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Abstract 

Bovine respiratory disease (BRD) dramatically affects young calves, especially in fattening facilities, and is difficult to 
understand, anticipate and control due to the multiplicity of factors involved in the onset and impact of this disease. 
In this study we aimed to compare the impact of farming practices on BRD severity and on antimicrobial usage. We 
designed a stochastic individual-based mechanistic BRD model which incorporates not only the infectious process, 
but also clinical signs, detection methods and treatment protocols. We investigated twelve contrasted scenarios 
which reflect farming practices in various fattening systems, based on pen sizes, risk level, and individual treatment vs. 
collective treatment (metaphylaxis) before or during fattening. We calibrated model parameters from existing obser-
vation data or literature and compared scenario outputs regarding disease dynamics, severity and mortality. The com-
parison of the trade-off between cumulative BRD duration and number of antimicrobial doses highlighted the added 
value of risk reduction at pen formation even in small pens, and acknowledges the interest of collective treatments for 
high-risk pens, with a better efficacy of treatments triggered during fattening based on the number of detected cases.
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Introduction
Bovine respiratory disease (BRD) is a multi-pathogen 
disease, caused by bacteria (e.g., Mycoplasma bovis, 
Mannheimia haemolytica) and viruses (e.g., the respira-
tory syncytial bovine virus, the bovine herpesvirus type 
1, or the bovine viral diarrhoea virus) [1–3]. BRD is a 
major burden in fattening farms, as a large proportion 
of young beef calves develop BRD short after pen forma-
tion [4]. Transportation and mixing associated with pen 
formation as well as the diversity of pathogens involved 
in BRD make this disease difficult to anticipate and con-
trol, leading to a broad use of antimicrobials to limit the 
impact of BRD on animal health and welfare, as well as 

economic losses due to reduced weight gain [4]. Most 
models developed so far focused on identifying risk fac-
tors and statistical predictors for BRD occurrence and 
impact [5, 6]. Mechanistic models, where all processes 
involved in the dynamics of the pathosystem are made 
explicit, are a complementary lever to gain insights on 
epidemiological issues, compare realistic control meas-
ures at individual or collective scale, and identify possible 
trade-offs between health, welfare, or economic decision 
criteria [7]. Mechanistic modelling is thus an effective 
way to explore the best BRD control strategies to imple-
ment on-farm.

In a preliminary study [8], a stochastic mechanistic 
BRD model was designed to represent fattening pens 
in French farms, accounting for the variability of host 
response to infection. To keep the model simple and 
cope with the lack of knowledge and data regarding the 
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interactions between the multiple pathogens involved in 
BRD, we assumed an “average” pathogen. This first model 
made it possible to compare strategies based on the com-
bination of a treatment protocol (either an individual or 
a collective treatment) and a detection method (either 
by visual appraisal only, or with an additional screening 
based on manual temperature measurement 12  h after 
the first case which reflects classical French veterinary 
recommendations, or with sensor-based temperature 
measurement).

Yet, this model targeted typical European farms with 
small pen sizes (10 animals). To expand the scope of this 
study, increase the robustness of the underlying assump-
tions and the confidence in the outcomes, the model was 
substantially revised to account for contrasted farming 
practices regarding pen sizes, possible collective treat-
ments at pen formation or during fattening, or the assign-
ment of a risk level to pens. This new study was designed 
to represent fattening facilities receiving weaned calves 
(between 200 and 320  kg) sold by suckler herds, then 
fed either in large outdoor feedlots or in smaller indoor 
barns, which can represent typical situations in many 
countries.

To allow for a more realistic account of BRD detection, 
a finer-grained and explicit description of clinical states 
was designed. The severity of BRD indeed depends both 
on the nature of clinical signs (from nasal discharge or 
coughing to anorexia or depression) and on their inten-
sity, which led us to consider explicit mild and severe 
cases, and to include a small, but not negligible, pro-
portion of deaths [9]. Also, undetected BRD episodes 
are responsible for a reduction in the average daily gain 
during fattening [10], which highlights the need for a 
detailed assessment of detection methods and subse-
quent measures.

Yet, reducing BRD severity must involve a balance 
between reducing disease duration at pen scale and the 
amount of antimicrobials required to do so. The aim of 
this study was thus to compare the impact of various 
farming and health practices in terms of antimicrobial 
usage (AMU) and reduction of BRD severity, in the per-
spective of an individualized medicine and of a reasoned 
usage of antimicrobials.

