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ABSTRACT Vibrio cholerae is a noninvasive pathogen that colonizes the small intes-
tine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in
long lasting immunity, and recent studies have improved our understanding of the
antigenic repertoire of V. cholerae. Interactions between the host, V. cholerae, and
the intestinal microbiome are now recognized as factors which impact susceptibility
to cholera and the ability to mount a successful immune response to vaccination.
Here, we review recent data and corresponding models to describe immune re-
sponses to V. cholerae infection and explain how the host microbiome may impact
the pathogenesis of V. cholerae. In the ongoing battle against cholera, the intestinal
microbiome represents a frontier for new approaches to intervention and preven-
tion.
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Vibrio cholerae is a highly motile, salt-tolerant bacterium. It was identified as the
cause of cholera by Pacini in 1854, which was later confirmed in 1884 by Koch (1,

2). Further understanding of the pathogenesis of cholera stalled until the 1950s, when
Nath De demonstrated the effects of cholera toxin (CT) by injecting rabbit ileal loops
with cell extracts from cultured V. cholerae (3). While our understanding of the regu-
lation and mechanisms of action of CT have advanced considerably, there are still
significant gaps in our understanding of the pathogenesis of cholera. In this review, we
highlight two such areas. First, how is protective immunity against V. cholerae gener-
ated? Second, how does the intestinal microbiome impact host-pathogen interactions
in V. cholerae pathogenesis and immunity?

ETIOLOGY

V. cholerae is a facultative pathogen. It persists in aquatic reservoirs and forms
biofilms in association with plankton (4). Although environmental V. cholerae is diverse,
cholera is caused by a restricted subset of pandemic V. cholerae strains which cyclically
emerge and replace their precursors. The current, seventh pandemic V. cholerae
biotype El Tor (7PET) lineage was first recognized as a cause of widespread cholera in
1961 and, within two decades, replaced the previous sixth pandemic classical biotype
globally (5). The emergence of new dominant lineages is also apparent within the
seventh pandemic, and genotyping of 7PET isolates reveals three distinct but overlap-
ping waves of transmission, each associated with horizontal gene acquisitions (6). The
SXT/R391 antibiotic resistance element was acquired during the second wave, and
a new CT-encoding bacteriophage, similar to that associated with the previous sixth
pandemic classical biotype, replaced the toxin encoding region during the third
wave (6).
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More than 200 serogroups of environmental V. cholerae are defined by their
O-antigen structure (7), but only serogroup O1 is associated with pandemic cholera (8).
Other serogroups have caused sporadic cases or limited outbreaks. A unique exception
thus far is the V. cholerae O139 serogroup, which caused epidemic cholera from 1992
to 2002 (9). V. cholerae O139 resulted from a single horizontal gene exchange of the rfb
(O-antigen encoding) locus in the circulating 7PET O1 strain (10). After this serendipi-
tous recombination event, it is possible that an increase in prevalence of V. cholerae
O139 was then facilitated by the niche created by widespread existing immunity to the
O1 serogroup and a corresponding lack of immunity to the emergent O139 serogroup.
This is conceivable given that V. cholerae O1 and O139 infections confer homologous
immunity (against reinfection with the same serogroup) but not heterologous immu-
nity (against infection with the other serogroup) (11). However, because other non-O1
strains do not typically cause cholera epidemics, it is likely that unknown constraints
prevent their more frequent emergence.

V. cholerae serogroup O1 is divided into two serotypes, Inaba and Ogawa. The
difference between serotypes is the absence of a single methyl group in the terminal
perosamine of the O-polysaccharide in Inaba, an alteration acquired through a lack of
function mutation in the wbeT methyltransferase (11). In areas of endemicity, either
serotype may predominate for years (12). The prolonged serotype cycles can be
explained by a high, but incomplete level of cross-protection between serotypes (13).
This model also explains why there is a transient increase in the average age of patients
with cholera that coincides with shifts in the dominant serotype (12). However, one
longitudinal study in a cholera endemic area of Bangladesh suggests that cross-
serotype immunity is asymmetric (14). While V. cholerae O1 Inaba infection conferred
protection against both serotypes, there was no evidence of cross-protection against
Inaba following V. cholerae O1 Ogawa infection (14). This differs from human challenge
studies that demonstrate protection following infection with either serotype for at least
3 years (15). Considering these results, the mechanisms which generate and maintain
serotype-specific immunity and serotype cycling are not fully understood (16).

PATHOGENESIS

Cholera is a severe secretory diarrhea which can result in death within hours of the
onset of symptoms (17). Fluid losses may exceed 1% of total body weight per hour (18).
Infection usually requires ingestion of a large inoculum, and in North American adult
volunteers, between 108 and 1011 viable organisms are needed to produce disease
consistently. This is because most V. cholerae are killed in the acidic gastric environment
(18) and the required inoculum is decreased in individuals with reduced gastric acidity
(19).

