cell inhibi-
tion. Furthermore, the nanoplatform appeared synergis-
tic and improved solid tumor killing efficiency compared 
with mono-chemotherapy in tumor-bearing mice mod-
els. This suggests that hybridization and combination of 
cancer nanomedicines present great promise for tumor 
treatment. In another important example, Jeong Hoon 

Fig. 7  Schematic illustration of stimuli-responsive and targeted nanoplatforms for the specific delivery of therapeutic agents. A Preparation 
of the smart nanoplatform via electrostatic and hydrophobic interaction, and the pH-responsive surface charge switch, and GSH-responsive 
chemical degradation of polymer backbone. B Schematic illustration of and FA-mediated target and pH/GSH-responsive delivery processes: 
(a) the nanoplatforms show high stability in blood circulation; (b) therefore, they can effectively accumulate in tumor lesions via the EPR effect 
and receptor-mediated targeting; (c) acidic conditions can cause charge conversion of the nanoplatform; (d) endosome escape of the smart 
nanoplatform via proton-sponge effect; (e) intracellular GSH stimulation will trigger the release of therapeutic agents for tumor treatment
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Byeon’s group [404] developed a platform for digitiz-
able and continuous-flow manufacture in a compact 
and reconfigurable manner using a serial combination of 
plug-in reactionwares. This platform comprised three dif-
ferent composite nanocompounds with photothermally 
modulatable and structurally degradable characteris-
tics for cancer treatment. As expected, these nanocom-
pounds used for NIR-triggered chemothermal cancer 
therapy showed excellent anticancer efficacy with low 
side effects and effective renal excretion. Taken together, 
the hybridization and combination of nanomedicine 
appears to hold great promise for cancer treatment.

Conclusions and prospects
In this review, we have focused on recent advances in 
receptor-mediated and stimuli-responsive active tar-
geting strategies for cancer treatment. These versatile 
nanoparticles effectively overcome undirected drug bio-
distribution, undesired toxicity and high doses of admin-
istration, and play an important role in the development 
of novel chemotherapeutic agents and the understand-
ing of their antitumor efficacy. Significant progress has 
been made in developing target-specific therapies lead-
ing to better cellular internalization and site-specific 
agent release by exploiting specific cancer cell surface 
receptors. These active targeting strategies not only 
enhance the efficacy of the drug but also reduce poten-
tial side effects. Additionally, stimuli-responsive target-
ing strategies with their unique characteristics have also 
shown high stability, enhanced tumor accumulation, 
and rapid release behaviors in response to exogenous 
or endogenous environmental stimuli both in  vitro and 
in  vivo. Taken together, precise delivery and specific 
release can be readily achieved by using the synergistic 
effects between versatile receptor-mediated and stimulus 
response targeting strategies, resulting in killing cancer 
cells within the tumor without damaging healthy tissues.

While the abovementioned approaches have many ben-
efits, there are also some caveats. The size and surface 
characteristics of nanoplatforms can disrupt membranes 
and interfere with protein folding and membrane activ-
ity. These intracellular dysfunctions can further trigger 
feedback mechanisms such as “frustrated phagocytosis” 
[405]. Once administrated, the prepared nanoplatforms 
circulate in the bloodstream to access various tissues 
or organs. During this circulation, these nanoplatforms 
can interact with biomacromolecules (including carbo-
hydrates, proteins, nucleic acids, and lipids) which can 
coat the nanoplatforms, leading to a surface or biomol-
ecule corona, which alters the surface properties of the 
nanoplatforms, affects their therapeutic effects, and can 
induce protein unfolding [406–409]. Stimuli-responsive 
nanoplatforms are effective but can still be affected by 

their physiological environment. For example, most car-
bon nanomaterials (such as carbon nanoparticles and 
nanotubes) and metals (such as MnO) can act efficiently 
in acidic environments but generate ROS near tumors 
which can lead to cancer progression and metastasis 
[410, 411]. Notably, ROS-responsive nanoplatforms tend 
to be rapidly phagocytized due to their special surface 
properties [412, 413].

In the future, there is an urgent need to control the 
physicochemical features of nanoparticles to improve 
their targeting ability, especially their morphology, parti-
cle size distribution and surface chemistry. For example, 
new surface modification strategies need to be explored 
to confer novel multifunctionalities to the nanoparticles. 
Moreover, in order to improve the antitumor effects of 
nanoparticles the development of alternative reactions, 
formulations, or constructs containing stimulus compo-
nents aimed at producing multiple strategies for highly 
effective combination cancer treatment should be a 
focus. Importantly, these new generation targeting strat-
egies should be explored for an in-depth understanding 
of key parameters, such as their pharmacokinetics, bio-
distribution and nano-bio interfacial interactions, as such 
outcomes have a significant impact on cancer treatment. 
Furthermore, there are possibilities to develop novel 
stimuli-responsive modalities for better encapsulation 
of agents as well as their controlled release to further 
increase their therapeutic index with few side effects. It 
is forecast that nanoscale biomaterials comprising bio-
compatible lipids, polymers or inorganic materials in 
conjugation with targeting groups will have tremendous 
scope for transporting pharmaceutical active ingredi-
ents to their specific target sites for improved therapeutic 
purposes. Such versatile targeted nanoparticles will find 
broader application possibilities and will aid in the role 
out of personalized/precision medicine.
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