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Abstract: In the forms of either herbs or functional foods, plants and their products have attracted
medicinal, culinary, and nutraceutical applications due to their abundance in bioactive phytochemi-
cals. Human beings and other animals have employed those bioactive phytochemicals to improve
health quality based on their broad potentials as antioxidant, anti-microbial, anti-carcinogenic, anti-
inflammatory, neuroprotective, and anti-aging effects, amongst others. For the past decade and half,
efforts to discover bioactive phytochemicals both in pure and crude forms have been intensified
using the Caenorhabditis elegans aging model, in which various metabolic pathways in humans are
highly conserved. In this review, we summarized the aging and longevity pathways that are common
to C. elegans and humans and collated some of the bioactive phytochemicals with health benefits and
lifespan extending effects that have been studied in C. elegans. This simple animal model is not only a
perfect system for discovering bioactive compounds but is also a research shortcut for elucidating
the amelioration mechanisms of aging risk factors and associated diseases.
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1. Introduction

Various plants and their by-products have become a major area of investigation for
bioactive compounds with health benefits [1,2]. These bioactive phytochemicals are chem-
ical components (mostly secondary metabolites) that are present in relatively smaller
amounts compared to macronutrients such as carbohydrates, proteins, and lipids. Depend-
ing on the specific application and benefits, these phytochemicals are classified into various
categories such as medicinal, functional foods, nutraceuticals, and botanicals, some of
which are closely related or almost convey the same meaning. These compounds function
in other processes that are vital to plant survival, such as protection and adaptation, due
to their inability to escape several potential categories of ecological and environmental
(biotic and abiotic) damaging stresses. However, their benefits extend to humans and
other animals that have taken advantage of these properties by sourcing such valuable
components from plants for other benefits beyond the basic macronutrients that are es-
sential for life. Most of the bioactive substances that have been discovered from food
sources so far are mostly of plant origin and are consumed as fruits, legumes, vegetables,
spices, and medicinal herbs [2,3]. These products are available in diverse forms, such
as in fresh, raw, or processed forms. Beyond their nutritional values, these food sources
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contain bioactive compounds that exert anti-microbial, anti-viral, anti-carcinogenic, anti-
inflammatory, antioxidants, neuroprotective, and anti-aging effects [2]. Recent research
in this field has sought to discover new natural bioactive compounds in food forms that
have anti-aging and lifespan extending benefits, examples of which include Silymarin and
6-shogaol [1,3–7].

Aging in humans is closely associated with diverse pathological changes, including
cancer, cardiovascular disorders, metabolic diseases such as type II diabetes, and neurode-
generative diseases such as Alzheimer’s disease [1,2]. Conserved in all living forms, aging
is a degenerative process that is characterized by a progressive deterioration of cellular
components and functions, which in most cases, inevitably leads to mortality [3,4]. In
developed countries, aging accounts for 90% of deaths, with about 100,000 cases per day,
which makes up approximately two-thirds of deaths globally [5]. The United Nations
projects that by 2050, the proportion of the global populace older that is older than 60 years
of age will be closely doubled from 962 million to 2.1 billion [6]. Therefore, it is critical to
gain an understanding of the molecular mechanism of the aging process along with the
search for therapeutic interventions that are capable of extending lifespan and improving
health span.

There are nine widely acknowledged hallmarks of aging that feature all of the ma-
jor alterations of the key biological functions: loss of proteostasis, genomic instability,
telomere attrition, mitochondrial dysfunction, epigenetic alterations, cellular senescence,
deregulated nutrient-sensing, stem cell exhaustion, and altered intercellular communi-
cation [7]. In particular, the proteostasis network, which consists of protein synthesis,
folding, secretion, trafficking, disaggregation, and degradation [7,8], is an integral part
of the biological quality control systems that ensure cellular homeostasis for the survival
and propagation of the organism. During aging, the decline of the proteostasis network
contributes to the development of proteotoxicity related disorders such as Parkinson’s
disease, Huntington’s disease, Alzheimer’s disease, and Amyotrophic lateral sclerosis [1,9].
There are two prominent concepts or theories as to how adverse changes occur in aging
at the molecular level [10]. The programmed theory proposes aging as a genetically pro-
grammed chronic process, whereas the damage theory puts emphasis on the gradual and
cumulative damage to cells and organs derived from internal and external factors [11]. The
damage theory largely stems from the free radical theory that primarily focuses on the gen-
eration of reactive oxygen species (ROS) as metabolic by-products and their accumulative
damage to biomolecules [10–13] such as DNA/RNA, proteins, and lipids. The antidotes
to this fundamental challenge are the antioxidants that provide a counter mechanism to
keep the balance of ROS production in check. On one hand, it secures all of the essential
ROS-dependent reactions, and on the other, it removes excessive ROS and prevents the
undesirable species from being generated, thereby delaying aging-associated changes and
increasing longevity [4,11,12,14]. Meanwhile, the search for bioactive compounds (from
natural sources as well as synthetic) possessing antioxidant properties has been greatly
intensified, which has so far brought to light several candidates with interesting potential
in enhancing lifespan and health span.

Many critical aspects of the human aging process have been studied in model or-
ganisms, providing us great insight into the individual elements and more importantly
the operating and underlying regulatory mechanisms. Amongst these organisms, the
Caenorhabditis elegans model has been greatly employed for the discovery of longevity
pathways as well as new anti-aging compounds with lifespan extending properties [15–18].
Here, we briefly introduce C. elegans as an important aging model, highlighting the promi-
nent pathways or factors that are involved in aging process, and discussed the recent
discovery of lifespan-extending compounds, plant sources as well as their anti-aging
activities in the C. elegans system.
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2. C. elegans as a Model for Aging Research

Model organisms have become a crucial part of biomedical research, tackling funda-
mental biological and medical questions that would otherwise be impossible to study in
humans due to the cost, system complexity, and ethical issues [19–21]. Any biological sys-
tem in which aging occurs has the potential of being a model for studying aging. However,
the choice of the model is largely dependent on the specific questions to be answered as
well as the amenability of the model. C. elegans, a multicellular organism sharing 60–80%
similarity with humans at the genomic level, has emerged as an outstanding model for
aging research [22,23]. Featured by a highly conserved aging signaling network, C. elegans
has a relatively short life cycle and low maintenance and propagation costs [24,25]. More so,
sophisticated genetic techniques and manipulations, such as RNAi, CRISPR-cas9, and the
auxin-inducible degradation (AID) system, are all applicable to C. elegans for transgenesis
as well as forward and reverse genetic screening [26]. The transparent body of C. elegans
also serves an ideal system for real-time live imaging of fluorescence-tagged proteins in the
whole animal [27–29]. Despite the abounding advantages with using C. elegans in aging
research, it is not without limitations. On the downside, the advantages that are associated
with the small size of this organism, such as ease of handling, can also be a substantial
disadvantage, as obtaining a large amount of the same generation is limiting as well as
labor intensive. Likewise, in spite of the >60% genetic conservation with humans, C. elegans
is indeed a lower invertebrate and is significantly distant from mammals evolutionarily,
biochemically, and physiologically [30–32].