Once V. cholerae reaches the intestine it is propelled by a single sheathed flagellum.
It then penetrates the mucus barrier to adhere to the small intestinal mucosal surface
(20). Motility is required for successful colonization. In animal models of cholera, V.
cholerae preferentially colonizes the mid-small intestine to the distal small intestine,
where it forms clonal microcolonies in villous crypts (21). The presence of mucus, bile,
and other external signals activate the ToxR regulon, a signaling hub which controls
virulence through the expression of CT and the toxin-coregulated pilus (TCP) (22). All
cholera-causing strains of V. cholerae harbor the ToxR regulon and the machinery to
secrete both TCP and CT. TCP is a long, flexible type IV pilus that is required for
colonization (23). It is made up of a repeating configuration of TcpA, its main structural
subunit (24). TCP is also the receptor for the lysogenic bacteriophage CTX�, which
encodes CT, an AB5-subunit toxin (24). CT is composed of one enzymatically catalytic A
subunit (CtxA) and a pentamer of B subunits (CtxB). The B subunit pentamer binds the
monosialoganglioside GM1 via cell surface receptors on the apical surface of the
epithelium (23, 25). The toxin is endocytosed, and CtxA escapes the endosome to
ribosylate the G-protein-regulated adenylyl cyclase on the cell basolateral membrane
(26). This results in chloride (Cl–) loss and massive fluid secretion into the small intestine,
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overwhelming the resorptive capacity of the large intestine and resulting in severe
watery diarrhea (7).

The diarrhea produced by V. cholerae is a vehicle for transmission. Once V. cholerae
populations in the small intestine grow to a high density, the organisms detach from
the intestinal surface to escape from the host (27). In severe cholera, up to 109/viable
organisms are excreted per ml of stool and vomitus (28), and without effective
antibiotic treatment, the secretion of organisms continues for several days (29). Organ-
isms remain highly infectious for up to 24 h after excretion from the host, and
human-shed organisms have higher infectivity compared to aquatic V. cholerae. This
increased infectivity may contribute to spread during cholera epidemics (30).

INNATE IMMUNITY

Unlike invasive intestinal bacterial pathogens like Shigella and Salmonella, V. chol-
erae infection does not cause clinically overt inflammation. Nonetheless, cholera dis-
rupts the mucosal barrier at a microscopic level, resulting in widening of intracellular
spaces, disruption of the apical junction, and an influx of neutrophils, macrophages,
and other lymphocytes into the lamina propria (27, 31, 32). Cholera also triggers the
production of innate effector molecules at the mucosal surface, such as lactoferrin,
defensins, and oxidase (30, 31, 33, 34). In severe cholera, the disruption of intestinal
homeostasis lasts for up to 6 months (33), much longer than the diarrheal symptoms
of cholera, which usually resolve within an average of 2 to 4 days depending on
antibiotic treatment (35).

V. cholerae infection activates several hubs of innate immune signaling (30, 33). This
has been observed in biopsy specimens from patients with acute cholera and can be
modeled in vitro (30, 33, 36, 37). Some of the major innate signaling pathways which are
upregulated in response to V. cholerae are not typical of the innate immune response
to bacterial infection. For example, both the NLRP3 inflammasome and type I interferon
signaling pathways are highly activated in response to cholera, even though such
responses are canonically associated with responses to viral infection (33).

Activation of the host-innate immune system in cholera may serve more than one
purpose, but whose purpose; the host or the pathogen? Innate immunity serves as a
first line of defense, but in severe cholera this initial defense is clearly ineffective. In the
short term, the human-innate immune response may better serve the pathogen, since
the production of innate effectors to which V. cholerae is resistant may provide an edge
in its competition with commensal organisms. For example, innate signaling pathways
activated during V. cholerae infection induce the expression of proteins that generate
reactive oxygen species. Dual oxidase 2 (DUOX2) and inducible nitric oxide synthase
(iNOS) are both among the most upregulated proteins in duodenal tissue during
cholera (30, 33). However, the antibacterial effects of the resulting reactive oxygen
species may end up benefitting V. cholerae in its competition with gut commensals,
since V. cholerae employs inducible resistance to oxidative stress during colonization
(38, 39).

