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Electrical activity of developing dissociated neuronal networks is of immense significance for understanding the general properties
of neural information processing and storage. In addition, the complexity and diversity of network activity patterns make them
ideal candidates for developing novel computational models and evaluating algorithms. However, there are rare databases which
focus on the changing network dynamics during development. Here, we describe the design and implementation of Neuro-
information Database for Developing Networks (NDDN), a repository for electrophysiological data collected from long-term
cultured hippocampal networks. -e NDDN contains over 15 terabytes of multielectrode array data consisting of 25,380 items
collected from 105 culture batches. Metadata including culturing and recording information and stimulation/drug appli-
cation protocols are linked to each data item. A Matlab toolbox named MEAKit is also provided with the NDDN to ease
the analysis of downloaded data items. We expect that NDDN may contribute to both the fields of experimental and
computational neuroscience.

1. Introduction

Spontaneous neural activity plays a critical role in the de-
velopment and function of the nervous system [1–6]. -e
diversity and the complexity of neural activity patterns are
believed to be the key to understand how the neuronal
network operates whether it is in or out of the normal state
[7–16]. Investigations on the characteristics of spontaneous
activity, stimuli-evoked response, and drug-mediated ac-
tivity are amongst the fundamentals of neuroscience re-
search. Further, computational biologists and researchers in
the field of computer science are also inspired by the
dedicated organization of structures and functions of neu-
ronal networks [12, 13, 17–20]. It is found that developing

neuronal networks share similar and critical aspects with
other biological networks, the global interconnected com-
puter networks (the Internet), social networks, and even the
universe [17, 19, 21–26]. Gathering information on the
evolving dynamics of developing neuronal networks is
therefore attracting increasingly attentions [11, 27].

As an important in vitro model of the nervous system,
dissociated neuronal networks have been used by neuro-
scientists since over 30 years ago. But until the recent decade,
it is difficult to perform long-term observation of net-
workwide activities from the cultured neurons and ma-
nipulation of the network dynamics without impairing the
health of the culture [11, 20, 28]. Growing on the multi-
electrode arrays, large random neuronal networks developing
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in vitro are demonstrated to display general properties of
neural systems and enables extensive measurements and
manipulations of neuronal dynamics with little interference
with the network state [10, 28–30]. However, although many
databases have been built to promote genetic/proteomic re-
searches and investigations of EEGs and ECGs [31, 32], there
is still lack of a comprehensive database focused on collecting
and sharing electrophysiological activities of long-term de-
veloping neuronal networks. Scattered in laboratories around
the globe, it is difficult and inconvenient to access and utilize
such information.

In the present study, we describe how we construct the
NDDN (Neuroinformation Database for Developing Net-
works), a new repository for electrophysiological data ac-
quired from long-term cultured hippocampal networks and
the features of both the NDDN and the data it stores.

2. Materials and Methods

2.1. Dissociated Hippocampal Cultures. All experimental
procedures used in this study were approved by the Animal
Ethics Committee of Huazhong University of Science

and Technology. As described previously [8, 33, 34], the
hippocampus was extracted quickly from E18-19 Wistar rat
embryos and then was gently dissected and dissociated by
trypsin (Sigma, 10min at 37°C). -e hippocampal neurons
were plated onto a culture dish with an embedded multi-
electrode array (MEA, Ayanda Biosystems SA, Lausane,
Swiss; Multichannel Systems, Reutlingen, Germany) at
a density of 2500 cells/mm2 (Figures 1 and 2). To improve
cell adhesion, poly-L-lysine was used to coat the array before
seeding. -e culture medium contained 1ml neurobasal
medium (Invitrogen) with B27 supplement (Invitrogen),
10% equine serum (HyClone), and 0.5mM Glutamax
(Invitrogen). Half of the medium was replaced every 2 days.
-e dishes were placed in a 37°C, 5% CO2 water jacketed
incubator.

2.2. Data Collection and Organization. Raw data were col-
lected using an MEA1060 recording system (Multichannel
Systems, Reutlingen, Germany). Each dish contains 59 re-
cording electrodes. Extracellular signals were continuously
sampled at 25–50 kHz. We used a threshold method
(5× standard deviation) to convert the raw data stream into
a spike train. Raw data were saved into ∗.mcd format by
MC_Rack (Multichannel Systems, Reutlingen, Germany)
and could be later converted into hierarchical data format
(HDF) for sharing. -e ∗.mcd file also can be read into
Matlab using Neuroshare interface (http://neuroshare.
sourceforge.net/) with the provided toolbox. Spike data
were saved into ∗.mat format with Matlab structures. All
data files were uploaded into the distributed storage of the
server, and the path to each data file in the file system was
saved as a property of the corresponding data item in the
database.