A series of pioneering works established the biochemical pathways that are associated
with aging and longevity in C. elegans, which appear to be conserved through evolu-
tion [31–36]. Klass isolated eight mutant strains with a remarkable increase in lifespan and
correlated this phenomenon with the restriction of caloric intake [33]. Further studies led to
the identification of age-1, the first gene linked to lifespan extension [37,38]. Similarly, muta-
tions in daf-2 exhibited more than a double-fold increase in the lifespan through regulating
the activity of daf-16 [36]. These discoveries set up the foundation for using the C. elegans
model to understand the aging process and to seek opportunities for lifespan extension.
More work was inspired, collectively leading to the appreciation of the complex network
underpinning the aging process. Meanwhile, this model has also been explored in other di-
mensions, ranging from assessing the environmental factors for aging (hermetic treatments
and caloric restriction), studying the age-related diseases, population and evolutionary
studies, and screening of drugs with potential lifespan-extending properties [13,39–42].

3. Signaling Pathways and Environmental Factors Related to Aging

Over 70 genes have been implicated in the pathways regulating the lifespan of C.
elegans [38], with a high likelihood of further expansion on the current number. These genes
are involved in the nutrient-sensing signaling pathways, including Target of Rapamycin
(mTOR) signaling, AMP-activated protein kinase (AMPK)-dependent signaling, sirtuins,
and insulin/IGF-1 signaling (IIS). Other implicated pathways include the JNK pathway,
TGF-βsignaling, germline signaling, and mitochondrial respiration as well as other factors
leading to aging process such as protein homeostasis, temperature, transcription factors,
and so on. The representative genes that are involved in those pathways are listed in
Figure 1.

Currently, daf-16 is the most central aging related gene and is the downstream target
of some of the pathways, most prominently, the IIS pathway. Its activity involves direct
interaction with other genes, modulating the nuclear translocation or acting as a transcrip-
tion factor to numerous target genes for lifespan regulation and stress resistance [43–46].
Not surprisingly, the pathways or factors that are involved in the aging process interact
with each other to mediate lifespan extension.
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4. Bioactive Phytochemicals with Health Benefits

Derived from natural sources such as plants, animals, and microorganisms, bioactive
compounds exhibit a highly diverse chemical nature. They are capable of interacting
with biochemical systems, thereby conferring a wide spectrum of health benefits such
as anti-inflammatory, anti-aging, anti-hypertensive, anti-cancer, anti-diabetic, and anti-
neurodegenerative properties [47–53]. Of all of the bioactive compounds, the phytochemi-
cals from plants are the most prominent and have gained more attention since increasing
numbers of lifespan-extending candidates have been discovered from phenotypic screening
in C. elegans [54]. Reverse genetic screening along with structural studies has elucidated
the targets of some of these compounds and the related pathways that are involved. Phyto-
chemical/secondary metabolites can be found in vegetables, fruits, cereals, and inedible
plants, and many of them have been identified to possess antioxidant properties [55]. They
are chemically categorized into polyphenols, terpenoids, alkaloids, saponins, phytosterols,
and organosulfur compounds [55–59]. Here we focused on the application of the most
abundant and most chemically diverse phytochemicals (polyphenols, terpenoids, and
alkaloids) to aging studies and further highlighted the use of crude extract in aging studies
in the subsequent section.

4.1. Polyphenolic Compounds

The polyphenolic compounds include flavonoids, tannins, stilbenes, coumarins, lig-
nans, and other phenolic compounds (Table 1) that are mainly involved in curbing oxidative
stress and related conditions by providing their reducing power to protect essential cellular
components from detrimental oxidative damage [60]. Among the members of this class, the
flavonoids are the most abundant group, with over 8000 compounds having been identi-
fied [61]. Flavonoids contain a basic flavan nucleus with 15 carbon atoms that are grouped
into C6-C3-C6 skeleton that comprises two aromatic C6 rings and a heterocyclic ring with
one oxygen atom [62]. The presence of a highly reactive hydroxyl group enables flavonoids
to donate the hydrogen atom, thereby reducing highly oxidizing free radicals [62]. The
main targeted pathway linked to the anti-aging efficacy by this class of compounds is
IIS. For example, Tambulin, as a hydroxy substituted flavanol, enhances stress tolerance
and longevity and mitigates the manifestation of Parkinson-like symptoms in C. elegans
model, during which the IIS pathway is up-regulated by the expressions of daf-16, sod-1,
sod-3, and ctl-2 [22]. Rosmarinic acid (RA) as a natural polyphenol, has been shown to
improve the mean lifespan of C. elegans [63] by up-regulating the IIS pathway via ins-18 and
daf-16; the MAPK pathway via skn-1 and sek-1; and the stress resistance and antioxidant
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genes such as ctl-1, sod-3 and sod-5. The lifespan of the worms can also be extended by
curcumin [64], which depends on the functions of age-1, skn-1, sir-2.1, sek-1, unc-43, osr-1,
and mek-1, which are related to the IIS, MAPKK, and JNK signaling pathways. Polyphenol
and chlorogenic acid enhance longevity via the IIS pathway depending on daf-16, skn-1
and hsf-1 [65]. Epigallocatechin gallate and epicatechin (EC) protect and facilitate the
expression of major genes of the IIS pathway to protect C. elegans from oxidative stress,
thereby enhancing the longevity [66–68]. Furthermore, pro-longevity effects have been
found in the C. elegans aging models, with a broad variety of polyphenols/flavonoids such
as myricetin, resveratrol, quercetin, naringenin, kaempferol, catechin, baicalein, fisetin,
caffeic acid, phenethylester, acacetin, and blueberry polyphenols, most of which require
daf-16 [42,69–80].
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Table 1. Polyphenolic compounds with anti-aging and lifespan extending properties as demonstrated in the C. elegans model.

Polyphenolic Compounds Mean Lifespan
Extension * Plant Source # Ethnobotanical Use Implicated * Genes Pathway * Anti-Aging Effect * References

Flavonoids

Tambulin 16% at 50 µM
Zanthoxylum armatum (Indian thorny ash, or

Nepali Dhania, or Chinese coriander or
timur)

Medicinal daf-16, sod-1, sod-3, ctl-2 IIS Anti-Parkinson’s [22]

Rosmarinic acid
40% at 60 µM
49% at 120 µM
63% at 180 µM

Rosmarinus officinalis (Rosemary)

Medicinal,
Ornamental,

Culinary,
Source of essential oil

ins-18, daf-16, sek-1, skn-1,
ctl-1, sod-3, sod-5.