Materials and methods
BRD model: assumptions and processes
Our work aims at supporting individualized veterinary 
medicine. Hence, the model designed for BRD was indi-
vidual-based (to ensure a fine-grained detail level), sto-
chastic (to account for intrinsic variability in biological 
processes and observation), and mechanistic (to repre-
sent explicit processes and identify levers in disease con-
trol), with discrete time steps of 12 h which corresponds 

to the delay between consecutive visual appraisals of beef 
cattle at feeding. Discussing, implementing and assess-
ing new assumptions was facilitated by the EMULSION 
platform [11] (version 1.2), which makes it possible to 
describe all model components (structure, processes, 
parameters) as a human-readable, flexible and modular 
structured text file, processed by a generic simulation 
engine, hence enabling modellers, computer- and vet sci-
entists to co-design or revise the model at any moment 
(the whole EMULSION model, including parameters, 
is available on a public Git repository and in Additional 
file 1: section 2).

An earlier mechanistic, stochastic, individual-based 
model of BRD [8] which had been developed in the con-
text of typical French fattening farms, was adapted to 
encompass a broader range of farming practices and to 
more accurately reflect the onset of clinical signs and 
their detection. The new model integrated four explicit 
processes: the infectious process, the onset of clinical 
signs, the detection of BRD cases and the treatment of 
animals. Figure 1 provides an overview of these four pro-
cesses and their interactions (full details on each process 
are available in Additional files 1A–E).

The first process (Additional files 1A, B) represented 
the evolution of health states. In our preliminary study 
[8] the infectious model was a SIS model where suscepti-
ble animals (S) could become infectious (I), then returned 
to S and so on, assuming a frequency-dependent force of 
infection. However, BRD results not only from transmis-
sion between animals [12] but also from asymptomatic 
pathogen carriage: pathogens can be already present 
in young beef calves and trigger a BRD episode after 
stress events [13, 14], especially in the first few weeks 
consecutive to pen formation [4]. Thus, we introduced 
a pre-infectious stage (pI) to represent asymptomatic 
carrier calves which eventually developed BRD after a 
delay. Animals in pI state could also become infectious 
in the meanwhile, due to contacts with other infectious 
individuals. When infection ended, animals returned 
to susceptible, assuming they could be re-infected by 
the “average” pathogen, as animals could be infected by 
several different pathogens (Additional files 1A, B). We 
assumed no between-pen transmission, as this situation 
is not documented enough to provide suitable transmis-
sion estimates. Besides, in small-pen fattening facilities, 
few calves arrive at the same time: as BRD mostly occur 
short after pen formation [4], such successive arrival of 
small groups of animals limits the risk that a new pen will 
be exposed to BRD episodes occurring at the same time 
in other pens.

The second process (Additional file 1C) represented the 
explicit onset of clinical signs, assuming four main stages. 
Susceptible individuals were asymptomatic (A); when 
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becoming infectious, they started expressing mild clinical 
signs (MC). Then, after a delay, they could either develop 
severe clinical signs (SC) with probability p_severe_clini-
cal, or return to A when infection was over. Finally, a few 
animals in SC state could die from BRD with probability 
p_death, but most of them returned to A when infection 
was over. This mortality was neglected in the preliminary 
study [8], but could not be ignored anymore in large pen 
sizes [9].

The third process (Additional file  1D), detection, 
relied on visual appraisal of clinical illness at feeding 
time, i.e. every 12  h. Visual observations of clinical ill-
ness are known to have a low sensitivity, which varies a 
lot depending on studies, from 0.27 (with 95% credible 
interval 0.12–0.65) [15] to 0.618 (97.5% CI 0.557–0.684) 
[16]. Assuming the sensitivity depended on the severity 
of clinical signs, we used Se_MC = 0.3 and Se_SC = 0.6 
for MC and SC, respectively. Also, as BRD is by far the 
most prevalent disease in the beginning of feeding, we 
assumed a high specificity (Sp = 0.9) consistently with 
[15]. Finally, as detection could occur in the mechanistic 
model at any time step while animals were asymptomatic 
(false positives) or affected by mild or severe clinical 
signs respectively, we had to transform the specificity and 
the sensitivities into detection probabilities (respectively 
p_det_A, p_det_MC, p_det_SC) per time unit (i.e. per 
hour). These probabilities were calculated as expressed 
in Equations (1)–(3), based on the expected value of the 
durations in A, MC and SC states. Average durations in 

MC and SC were based on the distributions used in the 
model for mild clinical signs and for the infectious state 
(Additional file  1: “Complete EMULSION BRD model” 
section), whereas dur_A_expected was set to the total 
fattening duration. These three probabilities are then 
used in the transitions from ND to D states (Additional 
file 1D).

