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Photodynamic therapy (PDT) utilizes the photogeneration of reactive oxygen species
(ROS) with high cytotoxicity to kill cancer cells, holding great promise for cancer treatment.
Fractionated delivery of singlet oxygen (1O2) is a wise approach to relieving hypoxia, thus
enhancing the therapeutic efficacy. In this article, an anthracene-functionalized
semiconducting compound (DPPA) has been designed and synthesized. With
irradiation, the compound is able to undergo efficient intersystem crossing (ISC) and
non-radioactive decay for photodynamic/photothermal synergistic therapy. In addition, the
anthracene module is able to capture and release 1O2 reversibly with or without irradiation.
DPPA nanoparticles (NPs) obtained by nanoprecipitation with DSPE-PEG exhibit
considerable high phototoxicity on human kidney cancer cells (A498), and the half
maximum inhibitory concentration (IC50) is 15.8 μg/ml. Furthermore, an in vivo study
demonstrates that complete tumor suppression was observed when the mice were
administered DPPA NPs with the help of laser, compared with the control and dark
groups. The H&E analysis of the normal tissues (the heart, liver, spleen, lungs, and kidney)
indicates that such NPs cause no side effects, indicating the biosafety of DPPA NPs. The
results provide a strategy to design a heavy-atom–free photosensitizer for photothermal
and fractionated PDT against kidney tumors.
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INTRODUCTION

With the increasing cases of cancer worldwide, the development of new therapeutic methods for
cancer treatment is of tremendous significance. (Siegel et al., 2021). Phototherapy utilizes the
photogeneration of cytotoxic reactive oxygen species (ROS) (Xu et al., 2017; Zhen et al., 2017; Huang
et al., 2018; Li et al., 2019a; Liu et al., 2019a; Li et al., 2019b; Meng et al., 2019; Li et al., 2020; Xiao et al.,
2020; Yang et al., 2020; Yao et al., 2020; Zheng et al., 2020; Zou et al., 2021a; Zou et al., 2021b; Wang
et al., 2021) or heat (Chen et al., 2019; Li et al., 2019c; Ma et al., 2019; Zhang et al., 2019; Zhao et al.,
2020) to induce cell apoptosis and further leads to tumor suppression, holding great promise for
cancer treatment. (Zhou et al., 2016; Ng et al., 2018; Liu et al., 2019b). However, in the photoinduced
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ROS generation, especially the oxygen-dependent type II process,
continuous irradiation will inevitably cause hypoxia, which will,
in turn, reduce the oxygen supply and diminish the therapeutic
efficacy. (Fan et al., 2016). Therefore, hypoxia is acknowledged as
the obstacle of photodynamic therapy (PDT).

Continuous irradiation of the tumor leads to the burst release of
ROS and induces tumor hypoxia, which is disadvantageous for
cancer treatment. Fractionated delivery of singlet oxygen in the dark
environment may be a wise strategy to enhance the therapeutic
efficacy. (Turan et al., 2016; Zhu et al., 2019; Zou et al., 2020). It is
considered as a mild PDT process, resulting in the diminished blood
vessel damage and providing enough time for the oxygen supply in
the blood circulation. Anthracene derivatives are capable of
capturing singlet oxygen to form an endoperoxide intermediate
by a cycloaddition reaction with laser irradiation. Furthermore, in
the dark cycle, the endoperoxide will reversibly release 1O2 to
regenerate the anthracene modules. (Wang and Zhao, 2017;
Filatov et al., 2018; Zhu et al., 2019). In addition, anthracene
derivatives are usually considered as heavy-atom–free compounds
for efficient intersystem crossing (ISC), and the dark toxicity may be
quenched. (Filatov et al., 2017; Callaghan et al., 2019). Considerable
attention has been attached to semiconducting compounds due to
their unique photophysical and photochemical properties. (Chen

et al., 2016; Tang et al., 2018; Li et al., 2019d; Shen et al., 2019; Deng
et al., 2020; Zhang et al., 2021). For example, Chen et al. designed a
heavy-atom-free compound for efficient singlet oxygen generation
and continuous PDT. (Zou et al., 2020). Another example is that
Pu et al. designed a semiconducting polymer for PDT-induced
immunotherapy. (Li et al., 2019e).