IIS and
MAPK

Anti-oxidative,
Healthspan extension [63]

Curcumin 39% at 20 µM Curcuma longa (Turmeric) Medicinal,
Culinary

age-1, skn-1, sir-2.1, sek-1,
unc-43, osr-1, mek-1 genes IIS, MAPK and JNK Anti-oxidative,

Healthspan extension [64]

Chlorogenic acid 20% at 50 µM Coffea arabica (Coffee),
Camellia sinensis (Tea)

Medicinal,
Beverage daf-16, skn-1 and hsf-1 IIS Anti-oxidative,

Healthspan extension [65]

Epigallocatechin gallate
(EGCG)

10%–14% at 220 µM Camellia sinensis (Green tea) Medicinal,
Beverage

daf-16 IIS
Anti-oxidative,

Anti-Alzheimer’s
[66,67]

20% at 100 µM daf-16, sod-3 IIS [81]

Myricetin 32% at 100 µM Abelmoschus moschatus (musk mallow),
Citrus sinensis (Navel oranges),

Vaccinium sect. Cyanococcus (Blueberry leaves)

Medicinal,
Food

daf-16 IIS Anti-oxidative [69]

18% at 100 µM daf-16, sod-3 IIS [74]

Quercetin

15% at 100 µM Allium cepa L. (Onions),

Malus domestica (Apples),
Brassica oleracea (Broccoli),

Vitis vinifera (Grape)

Functional food,
Culinary

daf-16 IIS

Anti-oxidative,
Healthspan extension

[73]

5% at 100 µM daf-16 IIS [74]

11% at 100 µM
18% at 200 µM

age-1, daf-2, sek-1 and
unc-43

IIS,
CaMKII and p38

MAPK
[82]

Kaempferol

5% at 100 µM Camellia sinensis (Tea),
Brassica oleracea (Broccoli),

Vitis vinifera (Grape),
Solanum lycopersicum (Tomato),
Fragaria ananassa (Strawberries),

Malus domestica (Apples)

Beverage,
Functional foods

daf-16 IIS

Anti-oxidative,
Healthspan extension

[74]

10% at 100 µM daf-16 IIS [77]

Fisetin 6% at 100 µM

Fragaria ananassa (Strawberries),
Malus domestica (Apples),

Diospyros kaki (Persimmons),
Allium cepa L. (Onions),

Cucumis sativus (Cucumbers)

Functional foods daf-16 IIS Anti-oxidative [77]

Catechin 8% at 200 µM

Camellia sinensis (Green tea),
Theobroma cacao (Cocoa),

Vitis vinifera (Grape),
Malus domestica (Apples)

Medicinal,
Functional foods akt-2, mev-1, nhr-8 IIS Anti-oxidative,

Healthspan extension [75]

Epicatechin (EC)

15% at 100 µM
Camellia sinensis (Tea),

Theobroma cacao (Cocoa),
Vitis vinifera (Grape red wine)

Functional foods,
Beverage

daf-16, sod-3 IIS

Anti-oxidative,
Healthspan extension

[81]

47% at 200 µM
daf-2, age-1, akt-1, akt-2,

sgk-1, daf-16, skn-1, hsf-1,
gst-4, gst-7, hsp-16.2 and

hsp-70
IIS [68]
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Table 1. Cont.

Polyphenolic Compounds Mean Lifespan
Extension * Plant Source # Ethnobotanical Use Implicated * Genes Pathway * Anti-Aging Effect * References

3′-O-methylepicatechin 6% at 200 µM Malus domestica (Apples),
Vitis vinifera (Grape),

Theobroma cacao (Cocoa),
Camellia sinensis (Tea)

Functional foods,
Beverage

- -
Anti-oxidative,

Healthspan extension

[83]

4′-O-methylepicatechin 12% at 200 µM - - [83]

Baicalein 45% at 100 µM Scutellaria baicalensis (Baikal skullcap or
Chinese skullcap) Medicinal skn-1 IIS Anti-oxidative [76]

36% at 0.1% w/v cbp-1 - [84]

Caffeic acid 11% at 300 µM Coffea arabica (Coffee) Beverage,
Medicinal

osr-1, sek-1, sir-2.1, unc-43,
and daf-16 Anti-oxidative, [85]

Acacetin
(5,7-dihydroxy-4-
methoxyflavone)

27% at 25 µM Tephroseris kirilowii (Dog Tongue grass, Cotton
bat) Medicinal sod-3, gst-4, ctl-1 and

hsp-16.2 IIS Anti-oxidative,
Stress Resistance [86]

Acacetin 7-O-α-l-
rhamnopyranosyl(1–2)β-

D-xylopyranoside
39% at 25 µM Premna integrifolia (Wind killer) Medicinal sir-2.1, skn-1, daf-16, and

hsf-1
Anti-oxidative,

Stress Resistance [87]

Quercetin-3-O-
dirhamnoside 21% at 200 µM Curcuma longa (turmeric) Culinary,

Medicinal - - Anti-oxidative,
Stress Resistance [39]

Quercetin-3-O-glucoside 23% at 25 µM Erica multiflora (Winter Heather) Medicinal - - Anti-oxidative [88]

Isorhamnetin (Quercetin
3′-O-methylether) 16% at 200 µM

Ginkgo biloba (ginkgo or gingko also known as
the maidenhair tree),

Hippophae rhamnoides (Sea buckthorn),
Vaccinium sect. Cyanococcus (Blueberry)

Medicinal,
Food - - Anti-oxidative,

Stress Resistance [89]

Tamarixetin
(Quercetin

4′-O-methylether)
11% at 200 µM Cyperus teneriffae (Coco-grass) Medicinal - - Stress resistance,

Anti-oxidative [89]

Icariin 20% at 45 µM Herba epimedii (Horny Goat Weed) Medicinal daf-2, daf-16, hsf-1 IIS
Anti-oxidative,

Anti-neurodegenerative
diseases

[90]

Icariside II 20% at 20 µM Herba epimedii (Horny Goat Weed) Medicinal daf-2, daf-16, hsf-1 IIS

Anti-oxidative,
Stress resistance,

Anti-neurodegenerative
diseases

[90]

Isoxanthohumol 2% at 100 µM Humulus lupulus (hops) Medicinal
Beverage daf-16 IIS Anti-oxidative,

Stress resistance [91]

Silymarin 10% at 25 µM
24% at 50 µM Silybum marianum (Milk thistle) Medicinal - -

Anti-oxidative,
Stress resistance,

Anti- Alzheimer’s
[1]

Genistein 27% at 100 µM Vigna angularis (adzuki bean) Medicinal,
Food hsp 16.2, sod-3 Healthspan extension,

Stress resistance [92]

Taxifolin 51% at 820 µM

Silybum marianum (blessed thistle or milk
thistle),

Carduus marianus (Marian thistle or
Our-Lady’s-thistle),

Allium cepa L. (Onions)

Medicinal,
Culinary - -

Stress Resistance,
Ameliorates Cerebral
Amyloid Angiopathy

(ACAA)

[93]
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Table 1. Cont.