In addition to its role in immediate defense, the innate immune system also directs
the development of subsequent adaptive immunity. The innate immune system senses
pathogen and damage associated molecular patterns, then produces signals which
direct T and B lymphocyte responses. This immune modulation is achieved through the
production of cytokines, costimulatory molecules, and other signals. In cholera, the
production of cytokines, including interleukin-1� (IL-1�), IL-6, and IL-17, are increased
in response to acute infection (33, 40). This role of innate immunity in shaping the
adaptive response may also explain why variations in the type I interferon and
inflammasome signaling pathway which are associated with susceptibility to cholera
have been under strong selection pressure in Bangladesh, an area where cholera has
been historically endemic (36). This is akin to the finding that individuals with blood
type O are more susceptible to severe cholera, an association that may account for the
low prevalence of the O blood type in the Bengal delta (41, 42).
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ADAPTIVE IMMUNITY

Infection with V. cholerae results in long-lasting immunity (14, 15, 43). Human
challenge studies suggest that complete protection lasts at least 3 years, which is the
longest interval tested (15). Surveillance in Matlab, Bangladesh, from 1968 to 1977
showed that an episode of cholera resulted in 90% protection against subsequent
disease over the entire follow-up period. In this cohort, there were only three repeat
hospitalizations from cholera out of a predicted 30, all of which occurred in young
children (43). Similarly, mathematical models based on decades of longitudinal surveil-
lance in areas of endemicity suggest that the level of immunity remains stable for
5 years or more after infection (13).

ANTIGEN REPERTOIRE

V. cholerae produces many potential antigens, but only a few appear to be dominant
targets of human immunity (Fig. 1). This was demonstrated by a 2016 study which
evaluated the antigenic repertoire of recombinant monoclonal antibodies (MAbs)
generated from individually sorted plasmablasts from Bangladeshi patients recovering
from cholera (44). Over 75% of the antibodies produced from clonally expanded
plasmablasts bound to CT or the O-specific polysaccharide antigen (OSP) (44). Addi-
tional screening of the MAbs using a V. cholerae proteome array demonstrated that the
sialidase NanH (which facilitates toxin binding by converting higher-order cell surface
gangliosides to GM1) was a third dominant antigen, though to a much lesser extent
than CT and OSP (44). Other known antigens include TcpA, hemolysin A, and flagellar
proteins (44, 45). In the case of TcpA, repeated exposure appears to be required to
prime class-switched responses (46).

FIG 1 Cholera toxin (CT) and the O-specific polysaccharide (OSP) are the two dominant V. cholerae antigens. Remarkably, following
infection in an area of endemicity, more than 75% of the antibodies derived from clonally expanded plasmablasts targeted either CT
or the OSP. CT antibodies target both the A and B subunits and may block toxin binding (A) or activity (B), yet the persistence of
circulating antitoxin antibodies does not appear to confer long lasting immunity to cholera. OSP-specific antibodies target the
bacterial outer membrane and confer protection. Several mechanisms have been proposed, including agglutination (C) and motility
inhibition (D) or other effector functions which may entrap V. cholerae before it reaches the mucosal surface, such as activation of
neutrophil extracellular traps.
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ANTITOXIN RESPONSES

CT is the primary virulence factor of V. cholerae and ingestion of as little as 5 �g
produces the symptoms of cholera (47). Despite this, antitoxin responses do not appear
to mediate long-term protective immunity against cholera. One limitation of previous
studies of antitoxin immunity has been their persistent focus on the GM1-binding CtxB
subunit. Previous studies focused on CtxB, because it was found to be the immuno-
dominant component of CT in animal models of cholera, and because this nonactive
component of the toxin was an obvious vaccine-antigen candidate (48, 49). A study of
responses in CT-immunized mice demonstrated that CtxB-specific responses were
dominant and protective while CtxA-binding antibodies had no appreciable toxin-
neutralizing capacity (50). However, in humans, CtxB-binding antibodies do not appear
to confer durable protection. This is supported by the fact that circulating levels of
CtxB-IgG antibodies and CtxB-specific memory B cells are not associated with protec-
tive immunity in household contacts of patients with cholera, nor in human challenge
studies (51–53). Although elevated circulating levels of CtxB-specific IgA are associated
with protection, these wane within months after natural infection (53, 54).

These findings are in line with observations from cholera vaccine trials. In one major
field trial, while the addition of CtxB to inactivated oral whole-cell vaccines briefly
boosted the effectiveness of vaccination (compared to the inactivated vaccine without
CtxB), it did not improve protection beyond the first 8 months. This suggests that CtxB
provides only a short-term boost of immunity (55), and more concerningly, that overall
protection with the CtxB containing vaccine appeared to drop to lower levels than the
non-CtxB containing vaccine within 2 years after vaccination (56). This reduction in
long-term immunity may be due to the immunomodulatory effects of CtxB (40).

Similarly, trials of oral vaccination with a glutaraldehyde-treated CT toxoid vaccine
alone produced only limited short-term immunity (57). But why do anti-CT responses
fail to provide lasting protection against a singular toxin mediated disease? High levels
of CtxB-specific sIgA at the mucosal surface are present for months after infection and
may provide protection in the short term. However, when exposure occurs more
distantly from initial infection, there may be insufficient time to mobilize an effective
anamnestic antitoxin response at the mucosal surface once bacterial toxin production
is already established.