In this work, we have designed and prepared a heavy-atom-free
semiconducting compound 3,6-bis[5-(anthracen-9-yl)furan-2-yl]-
2,5-bis(2-octyldodecyl)pyrrolo [3,4-c]pyrrole-1,4(2H,5H)-dione
(denoted as DPPA) by a C-H activation reaction (Scheme).
Compared with the standard substance methylene blue (MB), the
singlet oxygen quantum yield (1O2 QY) of the as-obtained DPPA is
21.3% in dichloromethane (DCM). DPPA nanoparticles (NPs)
obtained by nanoprecipitation exhibit spherical morphology with
an average diameter of 52 nm. Such NPs are able to capture singlet
oxygen with irradiation and release it in the dark condition. The
photothermal conversion efficiency of DPPA NPs is 35.6%. The
PDT and PTT synergistic effect may promise the excellent
therapeutic efficacy of DPPA NPs. (Wang et al., 2019; Wu et al.,
2019; Chang et al., 2020; Xu et al., 2020). In vitro MTT assay
indicates the half maximum inhibitory concentration (IC50) of
DPPA NPs is as low as 15.8 μg/ml in human kidney cells (A498)
with laser irradiation. Further fluorescence imaging in vivo suggests

FIGURE 1 |Normalized (A) absorbance spectra of DPPA. (B) fluorescence spectra of DPPA in THF and NPs in water. (C) TEM of DPPANPs. (D)DLS of DPPANPs
in water.
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that DPPA NPs are able to passively target the tumor by the EPR
(enhanced permeability and retention) effect. With the help of a
laser, DPPA NPs are capable of inhibiting the tumor growth while
exerting little side effects on normal tissues, including the heart,
spleen, liver, kidney, and lungs. The results suggest that DPPA NPs
have great potential for photothermal and fractionated
photodynamic therapy.

EXPERIMENTAL SECTION

Materials and Apparatus
1H NMR and 13C NMR spectra were performed on a Bruker DRX
NMR spectrometer in CDCl3 (δ = 7.26 ppm) at 298 K as the
internal standard. UV-vis and fluorescence spectra were
measured on a Shimadzu spectrophotometer, from Japan,

FIGURE 2 | (A) 1O2 generation of DPPA in DCM using DPBF as a probe. (B) Linear fitting of time versus absorbance. (C) Fluorescence intensity SOSG with laser
irradiation (660 nm, 50 W/cm2). (D) Fluorescence intensity of SOSGwith irradiation for 1 min and then without irradiation (660 nm, 50 W/cm2). (E) Temperature elevation
and decrease curve of DPPA NPs (660 nm, 500 W/cm2, 10 min). (F) Linear fitting of −lnθ versus time.
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(UV-3600) and a HITACHI spectrometer (F-4600, Japan),
respectively. TEM of the nanoparticles were measured on
equipment (JEOL JEM-2100). Dynamic light scattering (DLS)
of DPPA NPs was tested on a particle size analyzer (90 Plus,
Brookhaven Instruments, United States). Fluorescence imaging
of DPPA NPs in nude mice was recorded on an IVIS spectrum.

Synthesis and Characterization of DPPA
A mixture of DPP (200.0 mg, 0.24 mmol), 9-bromoanthracence
(160.0 mg, 0.60 mmol), pivalic acid (20 mg, 0.20 mmol), Pt
(OAc)2 (11.0 mg, 0.02 mmol), and K2CO3 (83.0 mg,
0.60 mmol) was dissolved in 5 ml DMA (N,N-dimethyl
acetamide). Then, N2 was bubbled to drive off possible oxygen
and water in the system. The mixture was heated to 110°C under
the protection of N2 gas for 12 h. After cooling to room
temperature, the mixture was poured into saturated sodium
chloride solution (150 ml) and extracted with dichloromethane
(100 ml) three times. The organic layer was washed with brine,
followed by drying with anhydrous sodium sulfate. The solvent
was removed by rotary evaporation and purified by silica gel
column chromatography with dichloromethane and hexane (1: 2,
v/v) as the developing solvent. Dark blue solids were obtained
(Yield: 95 mg, 30%). 1HNMR: δ H 8.60-8.56 (2H, m), 8.55-8.51
(4H, d), 8.22-8.17 (4H, d), 8.12-8.01 (4H, m), 7.76-7.66 (4H, m),
4.36-4.23 (4H, d), 2.12-2.02 (2H, s), 1.33-1.21 (50H, m), and 0.96-
0.76 (26H, m). 13CNMR: 160.12, 143.83, 128.53, 127.70, 125.67,
124.55, 115.38, 57.13, 45.73, 37.35,30.84, 25.07, 21.63, 17.31, and
13.09. MS: m/z: 1,180.80, found: 1,181.85.