The fourth process (Additional file 1E) represented an 
“average” antimicrobial treatment protocol during the 
fattening period. Any detected individual receives an 
individual treatment, consisting of administering up to 
three consecutive doses of antimicrobials. Each animal 
receiving an antimicrobial dose performed a random trial 
(with probability p_success = 0.8) to determine the out-
come of the treatment. The effect of the treatment was 
considered after a period of 48  h. After that delay, ani-
mals could already be free of clinical signs due to the 
intrinsic dynamics of the infectious process, or still clini-
cal with a treatment considered successful: in both cases, 
they returned to the non-treated state. On the contrary, 
animals with a negative outcome and still clinical signs 

(1)p_ det _A = 1− Sp
1

dur_A_expected

(2)p_ det _MC = 1− (1− SeMC)
1

dur_MC_expected

(3)p_ det _SC = 1− (1− SeSC)
1

dur_SC_expected

Figure 1  Overview of the mechanistic BRD model. The model incorporated four processes (infection, clinical signs, detection, treatment) 
associated to individual states (rounded boxes), which could evolve by themselves (plain arrows) but also influenced each other (dashed arrows). 
For instance, animals becoming infectious (I) also started expressing mild clinical signs (MC), which could evolve towards severe clinical signs (SC). 
Both could be detected (D), which led to a first treatment (T) that could be repeated. When the treatment was successful, it made the animal return 
to susceptible (S) and asymptomatic (A) states. If successive treatments failed, it was stopped and the animal was no longer considered for further 
treatments, thus markes as “ignored” (Ig).
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were treated again. Animals with clinical signs 48 h after 
receiving a third antimicrobial doses were not considered 
for further treatments (marked through detection sta-
tus “Ignored”). In addition to this individual treatment, 
we also considered the possibility to trigger a collective 
treatment at pen scale when the cumulate incidence 
reached a fixed threshold (depending on pen size). In that 
case, all animals not already under treatment in the pen 
received an antimicrobial dose, then they were followed 
individually according to the rules described above. In 
the treatment protocol, we did not explicitly consider the 
case of an infection caused only by a virus, for four rea-
sons. First, viruses involved in BRD are rarely found with-
out bacterial co-infection [17, 18]; second, when cases 
occur, most often no analyses are performed to identify 
the nature of the pathogen agent; third, detected animals 
are treated with antimicrobials anyway to prevent bacte-
rial superinfections; and fourth, the stochasticity in treat-
ment success and the possibility for animals to recover 
within each 48 h period could also represent what would 
happen with viral infections.

Scenarios
We envisaged twelve scenarios resulting from the com-
bination of two pen sizes (S: small, vs. L: large), three risk 
levels at pen formation (LR: low risk with a small propor-
tion of pI animals; HR: high risk with a higher propor-
tion; HRA: high risk mitigated by antibioprevention), and 
two treatment strategies (I: individual treatment only; 
C: also allowing collective treatment during fattening). 
Parameter values characterising the twelve scenarios are 
summarized in Table 1.

The first major difference in fattening practices is pen 
size indeed, which can vary by an order of magnitude, for 
instance from small pens of 10 animals, often fed indoor, 
as in France [1] to larger pens of 100 animals in the open 
air as in the US [16].

In addition, pens can be classified as “low-risk” or 
“high-risk” regarding BRD occurrence, depending on 
multiple factors, especially the diversity of origins and 
distance travelled by animals [9, 14, 19, 20]. Such a prior 
assessment of the risk level of animals on arrival has been 
widely studied and is quite common in large-pen farms, 
whereas in small-pen systems, risk assessment is still an 
applied research question [21]. However, we assumed 
that we could consider similar conditions for large- and 
small-pen systems. Also, antibioprevention (also called 
“metaphylaxis at arrival” or “preventive metaphylaxis”) 
is a common practice to mitigate the risk in high-risk 
pens [22, 23], by treating all animals with long-acting 
antimicrobials before fattening starts. Antibiopreven-
tion reduces BRD prevalence by a factor that varies a 
lot depending on the nature and possible interactions 
between drugs [24], and delays in the onset of clinical 
cases [25]. Consistently, we assumed that antibiopreven-
tion reduced the initial prevalence in high-risk pens by 
half, and added 2  weeks on average to the delay before 
pI animals became infectious. This delay was modelled 
explicitly by adding a random duration to the original 
distribution in pI state when the scenario specified the 
use of antibioprevention.

