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Abstract: Orbital fractures are a common finding in facial trauma, and serious complications may
arise when orbital reconstruction is not performed properly. The virtual planning can be used to
print stereolithographic models or to manufacture patient-specific titanium orbital implants (PSIs)
through the process of selective laser melting. This method is currently considered the most accurate
technique for orbital reconstruction. Even with the most accurate techniques of bone reconstruction,
there are still situations where enophthalmos is present postoperatively, and it may be produced
by intraorbital soft tissue atrophy. The aim of this paper was to evaluate the orbital soft tissue after
posttraumatic reconstruction of the orbital walls’ fractures. Ten patients diagnosed and treated for
unilateral orbital fractures were included in this prospective study. A postoperative CT scan of the
head region with thin slices (0.6 mm) and soft and bone tissue windows was performed after at least
6 months. After data processing, the STL files were exported, and the bony volume, intraorbital fat
tissue volume, and the muscular tissue volume were measured. The volumes of the reconstructed
orbit tissues were compared with the volumes of the healthy orbit tissues for each patient. Our
findings conclude that a higher or a lower grade of fat and muscular tissue loss is present in all cases
of reconstructed orbital fractures. This can stand as a guide for primary or secondary soft tissue
augmentation in orbital reconstruction.

Keywords: soft tissue; orbital fracture; trauma; reconstruction; PSI; individualized; enophthalmos

1. Introduction

Orbital fractures are a common finding in facial trauma. An increased percent of
patients with orbital fractures undergo surgical treatment, but there are still cases which
are treated conservatively due to the different reasons [1–4]. Serious complications may
arise when orbital reconstruction is not performed properly. These include enophthalmos,
hypoglobus, diplopia, restricted motility, and muscle entrapment [4–8].

The anatomy of the orbital cavity is complex, and the reconstructive procedures in the
orbital region are particularly difficult. The S-shaped orbital floor and the transition zone
between the medial and the inferior wall can be challenging for reconstruction. The aim
of reconstruction is to perfectly restore the orbit in all three dimensions in order to avoid
esthetic and functional complications [9,10].

The first step to orbital surgery is an adequate exposure of the internal orbital walls.
Selecting the appropriate surgical approach is mandatory [11]. The reconstruction of the
bony walls can be performed with resorbable and non-resorbable materials. The non-
resorbable materials are preferred due to their predictability and stable results. Titanium
implants can be found as standard preformed orbital plates or individualized orbital
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implants. The standard plates are available in different sizes and can provide good results
as long as they are placed in the correct position. The individualized implants use computer-
aided design (CAD), which shares a virtual plan based on the patient’s 3D scan. All types
of CAD-based individualized orbital implants require preoperative computerized planning.
The scan will be transferred to the planning software, wherein the unaffected orbit can
be mirrored to fit the affected side. From this point, physical biomodels of the virtually
reconstructed orbit can provide 3D models. On these models, titanium meshes can be
designed, bent, and sterilized preoperatively, together with the biomodel for intraoperative
application [12–15].

The virtual planning can be used to manufacture patient-specific titanium orbital
implants (PSIs) through the process of selective laser melting. This method is currently
considered the most accurate technique for orbital reconstruction [16,17]. The PSI is not
malleable and avoids human error during the pre-bending stage. The implant is designed
with rounded edges so that the implant does not traumatize the soft tissue. Moreover,
navigational target points can be designed on the surface of the implant. All of these lead
to a very precise implant that can be very accurately placed [18].

Even with the most accurate techniques of bone reconstruction, there are still situations
where enophthalmos is present after reconstruction, and it may be produced by intraorbital
soft tissue atrophy. Orbital soft tissues, including extraocular muscles and intraorbital fat,
are the most important components of orbital contents, accounting for approximately 50%
of orbital cavity volume [19,20]. The change in volume of the soft tissue, following orbital
trauma, may lead to diplopia, restricted ocular movement, and even impairment of visual
function [21,22]. Precise assessment of intraorbital soft tissue is essential for diagnosis of
intraorbital disorders and can affect the evaluation of treatment and planning for surgical
intervention [23–28]. Computerized tomography (CT) and magnetic resonance imaging
(MRI) are the main imaging methods to examine intraorbital soft tissues. Several studies
have focused on segmenting the interested tissues of orbit by using semiautomatic or even
automatic approaches based on computer image-processing techniques [29–32]. However,
due to the complicated structure and the small volume of the orbit, as well as the unclear
boundary of soft tissues in CT images, effective and precise segmentation of intraorbital fat
and extraocular muscles remains a tough task [33].