Polyphenolic Compounds Mean Lifespan
Extension * Plant Source # Ethnobotanical Use Implicated * Genes Pathway * Anti-Aging Effect * References

Trolox
(6-Hydroxy-2,5,7,8-

tetramethylchroman-2-
carboxylic

acid

31% at 0.6 mM–3
mM Fragaria ananassa (Strawberries) Functional food - - Anti-oxidative [93]

Chicoric Acid 20% at 100µM

Cichorium intybus (Chicory),
Echinacea angustifolia (Purple cone flower),

Lactuca sativa (Lettuce),
Ocimum basilicum (Basil)

Medicinal,
Culinary - AMPK Anti-oxidative [94]

Naringin 23% at 50 µM
Citrus grandis (Pomelo), Citrus paradise

(grapefruit), and Citrus aurantium (Bitter
orange)

Functional food
daf-16, daf-2, akt-1, akt-2.

eat-2, sir-2.1, rsks-1,
and clk-1

IIS
Anti-oxidative,

Anti-Alzheimer’s,
Anti-Parkinson’s

[35]

Tannins

Tannic acid

18% at 100 µM

Camellia sinensis (Tea),
Vitis vinifera (Grape),

Arachis hypogaea (Pea nuts)
Functional food

sek-1 MAPK Anti-oxidative,
Anti-Alzheimers’,
Neuroprotective

Others
Anti-amyloidogenic,

Antimicrobial, Anticancer,
Antimutagenic

[95]

24% at 0.01% w/v daf-16 IIS [84]

Pentagalloyl Glucose 18% at 160 µM Eucalyptus leaves (Southern blue gum or blue
gum)

daf-16, age-1, eat-2, sir-2.1,
and isp-1

IIS, DR, SIR-2.1 and
METC.

Anti-oxidative
Others

Estrogenic,
Anti-inflammatory,

Anti-oxidative, Anticancer

[53]

Stilbene

Resveratrol

Variable effects at
100 µM Vitis vinifera (Grape),

Peanuts,
Theobroma cacao (Cocoa),

Vaccinium sect. Cyanococcus (Blueberry),
Vaccinium myrtillus (Bilberry),

Vaccinium macrocarpon (cranberry)

Functional food

sir 2.1 - Anti-oxidative
Others

Antiviral,
Anti-depressant,
Anti-nociceptive,

Anti-diabetic activities

[70]

3% at 5 µM - - [71]

11% at 100 µg/mL - [72]

OxyResveratrol 31% at 1000 µM Morus alba (white mulberry) Functional food,
Medicine sir-2.1, aak AMPK and SIR-2.1 Anti-oxidative,

Neuroprotective [96]

TSG (2,3,5,4′-
Tetrahydroxystilbene-2-O-

β-D-glucoside)
23% at 100 µM Polygonum multiflorum (Tuber fleeceflower) Medicinal - - Anti-oxidative,

Stress resistance [97]

Polydatin 30% at 1 mM Vitis vinifera (Grape) Functional food sir-2.1, skn-1, sod-3, and
daf-16 IIS

Anti-oxidative,
Stress resistance,
Neuroprotective

[98]

Piceatannol 18% at 50 and 100
µM

Passiflora edulis (Passion fruit),
Camellia sinensis (White Tea),

Vitis vinifera (Grape)
Functional food daf-16, hsp 16.2, sod-3,

sir-2.1 IIS

Anti-oxidative
Others

Estrogenic,
Anti-inflammatory,

Anti-oxidative,
Anticancer

[99]
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Table 1. Cont.

Polyphenolic Compounds Mean Lifespan
Extension * Plant Source # Ethnobotanical Use Implicated * Genes Pathway * Anti-Aging Effect * References

Coumarins

ˆ Urolithin A (UA) 45% at 50 µM

Vaccinium sect. Cyanococcus (Blueberry),
Fragaria ananassa (Strawberries), Arachis
hypogaea (Pea nuts), Quercus spp (acorns),

Punica granatum (pomegranates), Juglans regia
(Walnut), Rubus idaeus (raspberries)

Functional food - - Anti-oxidative,
Healthspan extension [100]

ˆ Urolithin B (UB) 36% at 50 µM

Vaccinium sect. Cyanococcus (Blueberry),
Fragaria ananassa (Strawberries), Arachis
hypogaea (Pea nuts), Quercus spp (acorns),

Punica granatum (pomegranates), Juglans regia
(Walnut), Rubus idaeus (raspberries)

Functional food - - Anti-oxidative,
Healthspan extension [100]

ˆ Urolithin C (UC) 36% at 50 µM

Vaccinium sect. Cyanococcus (Blueberry),
Fragaria ananassa (Strawberries), Arachis
hypogaea (Pea nuts), Quercus spp (acorns),

Punica granatum (pomegranates), Juglans regia
(Walnut), Rubus idaeus (raspberries)

Functional food - - Anti-oxidative,
Healthspan extension [100]

ˆ Urolithin D (UD) 19% at 50 µM

Vaccinium sect. Cyanococcus (Blueberry),
Fragaria ananassa (Strawberries), Arachis
hypogaea (Pea nuts), Quercus spp (acorns),

Punica granatum (pomegranates), Juglans regia
(Walnut), Rubus idaeus (raspberries)

Functional food - - Anti-oxidative,
Healthspan extension [100]

Lignan

Sesamin 13% at 6.3 µg/plate Sesamum indicum L. (Sesame Seeds) Functional Food daf-2, skn-1, pmk-1, and
daf-16 IIS

Anti-oxidative
Others

Anti-allergenic,
Anti-carcinogenic,
Antihypertensive,

Hypocholesterolemic

[101]

Vitexin 17% at 100 mM Vigna angularis (adzuki beans) Functional Food sod-3, hsp-16.2 IIS

Anti-oxidative
Others

Antiviral,
Anti-depressant,
Anti-nociceptive,

Anti-diabetic

[13]

Arctigenin 13% at 100 µM Arctium lappa (Greater burdock) Medicinal daf-16, jnk-1 IIS Anti-oxidative,
Stress resistance [102]

Matairesinol 25% at 100 µM Arctium lappa (Greater burdock) Medicinal daf-16, jnk-1 IIS Anti-oxidative,
Stress resistance [102]

Arctiin 15% at 100 µM Arctium lappa (Greater burdock) Medicinal daf-16, jnk-1 IIS Anti-oxidative,
Stress resistance [102]
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Table 1. Cont.