Finally, a collective treatment (also called “curative 
metaphylaxis”) can also be set up when several cases are 
detected [25], to reduce the prevalence and avoid trans-
mission by undetected animals. We assumed that the 
threshold used to trigger a collective treatment was based 
on the cumulative proportion of detected cases and that 
this proportion was indeed not the same in small and 
large pens.

However, we assumed that animals were exposed to 
similar pathogens, i.e. that we could use the same char-
acteristics (transmission rate, infection duration, morbid-
ity and lethality) for the average pathogen in all scenarios. 
Most model parameters were set according to existing 

Table 1  Parameters used to characterize scenarios depending on pen size and risk level 

Two pen sizes (“large” and “small”) and two risk levels (LR, low risk and HR, high risk) were considered. In addition, we also considered high risk pens with 
antibioprevention (HRA), i.e. where a collective treatment with long-acting antimicrobials is given to all animals before fattening, assuming a reduction of half of the 
initial prevalence.

Parameter name Role Small Large

LR HRA HR LR HRA HR

pen_size Size of each pen 10 [1] 100 [16]

metaphylaxis_threshold (best guess) Proportion of cumulate detected cases with severe clinical signs 
above which collective treatment is triggered

0.4 0.15

use_antibioprevention Use long-acting antimicrobials just before fattening 0 1 0 0 1 0

initial_prevalence (best guess) Proportion of asymptomatic carriers (pI) at the beginning of fattening 0.1 0.15 0.3 0.02 0.1 0.2
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experimental data [12, 26] or, if not available, assumed 
within the range of the best estimates.

Model outputs
The individual-based model made it possible to track 
individual events and to aggregate them at pen scale. For 
each stochastic replicate we recorded the number over 
time of animals that were infectious, with severe clini-
cal signs, detected (with the detection dates) and treated. 
We recorded outputs after 100 days on feed: the number 
of distinct animals in each state, the associated cumula-
tive durations (at pen scale, i.e. in animals × days), the 
date and amplitude of the epidemic peak (maximum 
number of detected cases), the number of deaths, and 
the total number of antimicrobial doses used during the 
period. We also traced how many detections occurred or 
failed (i.e. the number of animals detected while being in 
states A, MC and SC respectively as well as the number 
of animals that stayed undetected while being in those 
states), to calculate the proportion of detections by mild 
or severe clinical signs and the proportion of false posi-
tives in the simulation. We ran 500 stochastic replicates 
of large-pen (100 animals) scenarios and 5000 replicates 
of small-pen ones (10 animals); then, for each small-pen 
scenario, we randomly constructed groups of 10 pens to 
aggregate some simulation results (cumulative durations, 
number of deaths, amount of antimicrobials), to rep-
resent 500 farms that would have fattened 100 animals, 
hence making large- and small-pen scenarios comparable 
on those outputs.

These simulation outputs were used to analyse the 
dynamics of BRD cases simulated to ensure that they 
were consistent with data from previous studies or from 
the literature, but also to calculate the effectiveness of 
BRD control based on the trade-off between the cumu-
lative duration of BRD impact at pen scale (assuming 

severe clinical signs as a good proxy for the disease sever-
ity) and the total number of antimicrobial doses used to 
reach that result.

Sensitivity analysis
To better characterize the behaviour of the model and 
the impact of parameter uncertainty, we carried out a 
sensitivity analysis for six of the twelve scenarios that 
we considered an acceptable compromise between 
antimicrobial usage and disease control in an anti-
bioreduction perspective, i.e. relying on individual 
treatments only when the risk level is low (LR) or was 
already reduced by antibioprevention (HRA), and ena-
bling collective treatments in high-risk scenarios (HR). 
The sensitivity analysis incorporated 11 major model 
parameters (Table 2), involved in the processes describ-
ing infection, detection and clinical signs onset. Each 
model parameter was used at its nominal value and 
with a variation of ± 20% (except for the specificity 
that cannot exceed 1). The corresponding experiment 
plan was based on a fractional factorial design incor-
porating first-order parameter interactions and gener-
ated using the R library “planor” [27] (hence, reducing 
the 311 possible combinations of parameter values to 
35 = 243 parameter settings per scenario). For each 
parameter setting, we carried out 500 stochastic rep-
licates for large-pen scenarios and 5000 for small-pen 
ones. The sensitivity analysis targeted 6 model outputs: 
the date of the first detected BRD base, the day and 
height of the detection peak, the number of deaths, the 
total number of antimicrobial doses, and, for scenarios 
enabling collective treatments, the proportion of pens 
where a collective treatment was triggered (Table  3). 
For each scenario, an analysis of variance (ANOVA) 
was performed to identify the sensitivity index, i.e. the 
contribution of model parameters to the variance of 