Metadata (refer to Table 1 for detailed information)
which contain the experimental details for each data file are
organized as experimental sets rather than individual items.
To facilitate data management, metadata items can be tagged
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Figure 1: Preparation of dissociated hippocampal networks with multielectrode arrays.
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Figure 2: -e neurons on a multielectrode array at day 3.
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as a different category by users; therefore, items from the
same experiment or with identical experimental protocol,
condition, and parameters can be grouped into a working
set. If available, the microscopy images of corresponding
cultured network were collected and linked to the metadata
item.

2.3. Database Design and Implementation. We used the
MySQL relational database management system to store and
perform data queries. Eleven tables were created to provide
indexed and structured data organization, as well as secured
data access. -e entity-relationship (ER) data model rep-
resenting the relationships among these tables is shown in
Figure 3. -e core table is named as “item.” Identified by

a unique ID, each item in the database has a record in the
“item” table which stores essential information of the item,
such as the owner, the type, and access permission, and can
be further linked to detailed experimental descriptions. If the
item is a data file, then we save its path as “fileloc” in the item
record. If the item is a photo or a piece of code, the data are
saved directly in the item table as “data.” Related metadata
information is linked to the table named “Metadata,” and the
tagging information is stored in the “Tag” table which is
linked to the main item table by the “Map.”

-e NDDN is designed to have the access control for
each group of users. Users do not have to save their pass-
words into the database. Based on the OpenID framework,
the authentication is accomplished by third-party providers,
such as Google accounts and Microsoft accounts service.

Table 1: Metadata descriptions.

Property Description Type
MEA number -e number of each MEA culture dish Char

Culture date -e date when neurons were seeded onto the MEA
dish Date time

Recording date -e date when recording was made Date time
DIV (days in vitro) -e age of the culture Integer
Is Raw True� raw data Boolean
Is Spk True� spike data Boolean

Drug ID If available, specifies the name of the drug applied to
the culture Foreign key

Stimulation ID If available, specifies the name of the stimulation
protocol Foreign key

Operator Specifies the person who conducted the experiment Char
Filename Original filename Char
Memo Other descriptions Char

User

userid 

identity
name
title

email
institute
phone

groupid (FK)

Group

groupid 
userid (FK)

desc

Item

itemid 
userid (FK)
itemtype 

permission 
metaid (O) (FK)

fileloc (O) 
data (O) 

memo (O)
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Figure 3: -e entity-relationship data model of the NDDN. Relationships among tables are shown with dotted lines. Entities are shown
using boxed frames with their names labeled above. Primary keys are shown in the first row of the entity box. Foreign keys are labeled with
(FK). -e relationships between each table are shown with the dashed links between boxed frames.
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-e returned OpenID identity is saved into the database and
later used to identify the user. -erefore, NDDN users can
login into the system with their Gmail, Hotmail accounts,
or other credentials that support the OpenID communica-
tion protocol. In the database, each data item has an “owner”
property, and the access permission may be granted to three
classes of users: the item owner, the group that the owner
belongs, and to all users. Table 2 shows the UNIX-like per-
mission code string for data items. Additionally, to provide
detailed information of data manipulation, login actions and
data access history are saved into the database.

2.4. Service-Based Web Portal. -e core functions of the
NDDNhave been implemented as RESTful (representational
state transfer) web services with PHP. Based on the MVC
(model-view-controller) coding pattern, resources in the
database were able to reach via URIs, for example, “http://
bmp.hust.edu.cn/neuro_db/v2/data/618352/retrieve.” Data
access may require a token which was returned after the user
was authenticated. After data query, structured information
will be returned in XML format, and the raw/spike data will
be returned in binary form.

2.5. Customized Scripts and Data Visualization. -e NDDN
has implemented a Python interface using interprocess
communication (IPC) mechanism. With preinstalled SciPy
package (http://www.scipy.org/), users can upload their
scripts and perform various computing tasks using NDDN
data. Considering security issues, access to the file system
and other critical system resources in Python is limited. -e
visualization of NDDN data items were also implemented
using SciPy and Matplotlib (http://matplotlib.org/). Graphics
are generated at the back-end and then displayed at the front-
end afterwards. In the NDDN , all scripts including visual-
ization and user-uploaded algorithms written in Python are
also saved as data items with specific item types. -e access
permission rules are identical to other regular items.