Still, it may be worth reevaluating the role of CtxA as a protective antigen. This is
because recent studies show that unlike mice exposed in a laboratory, humans living
in areas where cholera is endemic have prominent CtxA-specific antibody responses
(44). More importantly, CtxA antibodies are capable of neutralizing toxin activity at very
low concentrations. Because CtxA-antibodies are highly cross-reactive with the entero-
toxigenic Escherichia coli (ETEC) heat-labile toxin (LT) (44) and because exposure to the
ETEC LT toxin is a frequent occurrence for people living where cholera is endemic, it is
likely that the CtxA response observed following human cholera is the result of the
expansion of cross-reactive memory B cells derived from prior ETEC infection (44). This
may explain why humans respond differently to CtxA than laboratory mice and is an
excellent example of the limitations of animal models in studies of human adaptive
immunity, where exposure to other infections and commensal organisms may drama-
tically shape the immune response.

ANTIBACTERIAL RESPONSES

Unlike antitoxin responses, functional antibody responses directed at the bacterial
outer membrane O-polysaccharide are more overtly important in protection against
cholera. The serum vibriocidal antibody titer has been used to measure the functional
humoral immune response to V. cholerae for decades; it remains the best seroepide-
miologic marker of recent exposure (58), and the best-established immunologic corre-
late of protection against cholera (53, 59, 60). The vibriocidal titer measures the lowest
concentration of serum or plasma required for antibody-dependent complement me-
diated bacterial killing, and vibriocidal antibodies almost exclusively target OSP (44, 61).

Despite the utility of the vibriocidal antibody titer as a correlate of protection, it is

Minireview

November/December 2019 Volume 4 Issue 6 e00597-19 msphere.asm.org 5

https://msphere.asm.org


unlikely that protection is mediated by a circulating, complement-fixing antibody. First,
although increasing vibriocidal titers are associated with protection against cholera,
there is no threshold titer at which 100% protection is achieved (62). Second, while
complement mediated killing is essential in protecting against certain bloodborne
pathogens, it is unclear whether there is enough complement at the mucosal surface
to block colonization with V. cholerae. Third, at the intestinal surface, sIgA responses
predominate, and sIgA does not induce complement activation. A caveat to this
conclusion is that, in areas where cholera is endemic, class switched OSP responses also
induce IgM and IgG memory B cell responses (44, 63). Thus, complement mediated
killing is not completely excluded as a possible defense against V. cholerae.

Given that motility is required for colonization, inhibition of bacterial motility has
been proposed as a mechanism of protection against cholera, and OSP-targeted IgA
antibodies can directly inhibit motility by interfering with flagellar function (64–66).
Other proposed antibody-mediated mechanisms include bacterial trapping and clear-
ance prior to penetration of the mucous barrier and colonization of the small intestine
(16, 67, 68).

Another important question is how are OSP-specific antibody responses main-
tained? One possibility is that immunity is maintained by long-lived plasma cells at the
mucosal surface. However, basal levels of OSP-specific intestinal sIgA secretion drop
quickly after recovery from cholera (69). Another possibility is that mucosal antibody-
mediated immunity is maintained in the memory B cell compartment (16, 70). Memory
B cells express antibodies at the cell surface but do not secrete them. Yet, memory B
cells are capable of rapid differentiation into plasma cells and generation of anamnestic
immune responses upon reexposure to antigen.

There is already evidence that the presence of circulating OSP-specific memory B
cells is associated with protection against cholera, even in individuals with undetect-
able levels of circulating vibriocidal antibodies (52, 71, 72). This association has been
observed in household contacts of patients with cholera (71, 72) and in recipients of an
attenuated V. cholerae vaccine who were challenged with wild-type V. cholerae (52). In
vaccinees, the magnitude of the initial vibriocidal antibody response was strongly
predictive of their subsequent OSP memory B cell response (52). Interestingly, while
mucosal O-antigen responses are thought to occur primarily through T-cell-
independent IgA class switching pathways, V. cholerae O antigen responses in patients
recovering from cholera are characterized by high levels of somatic hypermutation,
affinity maturation, and cross-reactive recall responses of memory B cells from prior
antigen exposure (44). These features of the OSP response are evidence that long-
lasting memory B cell responses may play a role in maintaining immunity against
cholera.

THE MICROBIOME AND CHOLERA

The microorganisms composing the complex and self-regulated community of the
gut microbiota are increasingly recognized as an important factor in enteric infections.
Advances in metagenomic profiling of microbial communities are beginning to reveal
the physiologic mechanisms of microbiome-related effects on enteric infection that
have been appreciated for decades. These include resistance to colonization and the
anti-bacterial activity of commensal gut microbes. For example, in cholera, it has long
been recognized that infection in animal models requires disruption of the commensal
microbiota with antibiotics, because the undisturbed gut microbiota is otherwise
protective against V. cholerae infection (73, 74).