Table 2  Nominal values of parameters included in the sensitivity analysis 

Parameter name Role Nominal value Source

mean_dur_I Mean duration in I state (h) 5 * 24 Assumed

mean_dur_pI Mean duration in pI state (h) 3 * 24 Assumed

pathogen_transmission_rate Transmission rate by infectious individuals (h−1) 0.01 Assumed

p_death Probability that an animal with severe clinical signs eventually dies from BRD 0.05 Best guess

dur_MC_fact Factor modifying the delay between infection and onset of severe clinical signs 1

p_severe_clinical Probability that an animal with mild clinical signs eventually develops severe clinical signs 0.5 Best guess

dur_before_death Duration of severe clinical signs before death for animals dying from BRD (h) 10 * 24 Assumed

Se_MC Sensitivity of the detection based on mild clinical signs 0.3 [15]

Se_SC Sensitivity of the detection based on severe clinical signs 0.6 [16]

Sp Specificity of the detection based on clinical signs 0.9 [15]

p_recovery Probability that one antimicrobial dose will stop the infection 0.8 Best guess
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the outputs: for each output, a linear regression model 
was fitted with the principal effects of the parameters 
and their first-order interactions. The contribution of 
parameter p to the variation of output o is calculated as 
described in Equation 4, where SSotot , SSop and SSop:p′ are, 
respectively, the total sum of squares of the model, the 
sum of squares related to the principal effect of param-
eter p, and the sum of squares related to the interaction 
between parameters p and p′, for output o.

Results
BRD dynamics
Figure 2 presents the temporal dynamics for the occur-
rence of severe clinical signs at pen scale, on average 

(4)Co
p =

SSop +
1
2

∑
p′ SS

o
p:p′

SSotot

and 10th–90th percentile for the twelve scenarios (on 
500 replicates for large-pen scenarios and 5000 for 
small-pen ones). As expected, the occurrence of severe 
clinical signs was mainly driven by the risk level. The 
use of collective treatment during fattening reduced 
the period during which severe clinical signs occurred, 
rather than of the amplitude of the episodes. Also, 
compared to high-risk (HR) scenarios, the use of anti-
bioprevention (HRA) reduced and delayed the peak of 
cases with severe clinical signs.

The date and amplitude of detected epidemic peaks, 
but also their variability, were also examined for all 
scenarios (Figure  3), especially showing that the use 
of a collective treatment during fattening in large-pen 
high-risk scenarios (with or without antibiopreven-
tion) induced a substantial reduction in peak date vari-
ability. Figure  4 presents representing how the dates 
of first detection and the median date of detection in 

Table 3  Model outputs considered in the sensitivity analysis 

Outputs values are considered for a period of 100 days on feed and 500 stochasticreplicated for large = pen scenarios, 5000 for small-pen ones.

Output name Description

% collective Proportion of pens where a collective treatment was triggered during the fattening period

First detection Date of first BRD case detection

Nb deaths Number of deaths during the whole fattening period, per 100 animals

Nb doses Number of antimicrobial doses used during the whole period, per 100 animals

Peak day Date of the peak of severe clinical cases during the whole period

Peak height Maximum number of animals with severe clinical cases at the same time during the whole period

Figure 2  Temporal dynamics of the occurrence of severe clinical signs. Proportion of animals with severe clinical signs over time in each 
scenario: mean value (line) and 10th–90th percentiles (ribbon) calculated on 500 stochastic replicates for large pens, 5000 for small pens. First row: 
small-pen scenarios (S), second row: large-pen scenarios (L); green: low risk (LR), blue: high risk with antibioprevention (HRA), purple: high risk (HR); 
for each color: individual treatment only (I) on the left, with collective treatment enabled during fattening (C) on the right.
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Figure 3  Dates and amplitudes of detection peaks. Each detection peak is characterised by the maximum number (y-axis) of animals detected 
over time in a stochastic replicate and by the date at which this maximum was reached (x-axis). Boxes extend from 1st to 3rd quartiles in each axis, 
lines are positioned at the median and extend from 10 to 90th percentiles. 500 (resp. 5000) stochastic replicates were conducted in large-pen (resp. 
small-pen, first row) scenarios (second row). First column: individual treatment only (I); second column: with collective treatment enabled during 
fattening (C).