Polyphenolic Compounds Mean Lifespan
Extension * Plant Source # Ethnobotanical Use Implicated * Genes Pathway * Anti-Aging Effect * References

Lappaol C 11% at 100 µM Arctium lappa (Greater burdock) Medicinal daf-16, jnk-1 IIS Anti-oxidative,
Stress resistance [102]

Lappaol F 12% at 100 µM Arctium lappa (Greater burdock) Medicinal daf-16, jnk-1 IIS Anti-oxidative,
Stress resistance [102]

(Iso) lappaol A 11% at 100 µM Arctium lappa (Greater burdock) Medicinal daf-16, jnk-1 IIS Anti-oxidative,
Stress resistance [102]

Phenolic Compounds

Tryosol 21% at 250 µM Olea Europea L. (Olive tree) Medicinal,
Food hsf-1, daf-2, daf-16 IIS Anti-oxidative,

Stress resistance [103]

6-Gingerol 20% at 25 µM Zingiber officinale (Ginger) Culinary,
Medicinal hsp-16.2, sod-3 Anti-oxidative,

Stress resistance [5]

6-Shogaol 19% at 12.5 µM
25% at 25 µM Zingiber officinale (Ginger) Culinary,

Medicinal sod-3, hsp-16.2 Anti-oxidative,
Stress resistance [5]

Salicyclic Acid 14% at 1 mM Rubus idaeus (raspberries),
Salix alba L. (Willow tree)

Medicinal,
Food

daf-16, sod-3, sod-5, ctl-2,
gst-4, gst-10 IIS Anti-oxidative,

Stress resistance [104]

Salicylamine 32% at 100 µM
56% at 500 µM Fagopyrum esculentum (Buckwheat) Culinary sir-2.1, ets-7 - Healthspan extension [105]

Juglone 29% at 40 µM Juglans nigra (Black Walnut) Functional Food,
Medicinal

daf-16, sod-3, hsp-16.2,
sir-2.1 IIS Anti-oxidative,

Stress resistance [106]

Gallic Acid 25% at 300 µM

Punica granatum (Pomegranate),
Aspalathus linearis (Rooibos tea),

Vitis vinifera (Grape),
Raphanus sativus (Black radish),

Allium cepa L. (Onions)

Functional food - - Stress resistance [17]

Ferulic Acid 9.58% at 500 µM
Beta vulgaris (Beet root), Oryza sativa (Rice),

Glycine max (Soyabean), Daucus carota
(Carrot), Avena sativa (Oats)

Functional food daf-2, daf-16, hlh-30, skn-1,
and hsf-1 IIS

Healthspan extension,
Stress resistance,

Anti- Huntington’s disease
[107]

* Mean lifespan and implicated genes, pathways, and anti-aging effects in the table are the specific outcomes from the references indexed directly against the compound at the right-end column. A dash (-) sign in
the column for implicated genes and pathways represents where the authors did not proceed to investigate the molecular mechanism beyond the effect observed. Where different mean lifespans are not from the
same study, we have referenced the appropriate literature for such. Original units of concentration used by the investigators are reported here. Additionally, where other health benefits besides the anti-aging
effect have been noted for the compound in the primary research referenced, we grouped them under the heading “Others” in the column for “Anti-aging-effect”. # Plant sources of the compound in the study
indexed to the reference directly at the right-end column are listed. Other sources that have been mentioned by the primary study, and previous studies have also been listed as well. Scientific names and
common names (in parenthesis) of the plant sources are provided. ˆ Compounds not directly obtained from the plant sources indicated but that are produced by gut microflora from foods rich in ellagitannins
such as the plants listed.
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4.2. Terpenoids

Terpenoids are the most abundant and structurally diverse phytochemicals. Also
known as terpenes, they can be classified based on the number of isoprene units (C5H8)n
into various subgroups, including hemiterpenes (C5H8), monoterpenes (C10H16), sesquiter-
penes (C15H24), diterpenes (C20H32), sesterterpenes (C25H40), triterpenes (C30H48), tetrater-
penes (C40H64), and polyterpenes (C5H8)n. Terpenoids exhibit a broad range of pharmaco-
logical activities, ranging from anti-malarial, anti-cancer, anti-inflammatory, anti-bacterial,
anti-viral, and anti-aging to anti-neurodegeneration [108]. Some of the notable terpenoids
are the chemotherapy medication Taxol® (paclitaxel) and the frontline antimalarial drug
Artemisinin [108].

Isoprenol is a hemiterpene-based unsaturated C5 alcohol that confers lifespan exten-
sion and stress tolerance in C. elegans via daf-16 and skn-1 through the IIS pathway [23].
Moreover, the expressions of SOD-3 and GST-4 can be boosted by isoprenol through the
translocation of DAF-16 from the cytosol into the nucleus [22]. Carnosic acid relies on the
MAPK and HSF-1 pathway to up-regulate sod-5, hsp-16.2, hsp-16.1, sek-1, and skn-1 [109].
Carnosol, as a phenolic diterpene, increases the mean lifespan of C. elegans through the
HSF-1 signaling pathway to up-regulate sod-3 and sod-5 as antioxidants and hsp-16.1 and
hsp-16.2 for heat shock response [110]. Beta-caryophyllene (BCP), a naturally occurring
bicyclic sesquiterpene, is capable of extending lifespan as well as of increasing the resis-
tance to oxidative stress by inducing the dietary restriction response and xenobiotic stress
response [111]. The compound 4-Hydroxy-E-globularinin, an iridoid isolated from Premma
integrifolia, exhibits detoxification activity against ROS and up-regulates hsp-16.2 and sod-3
through daf-16 in the IIS pathway [112]. A similar effect was found with oleanolic acid,
where sod-3, hsp-16.2, and ctl-1 were up-regulated via daf-16 [113]. However, α-Tocopherol,
either in free form or encapsulated with SDNF (soluble dietary fiber-based nanofibers), may
provide the longevity benefits via different routes [114]. Lifespan extension potentials have
also been ascribed to additional high molecular weight isoprenoid-based compounds such
as withanolide-A, specioside, ursolic acid, and glycyrrhetinic acid [60,115–117]. Examples
of these terpenoids with longevity-modulating effects are summarized in Table 2.

Table 2. Terpenoids with anti-aging and lifespan extending properties as demonstrated in the C. elegans model.

Terpenoids
Mean

Lifespan
Extension *

Plant Source # Ethnobotanical
Use

Implicated *
Genes Pathway * Anti-Aging

Effect * References

Carnosic Acid
3% at 60µM
8% at 120µM

16% at 180µM

Rosmarinus
officinalis L
(Rosemary)

Food,
Medicinal

sod-5, hsp-16.2,
hsp-16.1, sek-1,

skn-1
MAPK and

HSF-1

Anti-oxidant,
Anti-

inflammatory,
Antibacterial,
Anti-cancer,

Neuroprotec-
tive

[109]

Carnosol 19% at 180 µM
Rosmarinus
officinalis L
(Rosemary)

Medicinal,
Culinary

sod-3, sod-5,
hsp-16.1,

hsp-16.2, hsf-1,
daf-16.