The aim of this paper was to evaluate the orbital soft tissue after posttraumatic recon-
struction of the orbital walls’ fractures.

2. Materials and Methods

After applying the exclusion criteria, 10 patients diagnosed with unilateral orbital
fractures were included in this study. All 10 were treated in the same hospital, by the same
surgeon, with the same surgical approach. In 3 cases, patient-specific implants (PSI) were
used. For the rest of them, we used pre-bended titanium meshes on stereolithographic
models which were obtained through the mirroring technique. All patients were evaluated
after a minimum of 6 months after surgery. A very low degree of enophthalmos was present
in all cases.

Several parameters were taken into consideration for the analysis, among which were
the sex of the patients, the number of affected orbital walls, the bilateral orbital bony
volume, the volume of the bilateral orbital fat tissue, and the volume of the bilateral
orbital muscles.

A CT scan of the head region with thin slices (0.6 mm), including soft and bone tissue
windows, was performed. The DICOM (Digital Imaging and Communications in Medicine)
files, resulting from the CT scan, were imported into the Slicer program, version 4.11, which
is a semi-automatic software that is used to visualize and analyze the data and generate 3D
segmentations. The densities used for segmentation (gray level) were as follows: from −200
to 100 Hounsfield units (HU) for the total orbital volume (Figure 1); −200 to 15 HU for the
fat volume of the orbit (Figure 2); and −30 to 200 HU for muscle tissue volume (Figure 3).
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Figure 3. Segmentation of orbital muscles.

Afterward, the 3D reconstructions were exported as STL (Standard Triangle
Language/Standard Tessellation Language) files, and the Blender 3D Software was
used for volume calculation. The values obtained were measured in cubic centime-
ters (cm3) (Figures 4–6).
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3. Results

A total of 20 orbits were analyzed. The bony volume of the affected orbit (AOV),
respectively of the healthy orbit (HOV), the fat volume of the affected orbit (AFV), re-
spectively the fat volume of the healthy orbit (HFV), the muscles volume of the affected
orbit (AMV), respectively the muscles volume of the healthy orbit (HMV), the number
of fractured walls, and the sex of the patients are systematically presented, as follows
in Table 1.
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Regarding the number of fractured walls, 4 patients had one fractured wall, 4 patients
had 2 fractured walls, and 2 patients had 3 fractured walls. We did not find any statistical
correlation between the number of fractured walls and the volume of the soft tissue atrophy.

Table 1. Systematization of the main results.

Case No. Affected Orbit AOV HOV AFV HFV AMV HMV Number of
Affected Walls Gender

Case 1 R 27.15 27.01 13.91 14.64 3.48 4.21 1 F

Case 2 L 24.45 24.49 11.96 13.27 3.01 3.59 2 F

Case 3 L 25.15 25.14 7.93 10.16 3.79 3.95 1 F

Case 4 R 25.62 25.66 10.85 13.04 3.86 4.12 1 F

Case 5 L 30.52 30.54 14.36 17.49 4.20 4.39 2 M

Case 6 R 27.60 27.63 12.02 15.62 3.42 3.99 3 M

Case 7 R 28.03 28.02 14.42 15.19 4.40 4.67 3 M

Case 8 L 31.19 31.24 16.10 18.67 4.33 4.57 1 M

Case 9 R 30.47 30.46 13.41 16.68 4.43 4.70 2 M

Case 10 L 28.29 28.27 13.00 15.50 4.46 4.68 2 M

The differences (delta) between the affected orbit and the healthy orbit (control) are
shown in Tables 2–4. Regarding the total orbital volume, the differences were minimal, with
a maximum of 0.05 cm3 and a minimum of −0.14 cm3, without any correlation between
a larger volume and the affected orbit. Referring to fat and muscular volume, it could be
found that the volume of the affected orbit in the case of each variable was lower (delta
with significant volumetric differences) compared to the healthy orbit (control) (Figure 7).

Table 2. Volume measurement of the bony orbit.

Case No. HOV AOV Delta

Case 1 27.01 27.15 −0.14

Case 2 24.49 24.45 0.04

Case 3 25.14 25.15 −0.01

Case 4 25.66 25.62 0.04

Case 5 30.54 30.52 0.02

Case 6 27.63 27.60 0.03

Case 7 28.02 28.03 −0.01

Case 8 31.24 31.19 0.05

Case 9 30.46 30.47 −0.01

Case 10 28.29 28.27 0.02

The volume of fat tissue was lower in all affected orbits, with a minimum of 0.73 cm3,
maximum of 3.60 cm3, and mean of 2.228 cm3 (p < 0.001). Moreover, the musculature was
affected in all fractured orbits. The minimum was 0.16 cm3, the maximum was 0.73 cm3,
and the mean was 0.348 cm3 (p < 0.001).