Figure 4  Distributions of detection dates. Histogram representing how the dates of first detection (“first case”, dark) and the median date of 
detection in each stochastic replicate (“median case”, light) are distributed over the set of stochastic replications. Vertical red lines represent the 
medians of the first (solid line) and median (dashed line) detection dates over the set of stochastic repetitions. First row: small-pen scenarios (S), 
second row: large-pen scenarios (L); green: low risk (LR), blue: high risk with antibioprevention (HRA), purple: high risk (HR); for each color: individual 
treatment only (I) on the left, with collective treatment enabled during fattening (C) on the right.
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each stochastic replicate are distributed over the set of 
stochastic replications in each scenario. The distribu-
tions of detection peaks and detection dates appeared 
consistent with observations reporting that most BRD 
cases usually occur during the first 45  days of the fat-
tening period [16].

BRD detection
On average, about 30% (respectively, 60%) of animals 
were detected during the period in which they expressed 
mild (resp., severe) clinical signs (Figure  5), which is 
in line with the values of sensitivity parameters (Se_
MC = 0.3 and Se_SC = 0.6) used to calculate p_det_MC 

Figure 5  Proportion of detections in each clinical state. Distribution (boxplots) and average values (red dots) of the proportion of animals with 
mild clinical states (respectively, with severe clinical signs and asymptomatic) that were detected (aggregated over all scenarios).

Figure 6  Mortality. Distribution of the number of dead animals cumulated over 100 days per 100 animals (vertical red line: mean) in the 12 
scenarios (calculated on 500 stochastic replicates for large-pen scenarios, 5000 replicates aggregated 10 by 10 for small-pen scenarios). First row: 
small-pen scenarios (S), second row: large-pen scenarios (L); green: low risk (LR), blue: high risk with antibioprevention (HRA), purple: high risk (HR); 
for each color: individual treatment only (I) on the left, with collective treatment enabled during fattening (C) on the right.
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and p_det_SC (the detection probabilities for animals in 
MC or SC states during one time unit). On average, 10% 
of animals were considered detected though asympto-
matic (Figure 5), which is also consistent with the value 
of the specificity parameter (Sp = 0.9) used to calculate 
p_det_A.

BRD burden and effectiveness of control strategies
The first indicator considered for BRD impact was the 
mortality (Figure  6), which as expected increased with 
the risk level. In low-risk scenarios, the death of one calf 
over 100 was rare (less than 10% in 500 stochastic repli-
cates) and this was also the case in all small-pen scenarios 
(with a maximum of about 15% of stochastic replicates 
with one death). In large-pen scenarios, the situation rap-
idly deteriorated with the risk level when individual treat-
ments only were allowed, with about 80% of stochastic 
replicates experiencing at least one dead animal in HRA, 
and about 70% in HR. However, the possibility of trigger-
ing a collective treatment proved effective in reducing 
mortality to the same level as in the low-risk situation.

As clinical illness is also responsible for a reduction in 
weight gain, we also considered the trade-off between the 
cumulative duration of presence of animals with severe 
clinical signs during the whole 100-days period (using 
this as a proxy for disease impact) and the total number 
of antimicrobial doses used for treating detected BRD 
cases (Figure  7). Scenarios with large pens and low risk 
(L-LR-I, L-LR-C) clearly outperformed all other scenarios 

both regarding antimicrobial usage and BRD duration, 
followed by the low-risk scenarios in small pens (S-LR-I, 
S-LR-C). The cost of antibioprevention (HRA) in terms of 
antimicrobial usage was also very visible, but came with a 
positive effect on BRD impact compared to the same risk 
level without antibioprevention (HR), especially when 
only individual treatment was allowed.