3. Results and Discussion

3.1.DatabaseContent. In the current release, 25,380 items of
multielectrode recording data (15 terabytes+) are collected
from 105 culture batches. 5,233 items of experiments in-
volved in stimulation protocols (single-site stimulation,
paired stimulation, multisite stimulation, one-polar/bipolar
configurations, etc.). 2,599 items of experiments involved in
drug testing protocols ((2R)-amino-5-phosphonovaleric acid
(APV), bicuculline (BIC), 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX), tetrodotoxin (TTX), octanol (OCT), carbenoxolone
(CBX), brain-derived neurotrophic factor (BDNF), etc.). Re-
cordings which were taken with stimulations and/or drug
applications were groupedwith spontaneous recordings before

and after the application, which helps users to perform
quantitative analysis focused on whether or how the network
dynamics was affected by a specific protocol.

As a database for developing neuronal networks, the
diversity of spontaneous recordings from varied de-
velopmental ages of cultured neuronal networks is an im-
portant index. -e distribution of recording dates (also
known as, days in vitro (DIV)) of existing data items is
shown in Figure 4 which is also regularly undated in the
statistics page of the NDDN. Abundant scientific experi-
ments have been conducted with cultured neuronal net-
works between 1 and 9 weeks [5, 7–9, 11, 28, 30]. In NDDN,
most recordings fell within the similar time range, providing
a rich repertoire of data resources for neuroinformatics and
modeling researches. Further, we have data from 15+ culture
batches which lived over 150DIVs. -ese data sets of long-
term developing networks are believed to benefit the un-
derstanding of evolving dynamics of neuronal networks
during in vitro development [5].

-e histogram shows the distribution of DIVs of NDDN
items (in percentage). Note that most recordings were taken
before 100DIVs. Although long-term cultures were rare,
NDDN still has recordings between 200 and 300DIVs.
Numbers in black boxes show the actual numbers of items in
the corresponding DIV range.

3.2. Website Interface and NDDN Web Services. Users can
access the NDDN at http://bmp.hust.edu.cn/neuro_db/.
Pages of introductory materials and related publications can
be browsed without login. To access pages of data query and
download requires educational user authentication (cur-
rently, the website is hosted on a university server (Intel

Table 2: Permission codes of data items.

Roles Owner Users in the same group All users
Permission code RWDX|----|---- ----|RWDX|---- ----|----|RWDX
R: read; W: write; D: delete; X: execute.
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Figure 4: -e distribution of DIVs of data items in NDDN.
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Xeon E3 CPUs with 64 Gigabytes RAM) in the China Ed-
ucation and Research Network (CERNET) which is required
by our university but may block some international access
due to government policy; we are trying to apply for
a permission to deploy the database in a public cloud run by
a private company). An example page of data query and
built-in visualization using the provided Matlab toolbox is
shown in Figure 5.

Example query results are shown in the table. -e output
of built-in visualization functions is shown below. Array-
wide spike detection rate is shown with the line graph with
red dots. -e channel activity hot map is shown next to the
line graph.

-e NDDN accepts various search conditions: culture
date, recording date, culture dish number, DIV, stimulation
protocol, drug name, and the operator who conducted the
experiment. As mentioned in Methods, tags can be labeled
on individual data items. Users can put the same tag on all
the items in the returned search result, which saves the
search results for reuse in the future. For example, if one had
performed a specific search based on last returned search

results or with multiple conditions, then she/he could di-
rectly load the results by the tag next time. Besides, users can
specify whether their own tags will be exposed to all users,
which helps to keep the database organized and encourages
constructive sharing.

-e core functions of the NDDN are exposed as web
service APIs (application programming interfaces). Table 3
shows the list of core APIs. Each request contains all of the
necessary information to accomplish the request. -e client
does not need to hold any session state. User authentication
information will be sent to the client after successful login
and will be used as a token for next calls. -e stateless
RESTful web service APIs helps researchers to develop tools
that can directly download/upload data from/to the NDDN.

3.3. Matlab Toolbox. -e NDDN also provides a toolbox
written in Matlab code to reduce the difficulty in using

Figure 5: A screenshot of an example page of data query results.

Table 3: -e NDDN web service APIs.

Format Function

Siteroot/data/[ID] Retrieves metadata of the
specified item

Siteroot/data/[ID]/get Downloads the item
Siteroot/data/[ID]/delete Deletes the item

Siteroot/sti_protocol/[ID] Retrieves the specified
stimulation protocol

Siteroot/drug_protocol/[ID] Retrieves the specified drug
protocol

Siteroot/[userID]/auth Performs user authentication
Siteroot/[userID]/logout Logout the user

Table 4: MEAKit functions categories.