Our understanding of how gut microbes impact host-pathogen interactions in V.
cholerae infection is nascent. Because presence of specific members of the gut micro-
biota correlate with susceptibility to cholera, further studies investigating causality and
mechanisms behind this association may identify new approaches to prophylaxis and
treatment. Cutting-edge studies of how the microbiota modulate immune responses to
oral cholera vaccination may also impact prevention.
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EFFECT OF CHOLERA ON THE MICROBIOME

Cholera essentially eradicates the normal gut microbiota (75). First, the massive
efflux of water into the intestinal lumen washes away the protective mucus where
much of the gut microbiota resides. Second, depletion of the microbiota is likely
exacerbated by treatments for cholera, including ingestion of large amounts of oral
rehydration solution and antibiotics that kill some gut bacterial species (75, 76). Based
on DNA sequencing of all bacteria in the stool during the initial phase of infection, V.
cholerae itself makes up the majority of bacteria found in rice-water stool (75, 77).
Alterations in the microbiota extend beyond the duration of symptoms, and recovery
after infection follows a distinct pattern (75). Colonizing gut microbes are scant
immediately following infection. Then, in the first few days of recovery, aerobes and
facultative anaerobes ingested from the environment and the oral cavity dominate the
microbiota. These recolonizing organisms likely flourish due to the abundance of
nutrients and oxygen that accumulates during the early recovery period while the flora
is depleted. As aerobes proliferate, oxygen tension is lowered, and obligate anaerobes
again colonize the gut. Several weeks after cholera, community profiling demonstrates
a return to a near-baseline gut microbiota composition, when competition for nutrients
and resources resumes (75). A similar pattern of recovery was also demonstrated in a
study of gut microbiota post-ETEC infection in Bangladesh, although in an ETEC human
challenge study, anaerobic species persisted during acute infection in some subjects
(75, 78). The dissimilarity in patterns of microbial recovery in these two groups could be
due to differences in baseline microbiota of American volunteers compared to Bangla-
deshis. Alternatively, these differences may exist due to factors that we do not yet
understand regarding underlying patterns of microbial recovery after acute diarrhea.
The disruption to gut homeostasis after cholera and other forms of severe diarrhea is
associated with enteric dysfunction and malnutrition in children living in areas of
inadequate safe water sources (79, 80). While the gut microbiota likely mediates some
of this pathology, this complex relationship and the physiology of enteric dysfunction
remains poorly understood (81, 82).

THE MICROBIOME AND V. CHOLERAE PATHOGENESIS

Household contacts of patients with cholera are at high risk for infection. In a
prospective evaluation of household contacts of patients with cholera, there was a
strong association between specific microbial groups at the time of exposure to V.
cholerae and infection during the following week. In fact, the composition of the gut
microbiome predicted infection as well as the known clinical, immunologic, and
epidemiologic risk factors for cholera (83). Based on a machine learning model,
bacterial taxa were ranked according to their association with either increased or
decreased susceptibility to infection, and the top 100 bacterial taxa from this ranking
successfully discriminated between clinical outcomes. However, the baseline alpha and
beta diversity alone were not predictive of susceptibility to cholera. This contrasts with
other enteric pathogens which are more likely to cause infection in humans with a
lower-diversity microbiome (84, 85). Investigation of the specific bacterial groups
correlated with susceptibility may provide further insight on relationships between V.
cholerae infection, the gut microbiome, and clinical outcomes.

Mucins, bile acids, and T6SS. Sensing of the intestinal environment allows V.
cholerae to tailor the expression of virulence and compete with the host microbiota for
resources, including access to the epithelial surface. In colonizing the small intestine, V.
cholerae encounters a layer of highly glycosylated proteins (mucins) lining the intestinal
epithelium (Fig. 2). This mucus layer is also heavily colonized with commensal bacteria,
and V. cholerae detects the presence of these microbes and their antibacterial metab-
olites through various mechanisms. Sensing of mucin activates the V. cholerae type VI
secretion system (T6SS), which operates as a molecular syringe, delivering toxic pro-
teins to other bacteria (86, 87). In a study screening for genes critical to in vivo V.
cholerae fitness, the T6SS apparatus was found to be vital for successful colonization,
highlighting one method by which V. cholerae overcomes colonization resistance (88).
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In a study of mice infected with V. cholerae T6SS mutants compared to wild-type strains,
V. cholerae colonization was increased several fold in wild-type infections due to the
T6SS-mediated attack of host commensal organisms (89).