Regarding the normal volume of the orbit, we found that females’ orbits were smaller,
with a mean of 3.81 cm3; the fat volume was lower, with a mean of 3.75 cm3; and the muscle
volume was also lower, with a mean of 0.68 cm3 (p < 0.01) (Table 5).
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Table 3. Volume measurement of the fat tissue.

Case No. HFV AFV Delta

Case 1 14.64 13.91 0.73

Case 2 13.27 11.96 1.31

Case 3 10.16 7.93 2.23

Case 4 13.04 10.85 2.19

Case 5 17.49 14.36 3.12

Case 6 15.62 12.02 3.60

Case 7 15.19 14.42 0.77

Case 8 18.67 16.10 2.56

Case 9 16.68 13.41 3.27

Case 10 15.50 13.00 2.50

Table 4. Volume measurement of the muscular tissue.

Case No. HMV AMV Delta

Case 1 4.21 3.48 0.73

Case 2 3.59 3.01 0.58

Case 3 3.95 3.79 0.16

Case 4 4.12 3.86 0.26

Case 5 4.39 4.20 0.19

Case 6 3.99 3.42 0.57

Case 7 4.67 4.40 0.27

Case 8 4.57 4.33 0.25

Case 9 4.70 4.43 0.27

Case 10 4.68 4.46 0.2
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Table 5. Average and standard deviation.

Gender HOV AOV HFV AFV HMV HMV

F 25.57 ± 1.07 25.59 ± 1.14 12.78 ± 1.88 11.16 ± 2.50 3.97 ± 0.27 3.535 ± 0.39

M 29.38 ± 1.55 29.35 ± 1.55 16.53 ± 1.36 13.89 ± 1.41 4.50 ± 0.27 4.21 ± 0.4

4. Discussion

The benefit of computer-assisted planning and computer-assisted surgery in orbital re-
construction has been well documented lately, permitting a safe procedure with predictable
results. The orbit has a complex 3D shape. Even if we talk about printing stereolithographic
models and pre-bending titanium meshes or printing directly a titanium implant, the
results are much better than working without a CAD system [16,34,35].

Manually shaped titanium meshes achieve a very good approximation of the ideal
reconstruction based on a 3D-printed model; however, designing and manufacturing the
implants based on virtual models produces the most accurate implants [36–38]. Zim-
merer et al. concluded that individualized orbital implants, particularly CAD-based ones,
allow for a more precise posttraumatic orbital reconstruction than standard preformed
implants [15]. We did not find a significant difference between these two, but our sample
was smaller.

Poor primary reconstruction may lead to increased orbital volume and muscle re-
strictions. Persistent enophthalmos will lead to unacceptable aesthetic results. Diplopia is
another functional poor outcome which is hardly accepted by the patient even if wearing
correction glasses might slightly improve the situation. Although there is a debate whether
these complications are mainly because of enlargement of the bony orbit or soft tissue
atrophy, a good bony reconstruction and repositioning or augmentation of orbital soft
tissues can improve clinical results [39,40].

There are also situations when the bony orbit is perfectly reconstructed, as we have
shown, but the patient still presents enophthalmos due to the soft tissue atrophy. In these
cases, estimating the need of overcorrection of the globe position depends mainly on the
clinical evaluation. Our study found mean values for fat tissue and muscular tissue atrophy
which can be useful for guiding the soft tissue correction.

For this correction, several autogenous and alloplastic materials can be used. The
autogenous grafts can be time-consuming and involve donor site morbidity. The amount
of volume reduction needed is difficult to estimate because the behavior of the soft tissue is
different among patients [41].

Titanium spacers are designed in different sizes and represent a very good solution
for compensation of orbital soft tissue atrophy. In their study, Spalthoff et al. concluded
that augmentation of the intraorbital volume using titanium spacers remains a reason-
able method to correct orbital deformities in delayed primary and secondary orbital
reconstruction [42].

5. Conclusions

The anatomy of the orbital cavity is complex and needs very accurate reconstruc-
tion. Virtual planning and customized solutions, such as PSI or pre-bent titanium meshes
conformed on stereolithographic models, offer predictable solutions and accurate results.
Nevertheless, there are cases where very reduced enophthalmos is still present after surgical
treatment. A higher or a lower grade of fat and muscular tissue loss is present in all cases
of reconstructed orbital fractures. Our calculation of the mean value of lost volume can
stand as a guide for primary or secondary soft tissue augmentation; however, larger studies
are necessary.
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