Category Description

Calculation

Implemented algorithms
(e.g., interspike interval,

array-wide spike detection rate,
spike sorting, connectivity analysis,
and neuronal avalanche analysis)

Common Commonly used subfunctions
Conversion Unit conversion and data type conversions
Help Help documents
IO File access functions
Model Computational models
Plot Visualization functions

Scripts Customized M-scripts for
specified data analysis

Other boxes Included third-party
toolboxes and libraries
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Figure 6: -e diversity of activity patterns of developing neuronal networks. In each subplot, the upper panel shows array-wide spike
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NDDN data. -e MEAKit (multielectrode array ToolKIT)
toolbox is freely available at the NDDN website. Users can
also contribute to the future development of the toolbox by
submitting bugs and issues or even committing their codes
to make their own version branch at the GitHub portal
(https://github.com/pujb/meakit). -e key functions are
listed in Table 4. Briefly, M-functions in theMEAKit toolbox
are grouped into different categories by their purposes. Data
files can be loaded into Matlab workspace by I/O functions,
for example, util_load_mcds(). We have already imple-
mented multiple built-in functions in the “Calculation”
directory to perform some commonly used classical neural
dynamics analyses [30], as well as some newly adopted al-
gorithms, such as neuronal avalanche analysis and fractal
quantification [5]. Users can use their own way to visualize
the results or they can use functions in the “Plot” directory to
generate graphs that meet the common publishing standards
of scientific journals. Figure 6 shows changing firing patterns
of an example neuronal network during development.
Scripts which were written for specific purposes are located
in the “Scripts” directory. For detailed information, see the
toolbox references topics in the “Help” directory.

3.4. Comparison with Other Databases. Compared to a rich
repertoire of online bioinformatics databases, there are
much fewer databases aimed at providing electrophysio-
logical information of neuronal networks, let alone data-
bases that specially focused on multielectrode array data of
in vitro developing networks. -e CARMEN project (http://
www.carmen.org.uk/) provides a powerful international
cooperation framework for sharing codes, data, and models
of multiple levels of the neural system [27]. -e Allen Brain
Atlas (ABA) (http://www.brain-map.org/) and the Visible
Brain-wide Networks (VBN) project (http://vbn.hust.edu.
cn/) are famous for their precious image resources and
powerful tools [35]. Among these databases, the CARMEN
project aims at providing multiple types of data (including
electrophysiological data and images) from various sources
at different levels of the neural system (from the cellular level
to the whole-brain level). -e CARMEN project is powerful
for its virtual laboratory framework for enabling whole brain
leveldata but also online exploitation of neurophysiological
data and online code running and analyzing.-eAllen Brain
Atlas and the VBN project aim at providing cell type da-
tabases, toolboxes, and detailed images of brain connectivity.
Currently, there is little report of a database focused on
dissociated cultured neuronal networks. Clearly, the dis-
sociated neuronal networks lack many features of the intact
whole brain, but the essential nature of the neural cells and
the network formed by the neurons and other neural cells are
kept in these dissociated cultures. -erefore, observing the
neurons and how they form and develop into a network may
help us to better understand the mechanism of the brain.
Also, many detailed and dissected analyses of neural circuits
are not feasible in living animals and humans. Here, we
collected our dissociated neuronal network data by multi-
electrode arrays (MEAs). Spontaneous activities and activ-
ities under stimulated and medicated conditions were

recorded. Although there are obvious limitations in the
NDDN for its limited data sources and data types, we are
trying to release the unique data of dissociated cultured
neuronal networks as a specialized database tailored for
developing neuronal networks on MEAs. -e NDDN pro-
vides a large set of unique data which is exclusive at the
moment as far as we know and the developmental in-
formation for cultured neuronal networks which is unique
currently.

4. Conclusions

Electrophysiological activity patterns in developing neuro-
nal networks are of great importance in the fundamental
research of neural dynamics and neural coding. Here, we
described a new database for developing networks, which
has over 15 terabytes data at present. -e NDDN can be
utilized by computational neuroscientists and modelers to
extract the characteristics and derive new models, shedding
new light on novel algorithm development and evaluation.
Experimental neuroscientists may be also benefitted by
NDDN which can be seen as a database containing pre-
liminary trials with various experimental protocols. We
expect that the NDDNwill better serve the researchers in the
related field as a basis for insight into the neural dynamics at
the network level.
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