IIS

Antioxidant,
Anticancer,

Antimicrobial,
Anti-

inflammatory

[110]

Beta-
Caryophyllene >22% at 50 µM

Syzygium
aromaticum (Clove),

Cannabis sativa
(hemp),

Rosmarinus
officinalis L
(Rosemary,

Humulus lupulus
(Hops)

Culinary,
Beverages

pha-4, sir-2.1,
hsf-1, skn-1,
daf-16, gst-4,
gst-7, hsp-70,

sod-2, sod-3 and
daf-9

IIS

Anti-oxidant,
Anti-

inflammatory,
anti-biotic,

Anti-
carcinogenic,

local anesthetic

[111]



Molecules 2021, 26, 7323 12 of 23

Table 2. Cont.

Terpenoids
Mean

Lifespan
Extension *

Plant Source # Ethnobotanical
Use

Implicated *
Genes Pathway * Anti-Aging

Effect * References

4-Hydroxy-E-
globularinin 18% at 20 µM Premna integrifolia

(Wind killer) Medicinal daf-16, hsp-16.2,
sod-3 IIS Anti-oxidant [112]

10-O-trans-p-
Coumaroylcatalpol 17% at 20 µM Premna integrifolia

(Wind killer) Medicinal daf-16 IIS

Anti-oxidant,
Anti-

parkinson’s
disease

[118]

Oleanolic acid 16% at 300 µM

Constituent of the
leaves

and roots of more
than 120 plant
species such as

Olea europaea (olive
tree),

Viscum album
(European

mistletoe or
common mistletoe),

Aralia chinensis
(Chinese Angelica

Tree)

Food,
Medicinal

sod-3, hsp-16.2,
ctl-1, daf-16 IIS

Anti-oxidant,
Hepatoprotective,
Hypoglycemic,

Anti-
inflammatory

[113]

α-Tocopherol

7% at 50
µg/mL

15% at 100
µg/mL

17% at 200
µg/mL

Sunflower seeds
(Helianthus

annuus),
Prunus dulcis
(Almonds),

Corylus avellana L.
(Hazelnuts),

Arachis hypogaea
(Pea nuts),

Spinacia oleracea
(Spinach),

Brassica oleracea var.
italica (Broccoli),
Actinidia deliciosa

(Kiwifruit),
Mangifera indica

(Mango)

Functional
food - - Anti-oxidant [114]

Withanolide-A 29% at 5 µM Withania Somnifera
(Ashwagandha) Medicinal

sgk-1, daf-16,
sod-3, skn-1,
hsf-1, gst-4,

hsp-16.2
IIS

Neuroprotective,
Stress

resistance
[115]

Specioside 15% at 25 µM Stereospermum
suaveolens (Patala) Medicinal

sod-1, sod-2,
sod-3, gst-4,

gst-7, hsp-16.2,
hsp-70, clt-1

IIS
Antioxidant,

Stress
resistance

[87]

Ursolic acid 32% at 25 µM

Malus domestica
(Apple peels),

, rosemary,
Lavandula
angustifolia

(lavender), Mentha
piperita

(Peppermint),
Thymus vulgaris
(thyme), Ocimum
basilicum (Basil),

Vaccinium myrtillus
(Bilberry)

Medicinal,
Culinary jnk-1, jkk-1 JNK-1

Antioxidant,
Stress

resistance
[117]

18α-
Glycyrrhetinic

acid

17% at 20
µg/mL

Glycyrrhiza glabra
(Licorice)

Medicinal,
Culinary skn-1, daf-16 p38 MAPK Neuroprotective [59]

Glaucarubinone 1.9 days at 100
nM

Simaroubaceae spp.
(Amargo,

Bitterwood,
Marupa, or

Quassia)

Ornamental,
Medicinal - -

Anti-oxidant
Others

Antimalarial
[71]
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Table 2. Cont.

Terpenoids
Mean

Lifespan
Extension *

Plant Source # Ethnobotanical
Use

Implicated *
Genes Pathway * Anti-Aging

Effect * References

Fucoxanthin 14% at 5 µM
Undaria pinnatifida

(Wakame),
Hijikia fusiformis

(Hijiki)
Medicinal - -

Antioxidant,
Stress

resistance
[119]

Catalpol 28% at 25 µM Rehmannia glutinosa
(Chinese foxglove)

Medicinal
plant

mek-1, daf-2,
age-1, daf-16,

and skn-1
IIS

Anti-oxidant,
Anti-

Alzheimer’s,
Anti-

Parkinson’s,
Anti-stroke

Others
Anticancer,

Anti-diabetes

[120]

Ferulsinaic acid 20% at 100 µM Ferula communis
(Giant Fennel)

Medicinal,
Culinary - - Anti-oxidant [121]

Verminoside 20% at 25 µM Stereospermum
suaveolens (Patala) Medicinal daf-16 -

Antioxidant,
Stress

resistance
[116]

Dehydroabietic
acid 15% at 10 µM

Pinus densiflora
(Japanese red pine),

Pinus sylvestris
(Scots pine),

Abies
grandis(Grand fir)

Medicinal sir-2.1 - Healthspan
extension [122]

Secoisolariciresinol
Diglucoside 22% at 500 µM

Linum
usitatissimum

(Flaxseed)
Food,

Medicine

daf-16, hsf-1,
nhr-80, daf-12,

glp-1, eat-2, and
aak-2.

IIS

Anti-oxidant,
Anti-

Alzheimer’s,
Anti-

Parkinson’s

[123]

* Mean lifespan and implicated genes, pathways, and anti-aging effects in the table are the specific outcomes from the references indexed
directly against the compound at the right-end column. A dash (-) sign in the column for implicated genes and pathways represents where
authors did not proceed to investigate the molecular mechanism beyond the effect observed. Where different mean lifespans are not
from the same study, we have referenced the appropriate literature for such. Original units of concentration used by the investigators are
reported here. Additionally, where other health benefits besides the anti-aging effect have been noted for the compound in the primary
research referenced, we grouped them under the heading “Others” in the column for “Anti-aging-effect”. # Plant sources of the compound
in the study indexed to the reference directly at the right-end column are listed. Other sources that have been mentioned by the primary
study and previous studies have also been listed as well. Scientific names and common names (in parenthesis) of the plant sources are
provided.