Cell Culture and MTT Assay
At 37°C, human kidney cancer (A498) cells were cultured with a
medium consisting of 12% fetal bovine serum (FBS) in DMEM
(Gibico) under the atmosphere of 5% CO2. DPPA NPs with
different concentrations were co-cultivated with A498 cells in the
96-well plate. For the illumination group, each well was irradiated
with a 660 nm laser for 8 min. In contrast, the wells in the control
and no illumination groups have not been irradiated. Relative cell

viability was determined by recording the absorbance of MTT [3-
(4,5-dimethylthiazol- 2-yl)-2,5- diphenyltetrazolium bromide].
MTT in PBS (5 mg/ml) was added to the well (20 μl) and then
incubated for 4 h. After that, the mother liquid was discarded, and
DMSO (200 μl) was added. The absorbance of each well was
recorded on a Bio-Tek microplate reader. Cell viability was then
calculated according to the equation:

Cell viability (%) = mean absorbance of the group incubated
with DPPA NPs/mean absorbance of the group.

All the cell experiments were repeated three times.

Cellular Uptake and Fluorescence Imaging
of Cellular ROS
A498 cells were cultured with DPPA NPs (3 ml) in a confocal
dish for 4 h. Then, the medium was discarded, and the cells were
washed with PBS (1 ml, 3 times), followed by the co-culture
with 1 ml polyoxymethylene for 25 min. Then,
polyoxymethylene was discarded, and the cells were also
washed with PBS three times (1 ml). The cells were further
co-cultivated with DCF-DA (2,7-dichlorodihydrofluorescein
diacetate, 10 µmol) for 5 min, followed by washing with PBS
(1 ml) three times. A 660 nm laser was then applied to the
sample for 3 min (0.5 W/cm2). The cells were excited at 633 nm,
and fluorescence was observed from 650 to 750 nm to
investigate the cellular uptake. They were excited with a
488 nm laser, and fluorescence was observed from 490 to
560 nm to show the ROS generation.

Fluorescence Imaging- and Photothermal
Imaging-Guided Phototherapy
The procedure follows the rules of the National Institutes of
Health (NIH). The animal study was approved by Guilin Medical
University (SCXK 2007-001). A total of 15 nude mice were
purchased and then inoculated with A498 cells. Three mice
have been chosen to perform in vivo fluorescence imaging.

FIGURE 3 | (A) In vitro cellular uptake of DPPA NPs in A498 cells and ROS generation in the presence of DCF-DA as a probe (660 nm, 100 W/cm2). (B)Cell viability
of A498 cells in the presence of DPPA NPs at different concentrations (0, 5, 10, 15, 20, and 25 μg/ml) (660 nm, 100 W/cm2, 8 min).
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The fluorescence image was captured first, and then, three mice
were intravenously injected with DPPANPs, and the fluorescence
imaging pictures were also captured at different time points. A
total of 12 nude mice were divided into three groups at random
when the tumor volume reached about 80 mm3. For the dark and
illumination groups, the mice were intravenously injected DPPA
NPs (200 μg/ml, 100 μL). After 12 h, the tumors of the PBS + laser
andDPPA+ laser groupswere irradiated by a 660 nm laser (1W/cm2)
for 8 min, while the mice in the DPPA-only group were not

irradiated. These nude mice were then sacrificed for histology
analysis.

Statistical Analysis
All numeric data are expressed as mean ± s.d., unless otherwise
indicated. The significance between two groups was analyzed by
the two-tailed Student’s t-test. Statistical analysis was performed
by GraphPad Prism 6.0. p values of less than 0.05 were considered
significant (*p < .05, **p < .01, ***p < .001).

FIGURE 4 | (A) Time-dependent fluorescence imaging of A498 tumor with intraveneous injection of DPPA NPs. (B) Photothermal imaging of the mouse with an
injection of PBS and DPPA NPs (660 nm, 500 W/cm2, 8 min). (C) Quantification of the tumor intensity at different time points. (D) Quantification of the main organs and
tumor. (E) Tumor temperature change of the PBS + laser and DPPA + laser groups.