Another aspect of the small intestinal environment that impacts this interaction is
cholic acid from bile, which can be processed by some gut microbes. V. cholerae
recognizes bile acids as a cue for the small intestinal environment, and upon exposure
to bile acid, gene expression shifts to optimize locating the mucosal epithelium

FIG 2 Interactions between the gut microbiota, their metabolites, V. cholerae, and the small intestinal environment. (A) After V. cholerae
survives the acidic gastric environment, the pathogen enters the small intestinal gut lumen, where both bile (green) and mucus (yellow)
signal to V. cholerae to express the virulence factors that cause symptomatic infection. Mucus coats the villi and acts as a diffusion barrier,
and V. cholerae uses flagellar motion to traverse the inner and outer mucus layers. During this journey V. cholerae encounters the resident
gut microbes and their metabolites. After reaching the intestinal epithelial crypts, V. cholerae forms biofilms (shown as fibrous mats of
organisms) to adhere to the epithelial surface. (B and C) When encountering the mucus layer, the V. cholerae type VI secretion system
(T6SS) is activated. This system operates as a contractile organelle that extends from V. cholerae to make contact with neighboring
organisms to translocate toxic effectors. T6SS activity can be suppressed by metabolites of cholic acid formed by gut microbiota that
process bile (green and red curved arrow). (D) Autoinducer AI-2 (yellow) is produced by some commensal gut microbes and can induce
quorum-sensing responses in V. cholerae. The presence of autoinducers indicate to V. cholerae a high density of organisms, resulting in
reduced expression of virulence genes that enable colonization and cholera toxin production, and activation of genes that promote exit
from the host, such as increased flagellar motion. (E) Bacteriophage specific to V. cholerae (vibriophage) can infect and lyse large numbers
of organisms rapidly, drastically reducing V. cholerae populations.
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through increased motility while repressing virulence factors CT and TCP (90). Some
small intestinal microbes also dehydroxylate primary bile acids, and when V. cholerae
senses the metabolic product deoxycholic acid, T6SS activity is suppressed (86). By
metabolizing bile acids and masking the “sensing” of the small intestinal environment,
these commensals may advance their own survival. Through the enterohepatic circu-
lation in the liver, both primary and secondary bile acids can be conjugated, resulting
in metabolites that enhance T6SS function (86). Sensing of bile and bile acid metabo-
lites by V. cholerae impacts the infected host because CT and TCP expression vary
depending on the specific form of bile acid present in the small intestine (91, 92). For
further resolution on how V. cholerae fine-tunes virulence expression based on the
intestinal environment, we need a better understanding of the gut microbes that
participate in bile acid metabolism and how V. cholerae virulence is impacted by these
metabolites.

Autoinducers. Small molecules produced by the gut microbiota and detected by V.

cholerae are an example of interspecies communication that impacts pathogenesis.
Two quorum-sensing molecules, autoinducer-2 (AI-2) and cholera autoinducer 1 (CAI-1)
are sensed by V. cholerae using histidine kinase receptors LuxQ and CqsS, respectively
(93). Recognition of autoinducers allows for population-level coordinated activity by V.
cholerae. When V. cholerae is present at high density, a quorum is “sensed” and
autoinducers are produced (94). Autoinducer binding results in modulation of down-
stream virulence factors, including a reduction in TcpA expression and production,
which signals that V. cholerae should disassociate from the epithelial surface (93). Thus
far, the autoinducer CAI-1 is known to be produced naturally only by Vibrio species. In
an infant mouse model of V. cholerae infection, an engineered strain of E. coli made to
express CAI-1 resulted in an 80% reduction in CT binding at the intestinal surface,
thereby preventing V. cholerae colonization (95).

In humans recovering from cholera, AI-2 production by commensal intestinal bac-
teria was found to block V. cholerae virulence expression (77). In a 2014 study, a
community of 14 gut microbes associated with recovery from human cholera was
reconstituted in germ-free mice. Upon challenge with V. cholerae, one species, Blautia
obeum (formerly Ruminococcus obeum), was associated with a reduction in V. cholerae
colonization through a LuxS-based AI-2-dependent signaling pathway. This demon-
strates one mechanism of host gut microbe colonization resistance through disruption
of V. cholerae quorum sensing via interspecies signaling (77). Because AI-2 is made by
numerous members of the gut microbiota, this may represent one of many examples
of interspecies communication that impact virulence (96, 97). Studies in humans are
needed to determine whether autoinducers from naturally occurring host gut microbes
or engineered species could impact clinical outcomes.

Other gut microbe metabolites. Commensal bacteria have long been postulated
to influence behavior of V. cholerae by secreting antimicrobial compounds, and these
interactions have been studied by applying culture supernatant from commensals to in
vitro V. cholerae culture or in animal models of infection. Prior to the advances of
genomic analyses, plating of fecal samples from patients with cholera demonstrated
restriction of V. cholerae growth in the presence of Lactobacilli and Peptostreptococcus
species due to unidentified “inhibitory diffusible compounds” (98). In a 2018 study,
Lactobacillus species from the stool of healthy children were screened to detect effects
on formation and dispersal of V. cholerae biofilms (99). Biofilms are an important
virulence factor for V. cholerae survival, facilitating adherence to the intestinal epithe-
lium, protecting the pathogen from antibiotics and acid inactivation, and even pro-
tecting against predation by other gut microbe species (100). Metabolites in the culture
supernatant of seven Lactobacillus isolates inhibited V. cholerae biofilm formation in a
pH-dependent manner, although the structure and function of the antimicrobial com-
pounds in these studies remain unknown (99).