4.3. Alkaloids

Alkaloids represent a class of nitrogenous chemicals that are not only derived from
plants but also from fungi, bacteria, and animals [124]. According to their heterocyclic
ring system and biosynthetic precursor, this class of compounds are categorized into
eight subgroups, including tropanes, indoles, imidazoles, piperidines, isoquinolines,
pyrrolizidines, quinolozidines, and pyrrolidine alkaloids [124]. Historically, some alkaloids
have been used as poisons, whereas others have been used as remedies against fever and
snakebites [124–126]. Though a bit under the shadow of toxicity, alkaloids elicit great poten-
tial in pharmaceutical development, primarily as analgesic, antioxidant, anti-inflammatory,
anti-bacterial, anti-spasmodic, anti-cancer, anti-hypertensive, and stimulants to the central
nervous system [56,124,127]. Particularly, over 300 compounds of this class have been
shown to possess some degree of anti-aging property [40]. Reserpine confers significant
thermo tolerance and longevity benefits to the worms, which is likely independent of daf-16
and partially rely on serotonin [126]. Enhanced longevity effects are also offered by the
methylxanthine alkaloid caffeine, which is able to induce the nuclear translocation of daf-16
but does not requires its activity [128]. The action of pentagalloyl glucose (a gallotannin)
on lifespan requires the cooperation between four pathways, including the IIS pathway,
the mitochondrial ETC, the Sir-2.1 signaling, and the dietary restriction pathway [53].
The studied alkaloids with lifespan extending potentials in C. elegans are summarized in
Table 3.
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Table 3. Alkaloids with anti-aging and lifespan extending properties as demonstrated in the C. elegans model.

Alkaloids Mean Lifespan
Extension * Plant Source # Ethnobotanical Use Implicated * Genes Pathway * Anti-Aging Effect * References

Reserpine 31% at 30 µM
Rauwolfia serpentine (Indian snakeroot),

Rauwolfia vomitoria (the poison
devil’s-pepper)

Medicinal tph-1 (serotonin) Serotonin pathway
Anti-oxidant,

Antipsychotic,
Anti-hypertensive

[126]

Tomatidine 7% at 25 µM Solanum lycopersicum (Unripe tomato
fruits, leaves and stems)

Medicinal,
Functional food skn-1 IIS

Anti-inflammatory,
Anti- tumorigenic,

Lipid-lowering
activities

[129]

Spermidine 18% at 0.2 mM Glycine max (soy bean), Pisum sativum
(green peas), Zea mays (Maize corn) Functional food - - Enhanced autophagy [130]

15% at 0.2 mM - - [131]

Caffeine

29% at 0.1% w/v
Theobroma cacao (Cocoa beans),

Cola acuminata (kola nuts),
Camellia sinensis (Tea leaves),
Coffea arabica (coffee beans)

Beverages,
Medicinal

daf-16 IIS
Antioxidant,

Stress resistance,
Neuroprotective,
Anti-Alzheimer’s

[84]

16% at 10 mM daf-16 IIS [3]

80% at 5 mM daf-2 IIS [128]

31.9% at 5 mM skn-1, gst-4 IIS [127]

Theophylline 25% at 5 mM Camellia sinensis (Tea),
Coffea arabica (Coffea)

Beverages,
Medicinal skn-1, gst-4 IIS Antioxidant,

Stress resistance [127]

Chlorophyll 23% at 10 µg/mL 25%
at 40 µg/mL Spinacia oleracea (Spinach) Food,

Medicinal daf-16, sod-3 IIS Antioxidant [132]

Pyrroloquinoline
quinone 33% at 0.5 mM

Actinidia deliciosa (Kiwifruit),
Petroselinum crispum (Parsley), Capsicum

annuum (Green bell pepper), Carica
papaya (Pawpaw)

Functional food,
Culinary

daf-16,skn-1, sod-3, hsp
16.2, gst-1 and gst-10 IIS Antioxidant,

Stress resistance [133]

Calycosin 21% at 200 µM Astragalus mongholicus Bunge
(membranous milk-vetch) Medicinal daf-16, hsp-16.2, ctl-1,

sod-3 IIS Antioxidant,
Stress resistance [134]

* Mean lifespan and implicated genes, pathways, and anti-aging effects in the table are the specific outcomes from the references indexed directly against the compound at the right-end column. A dash (-) sign in
the column for implicated genes and pathways represents where authors did not proceed to investigate the molecular mechanism beyond the effect observed. Where different mean lifespans are not from the
same study, we have referenced the appropriate literature for such. Original units of concentration used by the investigators are reported here. Additionally, where other health benefits besides the anti-aging
effect have been noted for the compound in the primary research referenced, we grouped them under the heading “Others” in the column for “Anti-aging-effect”. # Plant sources of the compound in the study
indexed to the reference directly at the right-end column are listed. Other sources that have been mentioned by the primary study and previous studies have also been listed as well. Scientific names and common
names (in parenthesis) of the plant sources are provided.
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4.4. Plants Crude Drugs and Extracts with Lifespan Extending Abilities in C. elegans

Medicinal plants are essential sources of bioactive therapeutic compounds. Thera-
peutic studies using pure isolated phytochemicals are commonly preceded by preliminary
studies using crude plant extracts to confirm the therapeutic potentials. Several studies
have reported that some plant extracts show a lifespan prolonging effect on C. elegans. For
instance, the aqueous stem bark extract from Endopleura uchi was reported to alter the
DAF-16/FOXO pathway and to enhance the expression of the stress response genes such as
hsp-16.2 and sod-3 [135]. Through High Performance Liquid Chromatography/Ultraviolet-
Visible (HPLC UV/VIS) analysis, phenolic bergenin has been proposed as the major
active component, potentially paving a new path for further developing compounds with
similar and even more potent effects [135]. Calycophyllum spruceanum water extract has
been shown to modulate the DAF-16/FOXO pathway, and five secondary metabolites
have been identified via HPLC/Mass Spectrometry (MS) analyses, including 5-hydroxy-6-
methoxycoumarin-7-glucoside, cyanidin, gardenoside, taxifolin, and 5-hydroxymorin [136].
Both the leaf and fruit extract of Caesalpinia mimosoides and Eugenia uniflora possess longevity
enhancing activity via the IIS pathway with sod-3, gst-4, and hsp-16.2 as targets [137,138].
Glochidion zeylanicum and Anacardium occidentale leaf extracts have also been reported to
display longevity enhancing and oxidative stress resistance activities in C. elegans via
the DAF-16/FOXO and SKN-1/Nrf-2 signaling pathways [139,140]. Furthermore, phy-
tochemical analysis narrowed down on the active compounds, revealing benzoic acid,
pentadecanoic acid, octadecatrienoic acid, n-hexadecanoic acid, β-caryophyllene, palmitic
acid, and α-linolenic acid as prominent metabolites. Extract from Hibiscus sabdariffa L.
exhibits significant lifespan extension activities alongside curbing amyloid-β toxicity in
C. elegans, which is mediated by the IIS pathway through the activation of the DAF-16
and SKN-1 transcription factors [141]. An ayurvedic polyherbal extract (PHE) derived
from six herbs, including Berberis aristata, Emblica officinalis, Cyperus rotundus, Terminalia
chebula Cedrus deodara, and Terminalia bellirica, has been shown to enhance the expressions
of daf-16, daf-2, skn-1, sod-3, and gst-4, all of which are associated with longevity and stress
response [142]. As mentioned in the foregoing, although crude extracts may exert thera-
peutic effects, the main ingredients that are responsible are pure chemical components that
serve specific effects. It is therefore important to elucidate and characterize the specific
components, as this will eventually pave the way for new strategic pharmacological de-
signs. Examples of these plant extracts with longevity-modulating effects are summarized
in Table 4.