FIGURE 5 | (A) Relative tumor volume of the mice in PBS + laser, DPPA-only, and DPPA + laser groups (660 nm, 500 W/cm2, 8 min). (B) Body weight change.
(D) H&E stained pictures of the tumor in the (C) PBS + laser and (D) DPPA-only groups. Scale bar: 10 μm.
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RESULTS AND DISCUSSION

Synthesis and Generation Characterization
of DPPA and NPs
DPPAwas prepared and characterized by 1HNMR, 13CNMR, and
mass spectroscopy (Supplementary Figure S1–S3). DPPA NPs
were characterized by the UV-vis and fluorescence emission
spectra. DPPA shows narrow absorption peaks at 522 and
558 nm in DCM, while the emission peaks were shifted to 593
and 629 nm, respectively, indicating their responsiveness to near-
infrared (NIR) light. (Figures 1A,B). A large Stokes shift was
observed for the absorbance of the maximum absorbance of
DPPA NPs in water (616 and 719 nm), which is attributed to
both the solvent effect and the aggregation of DPPA NPs in
aqueous solution. This phenomenon could also be found of other
photosensitizers. (Zou et al., 2020). The morphology
characterized by a transmission electron microscope (TEM)
suggests DPPA is self-assembled to form uniform NPs
(Figure 1C), consisting with the dynamic light-scattering
(DLS) result (mean diameter ~52 nm) (Figure 1D).

Singlet Oxygen Generation, Reversible
Capture and Release, and Photothermal
Conversion Efficiency
For an ideal photosensitizer, high singlet oxygen quantum yield
(1O2 QY) promises excellent phototherapeutic efficacy.
Therefore, the 1O2 QY of DPPA was calculated by recording
the absorbance of 1,3-diphenylisobenzofuran (DPBF) with laser
irradiation. With methylene blue (MB ~Φ = 57%) as the standard
substance in DCM (Supplementary Figure S4), the absorbance
of DPBF kept decreasing with irradiation while that of DPPA
remained unchanged, and the 1O2 QY is calculated as 21.3%
(Figures 2A,B). It is worth noting that DPPA is heavy-atom-free,
and this may reduce the potential dark toxicity itself. Then,
nanoprecipitation was used to prepare DPPA NPs with good

dispersity in water. The singlet oxygen generation ability of DPPA
NPs was measured using singlet oxygen sensor green (SOSG) as
an indicator. It can be found that DPPA NPs inherit the high 1O2

generation ability as the fluorescence enhancement of SOSG was
enhanced by 3.2 times with irradiation (Figure 2C). However, the
singlet oxygen generation ability of DPPA NPs is lower than that
of Rose Bengal (Supplementary Figure S6). The 1O2 capture and
release was, then, also characterized by recording the fluorescence
intensity of SOSG with or without irradiation. After irradiation
for 1 min, the intensity was enhanced two times. It continued to
increase even without laser irradiation, indicating the
fractionated delivery of 1O2 in the dark environment (Figure 2D).

High photothermal conversion efficiency promises the
photosensitizer with a high photothermal therapeutic efficacy.
The heating curve of DPPANPs in distilled water with irradiation
or the cooling curve without irradiation was recorded.
(Figure 2E). The temperature elevation of 25.2 C with laser
irradiation in the presence of DPPA is much higher than that
of water under the same condition (5.1 C) with a high
photothermal conversion efficiency of 35.6% (Figure 2F). Such
NPs show excellent photostability because no obvious decay was
observed, regardless of irradiation (Supplementary Figure S5).