To assess more specifically the added value of col-
lective treatments during fattening, we examined the 
trade-off between the relative reduction in the aver-
age cumulative duration with severe clinical signs when 
allowing a collective treatment during fattening and the 
relative increase of the average number of antimicro-
bial doses required to do so, compared to the same situ-
ation with individual treatments only (Figure  8). The 
dashed line represents situations where the relative “gain” 
(reducing disease duration) is the same as the relative 
antimicrobial “cost” (increasing doses): above the line, 
the relative cost is higher than the relative gain. In large 
pens, both relative costs and gains were higher than their 
counterparts in small pens. Also, the added value of col-
lective treatments was higher for large high-risk pens 
than for low-risk ones (higher gain, lower cost). Yet, with 
this representation HRA scenarios appeared with a low 
antimicrobial cost, but this was quite misleading, as the 
cost for collective treatment during fattening was diluted 
by the cost of antibioprevention.

Similarly, Figure 9 presents, for both pen sizes, a com-
parison between individual treatment in high risk pens 

Figure 7  Antimicrobial usage vs. disease duration per 100 animals. Total amount of antibiotics doses required in each scenario to fatten 100 
young beef bulls for 100 days, compared to the cumulative duration of severe clinical signs. Boxes extend from 1st to 3rd quartiles in each axis, lines 
are positioned at the median and extend from 10 to 90th percentiles. First row: small-pen scenarios (S); second row: large-pen scenarios (L). First 
column: individual treatment only (I); second column: with collective treatment enabled during fattening (C).
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Figure 8  Impact of collective treatment. Each point represents the relative average additional consumption of antibiotics doses and relative 
average reduction in the cumulate disease duration when allowing collective treatment during fattening, compared to the same scenario with 
individual treatment only. The bisector (dashed line) represents theoretical situations when gaining X% of disease duration would require an 
additional X% of antimicrobial doses: for points above this line, the relative cost in antimicrobials induced by the collective treatment was higher 
than the relative gain in disease duration.

Figure 9  Comparisons with the high-risk scenario with individual treatment only. Each point represents, for a given pen size, the relative 
average additional consumption of antibiotics doses and relative average reduction in the cumulate disease duration for each scenario, compared 
to the scenario with high risk level and individual treatment only (for the same pen size). The bisector (dashed line) represents theoretical situations 
when gaining X% of disease duration would require an additional X% of antimicrobial doses.
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and all other scenarios. In large pens, collective treatment 
during fattening provided a higher gain than antibiopre-
vention only, with a slightly higher cost. In small pens, 
the scenarios with antibioprevention appeared highly 
antimicrobial-consuming without a clear gain compared 
to the used of a collective treatment without prior anti-
bioprevention. But, above all, this figure highlighted the 
interest of reducing the risk level at pen formation, as 
low-risk scenarios always outperformed other practices.

Sensitivity analysis
Results of the sensitivity analysis for LR-I, HRA-I 
and HR-C scenarios are summarized on Figure  10. It 
appeared that in all scenarios, both the pathogen trans-
mission rate and the average duration of the infectious 
state (mean_dur_I) play a key role (with comparable 

weights) in the variability of outputs related to BRD 
dynamics and impact in terms of antimicrobial usage 
and mortality.

However, the specificity of detection appeared to play a 
major role in the date of first detection, except for high-
risk scenarios where the first detection is mainly driven 
by the delay before asymptomatic carriers become infec-
tious (mean_dur_pI). When collective treatments on 
high-risk pens are allowed, the specificity also impacts 
the proportion of pens where a collective treatment was 
actually triggered, which in turn affects the number of 
antimicrobial doses. Also, in the latter scenarios, the effi-
cacy of antimicrobials (p_recovery) impacts the number 
of doses and the mortality, all the more in large pens. 
Interactions between parameters had little influence on 
the outputs and were thus not represented.

Figure 10  Sensitivity analysis for 6 scenarios. In both small (S) and large (L) pens, we considered the following scenarios: low risk (LR) or high 
risk with antibioprevention (HRA) with individual treatment only (I), vs high risk (HR) with collective treatment (C). For each scenario, we display 
the contribution (total sensitivity index calculated by an ANOVA, see Equation 4) of each parameter (one per line) to the variation of target outputs 
(one per column) when this contribution was over 5%. This contribution was made positive or negative depending on the sign of the correlation 
between parameter and output variations. For each output (i.e. for each column), the numeric values represent the effect of the most impactful 
parameter (on the corresponding line) and the sum of all contributions (part of the variations that is explained by the parameters chosen in the 
sensitivity analysis). Grey columns correspond to outputs that either were not relevant in the corresponding scenario (proportion of collective 
treatments in the individual-treatment scenarios) or could not be analysed because their distribution was not normal.
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Discussion
This model made it possible to explore BRD dynamics, as 
well as the morbidity, lethality and antimicrobial usage, 
in various combinations of farming practices, risk levels, 
and individual vs. collective treatment strategies, which 
are consistent with existing observations [12, 26, 28]. 
This required to incorporate two mechanisms involved 
in BRD, direct transmission and asymptomatic carriage 
of pathogens, and a fine-grained representation of how 
clinical signs appear and are detected. The main differ-
ence in farming practices lies in the contrasted size of 
pens. A larger size of livestock groups is often responsible 
for higher prevalence of respiratory diseases in several 
species [29–31], hence it could be expected that fattening 
the same number of beef calves was more risky in a sin-
gle large pen than in several smaller pens. This was found 
indeed in the large-pen high-risk scenarios compared to 
the small-pen ones. Yet, our assumption that between-
pen transmission could be neglected should be investi-
gated further to clarify the interest of small pens as a risk 
mitigation strategy.