Table 4. Plant crude extracts with anti-aging and lifespan-extending properties as demonstrated in the C. elegans model.

Plant Source # Mean Lifespan
Extension *

Ethnobotanical
Use

Implicated
Genes * Pathway * Anti-Aging Effect * References

Endopleura uchi
(Uxi)

33% at 300
µg/mL Medicinal daf-16, hsp-16.2

and sod-3 IIS

Antioxidant,
Stress resistance,

Anti-Huntington’s
disease

[135]

Calycophyllum
spruceanum
(capirona)

16% at 300
µg/mL Medicinal daf-16 IIS

Antioxidant,
Stress resistance,

Healthspan
extension

[136]

Caesalpinia
mimosoides (Pansi) 4% at 50 µg/mL Food vegetable daf-16, sod-3, gst-4 IIS Antioxidant,

Stress resistance [137]

Eugenia uniflora
(Surinam cherry)

Significant
increase at 500

µg/mL
Food,

Medicinal
daf-16, hsp-16.2

and sod-3 IIS
Antioxidant,

Stress resistance,
Healthspan
extension

[138]
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Table 4. Cont.

Plant Source # Mean Lifespan
Extension *

Ethnobotanical
Use

Implicated
Genes * Pathway * Anti-Aging Effect * References

Anacardium
occidentale (Cashew) 20% by 50 µg/mL Medicinal,

Functional food
daf-16, skn-1,
sod-3, gst-4 IIS

Antioxidant,
Stress Resistance,

Healthspan
extension

[139]

Glochidion
zeylanicum

(Umbrella Cheese)
10% at 100
µg/mL

Medicinal,
Food

daf-16, skn-1,
sod-3, gst-4 IIS

Antioxidant,
Stress Resistance,

Healthspan
extension

[140]

Hibiscus sabdariffa L.
(Roselle) 24% at 1 mg/mL

Medicinal,
Beverage,

Food supplement
daf-16, skn-1 IIS

Antioxidant,
Stress Resistance,

Anti-
Neurodegenerative

[141]

Polyherbal extract of
Berberis aristata

(Indian barberry);
Emblica officinalis

(Indian gooseberry or
amla); Cyperus

rotundus (Purple
Nutsedge);

Terminalia chebula
(gall nut); Cedrus

deodara(Himalayan
cedar); Terminalia
bellirica (beleric

myrobalan)

16% at 0.01
µg/mL Medicinal daf-16, daf-2, skn-1,

sod-3 and gst-4 IIS
Antioxidant,

Stress Resistance,
Anti-

Neurodegenerative
[142]

Betula utilis
(Himalayan Silver

Birch)

35.99 % at 50
µg/mL Medicinal daf-16, hsf-1, skn-1,

sod-3 and gst-4. IIS
Antioxidant,
Healthspan
extension

[143]

Citrus sinensis
(Orange extracts)

10.5%, 18.0%, and
26.2% at 100, 200,
and 400 mg/mL,

respectively

Functional food daf-16, sod-3, gst-4,
sek-1, and skn-1 IIS

Antioxidant,
Healthspan
extension

[35]

Cuscuta chinensis
(Chinese Dodder) 24% at 30 µg/mL Medicinal hsp-16.1 and

hsp-12.6 IIS
Stress Resistance,

Healthspan
extension

[144]

Eucommia ulmoides
(Hardy Rubber

Tree)
9% at 30 µg/mL - - Stress resistance [144]

* Mean lifespan and implicated genes, pathways, and anti-aging effects in the table are the specific outcomes from the references indexed
directly against the compound at the right-end column. A dash (-) sign in the column for implicated genes and pathways represents where
authors did not proceed to investigate the molecular mechanism beyond the effect observed. Where different mean lifespans are not
from the same study, we have referenced the appropriate literature for such. Original units of concentration used by the investigators are
reported here. Additionally, where other health benefits besides the ant-aging effect have been noted for the compound in the primary
research referenced, we grouped them under the heading “Others” in the column for “Anti-aging-effect”. # Plant sources of the compound
in the study indexed to the reference directly at the right-end column are listed. Other sources that have been mentioned by the primary
study and previous studies have also been listed along. Scientific names and common names (in parenthesis) of the plant sources are
provided.

5. Summary and Perspectives

Globally, the significant rise in the aging populace is imposing a great economic and
social burden. It is necessary to conduct more research focusing on the biological process of
aging, with the aim of facilitating the development of potential interventions to alleviate the
adverse health impact of aging-associated medical conditions such as neurodegenerative
disorders, cancer, diabetes, and cardiovascular diseases. Suitable model organisms such
as C. elegans will continuously provide more unique insight into this complex process
as well as in the discovery of new bioactive compounds with pharmaceutical efficacy.
Plant polyphenols including flavonoids, tannins, stilbene, coumarins, lignan, and other
phenolic compounds as well as terpenoids and alkaloids have been a major source of these
bioactive compounds, either as single purified compound or in crude extract mixtures. The
disadvantage of crude extracts is that a complex interaction between all of the components
of the crude and the biological system of the model may produce inhibitory, antagonistic,
or synergistic effects. This makes it impossible to know exactly which component is
inducing the particular effect being observed. Despite this challenge, crude the extracts of
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medicinal plants such as Endopleura uchi, Calycophyllum spruceanum, Caesalpinia mimosoides,
Eugenia uniflora, Glochidion zeylanicum, Anacardium occidentale, Hibiscus sabdariffa L, and
an ayurvedic polyherbal extract (PHE) derived from six herbs has demonstrated efficacy
in extending lifespan in C. elegans [135–138,140–142]. However, purified compounds are
better alternatives, as they provide the advantages of elucidating the structure, targets,
mechanism of action, and pathways involved as well as the modification of the compound
for improved activity.

In the future, discovering novel and effective natural candidates that extend lifespan
and that delay aging and related diseases still depends on advancements in state-of-the-art
high-throughput screening techniques [145,146]. Combining this effort with studies in
suitable model organisms such as C. elegans [147,148] will provide a better platform for
understanding the aging process as well as facilitating healthy aging to improve the quality
of life of the elderly population.
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