Cellular Uptake, 1O2 Generation, and MTT
Assay In Vitro
Based on the singlet oxygen detection and photothermal
conversion efficiency investigation, we then evaluated the
therapeutic efficacy of DPPA NPs in vitro. The cellular
uptake and singlet oxygen generation ability of DPPA NPs
were investigated by confocal laser scanning microscopy
(CLSM). DPPA NPs are able to be uptaken by human kidney
cells (A498) after incubation for 6 h (Figure 3A). With laser
irradiation, singlet oxygen generation could be observed due to
the strong green fluorescence. (Figure 3A). After incubation for
24 h, two groups were divided to investigate the dark or photo

FIGURE 6 | H&E pictures of the heart, liver, lungs, kidney, and spleen in the PBS + laser, DPPA-only, and DPPA + laser groups. Scale bar: 10 μm.
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toxicity by MTT assay. For the dark group, the cell viability
remained very high, regardless of the concentration, indicating
the low dark toxicity of DPPA NPs (Figure 3B). In comparison,
the cells’ viability with irradiation show concentration-
dependent death, and the half maximum inhibitory
concentration of DPPA NPs is 15.8 μg/ml (Figure 3B). The
results demonstrate that DPPA NPs have a potential for PDT/
PTT synergistic therapy.

In Vivo Fluorescence Imaging-Guided
Photothermal and Fractionated
Photodynamic Therapy
Since DPPA NPs exhibit considerable cytotoxicity in vitro, we
then further investigated the phototherapeutic efficacy in vivo.
Photothermal and fluorescence imaging were investigated
(Figures 4A,B). A total of 15 nude female mice bearing A498
tumor were used in this study. When the tumor volume reached
200 mm3, biodistribution was determined by fluorescence
imaging in vivo after an intravenous injection of DPPA NPs.
Time-dependent fluorescence images of the nude mice were
captured (Figure 4A). After injection with DPPA NPs for 8 h,
the fluorescence intensity of the tumor reached the peak,
indicating 8 h is the most appropriate time point for laser
performance. After 24 h, these mice were sacrificed. Then, the
ex vivo fluorescence intensities of the tumor, heart, liver, spleen,
lungs, and kidney were recorded (Figure 4C). The fluorescence
intensity of the tumor remained the strongest after injection with
DPPA NPs for 24 h (Figure 4D). For photothermal imaging, a
significant temperature elevation of 16 C was observed for the
tumor with laser irradiation for 8 min. In contrast, temperature
elevation of the control group is only 4.0 C (Figures 4B,E), which
indicates that DPPA NPs show outstanding photothermal
efficacy in vivo.

The tumor volume of the mice administered with DPPA NPs
is parallel to that of the PBS + laser group, suggesting the low dark
toxicity of such NPs (Figure 5A). Another piece of evidence is all
the mice tend to gain more weight in the three groups, regardless
of irradiation or not (Figure 5B). However, tumor proliferation
has been suppressed proportionally after laser treatment. After
treatment for 3 times, the tumors of the DPPA NPs + laser group
completely disappeared, demonstrating the phototherapeutic
efficacy of DPPA NPs (Figure 5A). After treatment, the mice
were still raised to observe the survival (Figure 5C). Mice in the
DPPA NPs + laser group still remained alive while those in the
PBS + laser and DPPA NPs-only groups suffered from low
survival. Representative mice in the PBS + laser, DPPA NPs-
only, and DPPANPs + laser groups are shown in Supplementary
Figure S6. The H&E stained pictures of the tumor in the three
groups are very similar with a healthy nucleus (Figure 5D).

After treatment, all the mice were sacrificed, and the normal
organs were collected for the H&E study. No obvious difference
was observed in H&E stained pictures (Figure 6). All the results
demonstrated that DPPA NPs exhibit strong antitumor activity
and low side effects in vivo, suggesting their good
biocompatibility.

CONCLUSION

In summary, an anthracene-functionalized semiconducting
photosensitizer DPPA has been designed and prepared with a
high 1O2 QY of 21.3%. The anthracene module acts as a store for
fractionated delivery of singlet oxygen because such a module is
able to undergo the cycloaddition reaction to store singlet oxygen
with laser irradiation while releasing it without irradiation. The
as-prepared DPPA NPs still retain the 1O2 generation ability and
simultaneously the high photothermal conversion efficiency
(35.6%). MTT assay shows that DPPA NPs show quite low
dark toxicity but high phototoxicity with a low IC50 of
15.8 μg/ml. In vivo photothermal- and fluorescence imaging-
guided phototherapy suggest that such NPs are capable of
suppressing the tumor growth at a low dose but cause no
damage to normal tissues, suggesting the biocompatibility.
These results provide some insights to design semiconducting
photosensitizers with high phototoxicity, low dark toxicity, and
good biocompatibility for photothermal and fractionated
photodynamic therapy.
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