Several other known microbial metabolites can alter the chemical environment,
impacting V. cholerae pathogenesis. In infant mice, ingestion of microbes that secrete
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lactic acid reduce V. cholerae growth and colonization (101). Like many bacteria, V.
cholerae is also sensitive to reactive oxygen species. Infant mice that ingest commensal
E. coli strains defective in ROS degradation prior to V. cholerae challenge had a higher
susceptibility to infection compared to those given E. coli with the ability to degrade
reactive oxygen species (102). While these studies exemplify how a single metabolite or
environmental shift can potentially alter the course of infection, the relevance of these
findings in human cholera is not known. Based on the recognized mechanisms of
microbial metabolites that interact with V. cholerae and the complexity of the bacterial
community of the gut, the full scope of metabolites that impact V. cholerae pathogen-
esis are likely heterogeneous in structure and mechanism.

Vibriophage. In addition to bacteria, the intestine harbors fungi, parasites, and
viruses, including bacteriophage. While hundreds of bacteriophages are known to
infect V. cholerae, few have been characterized (103). Vibriophage are found in humans
recovering from cholera, and phage predation of V. cholerae has been observed in vivo
during human infection, where it is associated with the rapid acquisition of intrahost V.
cholerae mutations in phage receptors (104). This suggests that lytic vibriophage has
the potential to impact the course of disease in humans. In the preantibiotic era, two
studies evaluated the efficacy of vibriophage administration for treatment of cholera in
humans (105, 106). In India, a reduction in cholera cases was also observed after adding
vibriophages into community drinking water on a weekly basis (106). However, because
V. cholerae resistance to lytic phage evolves rapidly (102, 104, 107), it is likely that
combinations of vibriophages would be required for effective treatment of clinical V.
cholerae strains.

THE GUT MICROBIOME AND ORAL CHOLERA VACCINE RESPONSES

Both live-attenuated and killed oral cholera vaccines (OCV) are increasingly used to
prevent cholera (108, 109), and killed OCVs are a critical component of the World Health
Organization’s strategy to reduce the global threat of cholera by 2030 (110). Because
OCVs are absorbed at the mucosal surface where the intestinal microbiota continually
interfaces with immune cells conducting antigen surveillance, the gut microbiome
could impact immune responses to vaccination. This has led to the hypothesis that the
gut microbiota is a frequently unmeasured host factor that partially determines im-
mune responses to OCV. Evidence supporting this theory dates to the 1990s when
bacterial overgrowth was found to correlate with reduced response to an attenuated
OCV (111).

While the gut microbiota’s impact on OCV responses has not yet been systematically
studied, emerging data from other oral vaccines suggest relevant interactions (112). For
example, the immunogenicity of oral live-attenuated typhoid vaccine in adults was
correlated with more diverse gut microbial communities, and the abundance of several
specific microbes differentiated multiphasic from late cell-mediated immune responses
after vaccination (113). A stool analysis of pairs of infants from Ghana and the Neth-
erlands compared discordant immune responses to oral rotavirus vaccination and
showed that the gut microbiome of responders was similar regardless of country of
residence, and that nonresponders from either country had less Streptococcus bovis and
increased organisms from the phylum Bacteroidetes (114). Although little studied, the
nonbacterial microbial factors impacting baseline immunoactivation or inflammation
may also impact immune responses to OCVs. For example, children receiving antihel-
minth treatment prior to vaccination had higher vibriocidal responses to OCVs com-
pared to untreated children (115). However, antihelminth treatment did not improve
immune responses of Bangladeshi children to Ty21a, an oral typhoid vaccine (116). Use
of perivaccination antibiotics is an additional microbiota-altering intervention that
could impact immune responses to OCVs, and this has yet to be studied systemically.
Further investigation is needed to understand the dynamics and advantages of ad-
junctive treatments that affect the gut microbiota at the time of vaccination.