Also, it appeared that the use of antibioprevention 
strongly reduced morbidity and mortality, which has 
a positive impact on animal welfare as well as fattening 
performance. It indeed requires more overall antimicro-
bial doses, but the compromise in favour of reducing 
BRD impact is relevant and valuable for high-risk calves. 
In practice indeed, almost all high-risk pens are mitigated 
by antibioprenvention, which for instance represents 
about 25% of US cattle [22]. This also suggests to inves-
tigate the benefits of identifying relevant thresholds for 
collective treatments, i.e. the number of detected cases 
above which a collective treatment would be relevant to 
reduce disease impact and antimicrobial cost at the same 
time [32].

By contrast, the large-pen low-risk scenarios proved 
much more efficient than all the others, including the 
small-pen ones, in terms both of cumulative disease 
duration and of the number of antimicrobial doses. This 
prompts the consideration of a more thorough assess-
ment of the level of risk associated with small pens, and 
more generally to enforce risk reduction at pen for-
mation. Multiple factors are already known for being 
involved in BRD dynamics [17, 33–35] such as the diver-
sity of origins and distance travelled [13, 36], making it 
possible to predict the risk level associated with each 
pen, even in small-pen systems [21]. In addition, meth-
ods have also been recently proposed to reduce the diver-
sity of origins and travel distance of animals gathered in 
a same pen by reallocating trade movements in sorting 
facilities, in order to minimize the impact of BRD [37, 
38]. They essentially consist in algorithms aiming at mod-
ifying the way calves are assigned to their destination 

batches, to reduce known risk factors. The combination 
of best practices in pen formation and systematic risk 
assessment could provide better BRD control strategies, 
enabling to focus on efficient detection methods for pens 
identified as high-risk.

The specificity of detection by mild or severe clinical 
signs, though assumed rather high in the model (0.9), 
appeared to have a substantial impact on the decision 
to implement collective treatments, when those were 
allowed. Indeed, they might have been triggered due to 
false positive animals, and nevertheless proved effective 
by wiping out infectious animals not yet detected. This 
issue is all the more crucial as the uncertainties on sen-
sitivity and specificity estimates remain very large [15, 
16], and this highlights the need to fill such knowledge 
gaps. It also suggests investigating alternative detection 
strategies, for instance based on individual sensors (e.g., 
ear tags, accelerometer collars, intraruminal thermobo-
luses…) or on collective monitoring (e.g., cough detec-
tion), to implement early or individualized strategies 
before pathogen spread.

Other reported BRD observations could be explained 
by effects that were not accounted for in this study, such 
as a variability in breeds, zootechnical conditions, or 
a difference in pathogens. Indeed, beef breeds used in 
fattening feedlots are not the same in all countries and 
could have a specific susceptibility to respiratory patho-
gens [39, 40], but also different capability to concealing 
clinical signs [25], which could impact disease dynamics 
and detection. Besides, small pens are generally fattened 
indoor, which facilitates pathogen spread, rather than in 
the open air. Finally, our assumption that the same “aver-
age” pathogen could be used for all scenarios is indeed 
questionable. BRD is intrinsically a multi-pathogen dis-
ease, and the exact prevalence of each pathogen, their 
possible interactions, as well as the diversity of strains, 
can be expected to change the dynamics of infection and 
disease severity [3, 41]. In this study we assumed an aver-
age pathogen to keep the model as simple as possible. 
However, in further study, model parameters reflecting 
microbiological characteristics (e.g., the mean duration 
of infectiousness and the pathogen transmission rate) 
could be made pathogen-specific to allow for compari-
sons between various pathogens.
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