To date, studies of oral vaccination in humans and the gut microbiota have not
evaluated mechanistic hypotheses or explored causative relationships. Yet, based on
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current knowledge of how gut microbes can impact human immune responses in the
gut, it is clear that specific metabolites of the gut microbiota have the potential to
impact immune responses to OCVs. For example, short-chain fatty acids (SCFAs) are
by-products of nondigestible carbohydrate metabolism by some members of the
anaerobic microbiota and are known to impact the development of mucosal immune
responses in other disease processes (117, 118). The effect of SCFAs on OCV responses
has thus far only been tested in cell culture. When the SCFA butyrate was added to
cultured gut epithelial cells and exposed to an attenuated V. cholerae vaccine, CCL20
production was increased (119), providing a pathway by which butyrate may accentu-
ate mucosal immune responses by recruiting dendritic cells and lymphocytes. Specific
SCFAs are also known to depress the effect of LPS-induced cytokines on the develop-
ment of T cell subgroups, although these possibilities have not been investigated in V.
cholerae infection or vaccination (120, 121). SCFAs produced in the normal gut micro-
biota in mouse models increased CT specific antibody responses, and these high-level
antibody responses were restored to antibiotic-treated mice fed acetate and butyrate
(122). However, it is not yet clear whether SCFAs impact responses to V. cholerae
antigens more closely associated with protection from cholera in humans, such as OSP.
Further studies that include testing of mechanistic hypotheses are needed to advance
the potential for microbes (or their metabolites) to be used as vaccine adjuvants.

Probiotic impact on V. cholerae infection and OCVs. Probiotics have safely been
coadministered with OCVs in two small, randomized placebo-controlled trials without
a clear effect on vaccine immunogenicity (123, 124). These studies and others evalu-
ating the effect of probiotics on human health are hampered by variation in choice of
bacterial strain, purity, dose, and timing of administration, limiting comparisons be-
tween studies (125). The challenge of interpreting cause and effect is further com-
pounded in studies that do not account for human host factors known to impact
immune responses to OCVs, such as age. In addition, whether a probiotic strain is just
“passing through” or whether sustained colonization is necessary to effectively mod-
ulate OCV responses is an important unanswered question. For further development of
probiotics as OCV adjuvants, identification of an appropriate strain in addition to
optimization of the dose and formulation are needed. If safety data are reassuring,
testing of a probiotic OCV adjuvant should include young children and infants who are
most in need of improved responses to OCV.

ON THE HORIZON

Expansive cholera outbreaks and the large burden of cholera in areas of endemicity
represent ongoing public health crises. In Yemen alone, over 1.7 million cases of
cholera have occurred since 2016 (126). A better understanding of immunity, including
improved biomarkers of protective immunity, is required to develop and test improved
OCV candidates. Key unanswered questions include how OSP-specific antibody re-
sponses are maintained, and how the gut microbiome at the time of vaccination or
infection may influence these long-term protective responses. An improved knowledge
of host-pathogen interactions is needed to harness the natural phenomenon of colo-
nization resistance and move new vaccine and therapeutic possibilities forward. Central
to this goal is a need for mechanistic studies to understand how other microbes and
their signals impact V. cholerae virulence expression and the development of protective
immunity.

Innovative approaches for prevention may exploit colonization resistance through
the administration of engineered commensal organisms. As discussed, genetic manip-
ulation of E. coli with the ability to express CAI-1 was successful in preventing cholera
in an animal model (95). In a 2016 study, a recombinant E. coli strain that expressed
glycosyltransferases mimicking ganglioside GM1, the binding site for cholera toxin,
absorbed cholera toxin with high avidity and resulted in survival of challenged infant
mice (127). As a therapeutic possibility, vibriophages are interesting because bacteri-
cidal activity is targeted, thereby limiting the potential for the emergence of antibiotic
resistance. Historical data from the preantibiotic era suggests this approach could be
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promising, but modern trials and human data are lacking. While interest in bacterio-
phage therapy has increased with the use of phage against multidrug resistant bacterial
infections (128), and a triple vibriophage cocktail was found to prevent colonization
and limit the emergence of antibiotic resistance in an infant mouse model of cholera
(107), there are no current human trials of vibriophage or engineered microbes for
cholera treatment or prevention.

Perhaps the most promising new approach to prevention combines the long-term
potential of live attenuated oral cholera vaccination with the immediate impact of
colonization resistance. In a 2018 study, an attenuated V. cholerae strain protected
against cholera in an infant rabbit model within 24 h of administration, prior to the
development of an adaptive immune response (129). This attenuated strain conferred
protection in colonized infant rabbits and prevented colonization of wild-type V.
cholerae, presumably by occupying the intestinal niche of the wild-type strain or by
dominating resources needed for colonization. Interestingly, the mechanism of this
competitive exclusion remains unknown and was not due to one specific mutation
generated in the attenuated strain (129).

Overall, these studies all demonstrate that manipulating the gut microbiota to alter
the course of human cholera is within reach. Ultimately a successful approach may rely
on attenuated V. cholerae vaccine strains or naturally occurring commensal organisms
to either provide resistance to infection or boost the effectiveness of the cholera
vaccines through interactions with the host immune system. Further mechanistic
studies to explore the how the human microbiome impacts immune responses to both
live attenuated and killed oral cholera vaccines are needed, and insights into the
mechanisms of colonization resistance are also critical for driving these new transla-
tional approaches forward.
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