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The continued digitalization of medicine has led to an increased availability of longitudinal

patient data that allows the investigation of novel and known diseases in unprecedented

detail. However, to accurately describe any underlying pathophysiology and allow

inter-patient comparisons, individual patient trajectories have to be synchronized based

on temporal markers. In this pilot study, we use longitudinal data from critically ill

ICU COVID-19 patients to compare the commonly used alignment markers “onset of

symptoms,” “hospital admission,” and “ICU admission” with a novel objective method

based on the peak value of the inflammatorymarker C-reactive protein (CRP). By applying

our CRP-basedmethod to align the progression of neutrophils and lymphocytes, wewere

able to define a pathophysiological window that improvedmortality risk stratification in our

COVID-19 patient cohort. Our data highlights that proper synchronization of longitudinal

patient data is crucial for accurate interpatient comparisons and the definition of relevant

subgroups. The use of objective temporal disease markers will facilitate both translational

research efforts and multicenter trials.

Keywords: COVID-19, longitudinal data, synchronization, subgroup comparison, risk stratification, biomarker,

digitalization, patient trajectories

INTRODUCTION

The rapid spread of the corona virus disease 19 (COVID-19), caused by the SARS-Cov-2 virus,
imposes a heavy burden on public health systems around the world. A substantial number
of patients show a severe disease progression possibly caused by endotheliitis, gas diffusion
impairment and organ ischemia (1, 2). Current research efforts focus on the identification of
predictive indicators that allow closer supervision and targeted intervention in high-risk patients.
As a hyper-activated immune response might act as a driving factor for severe COVID-19
progression (1), ratios between neutrophils and lymphocytes (NLR) (3), lymphocyte counts alone
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(4) and elevation of specific cytokines among other laboratory
values (3, 5–7) have been proposed as markers for initial patient
risk assessment and stratification. Most studies solely compare
measurements taken at hospital or intensive care unit (ICU)
admission, neglecting the enormous potential of continuous
longitudinal data obtained throughout hospitalization (3–8).
This is especially detrimental for the most severe patients, as this
high mortality risk group could benefit the most from a more
detailed separation into different disease progression subgroups.
However, the pooling of longitudinal data requires a temporal
marker to align individual patient trajectories.

During the first wave of the corona virus pandemic, patient
comparisons were often made based on clinical time points
such as “onset of symptoms,” ”hospital admission,” or “ICU
admission” (3–8). Group comparisons based on these clinical
markers might however result in the description of false
differences, for example by comparing patients in late disease
stages with patients in early disease stages (8), or blurring of
actual differences due to temporal misalignment (Figures 1A,B).
An ideal disease timer should be an objective biomarker that
can provide an early indication of disease progression and
should be measured routinely in most hospital settings. In
this pilot study, we compare different alignment methods and
show that C-reactive protein (CRP) can be used to synchronize
individual patient trajectories to the underlying pathophysiology
of COVID-19.

METHODS

Inclusion Criteria, Ethics Approval, and
Consent to Participate
We included all COVID-19 patients admitted to the University
Hospital Zurich between March and July 2020 with age older
than 18 years that required ICU treatment. We excluded patients
with objection to the further use of medical data in research,
and patients that where transferred from other hospitals. The
data used in this manuscript was routinely collected during
hospitalization. Whenever possible, we obtained a written
informed consent of the patients (or relatives) for the further use
of their medical data for research. This study has been approved
by the cantonal ethics committee of Zurich.

Time Series Analysis
We used MATLAB (The MathWorks, Inc. USA) to analyze
and visualize longitudinal patient data. The MATLAB function
findpeaks.m was used to identify the first local CRP maximum
(CRPmax). We developed custom scripts for synchronization of
the time series with the temporal markers.

Predictive Modeling
Two feature vectors were generated for each patient containing
the mean values of CRP, relative neutrophils and lymphocytes
of a time window anchored on either ICU admission or on
CRPmax. We followed a stratified 5-fold cross-validation scheme,
where each fold was defined as a distinct 80–20% train-test
split. Within each fold, hyper-parameter selection was performed
in the training set with a stratified 4-fold cross validation.

For each fold multiple logistic regression models were trained
using varying hyper-parameters such as regularization type (l1,
l2) (9), regularization value in the interval of (10−4 104),
optimizer [LBFGS (10), SAGA (11)] and with or without class
weighting. The best models as determined by F1-macro score
on the 4-fold cross validation were then tested on the test
split. Since our retrospective patient classification was done at
ICU discharge, only values before outcome classification were
considered for the construction of the feature vectors. This
lead to the exclusion of 2 patients from the spontaneously
breathing subgroup.

Statistical Analysis
Statistical testing was performed with R version 3.6.3. Multiple
comparison testing with a Tukey post-hoc test was performed on
single time points comparisons. Patient characterization data was
tested by ANOVA for normally distributed data, Kruskal-Wallis
test for non-normally distributed data and χ

2-test for binary
data. A mixed linear regression model analysis was performed
for CRPmax and ICU shifted data, with likelihood ratio test for
overall and Satterthwaite approximation for subgroup analysis.

RESULTS

A comparison of individual patient trajectories in our cohort
of 28 critically ill COVID-19 patients admitted to the ICU of
the University Hospital Zurich (Table 1) revealed considerable
interpatient variability (Figure 1A): Out of the 28 patients, 8 were
directly transferred to the ICU upon hospital admission and 5
additional patients were transferred to the ICU only one day
after hospital admission. Based on this data alone, it is evident
that interpatient comparison at hospital or ICU admission was
biased in our ICU COVID-19 patient cohort. Likewise, onset of
symptoms showed a high variation (7.65 ± 8.49 days) and was
occasionally missing.

To find an alternative disease timer, we compared the
testing frequency of routine laboratory parameters such as
the acute phase inflammatory marker CRP, the inflammatory
cytokine interleukin 6 (IL-6), myoglobin and cardiac troponin
that have previously been correlated to COVID-19 severity
(6). We found that IL-6, myoglobin and cardiac troponin
were not measured on a daily basis around ICU admission
both in our cohort (38.2, 59.7, 62.7% respectively) and in
the international RISC-19-ICU registry cohort of critically ill
COVID-19 patients (14.6, 9.6, 30.0% in Switzerland and 15.3,
6.7, 28.2% internationally), therebymaking them poor candidates
for longitudinal data alignment (Figure 1C). In contrast, CRP
was measured routinely around ICU admission both in our
cohort (98.2%) and in the RISC-19-ICU registry cohort (86.9% in
Switzerland, 74.8% internationally). Different to other frequently
measured laboratory values such as hematological cell counts
or creatinine, most patients had a distinct CRP maximum
around ICU admission in our cohort, indicating a correlation
with COVID-19 severity and progression (Figure 1D). Some
patients showed further CRP maxima during their ICU stay,
probably resulting from coinfections or secondary damage
(12). We found that longitudinal data alignment based on
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FIGURE 1 | Pathophysiological synchronization of COVID-19 trajectories improves subgroup distinction. (A) Individual patient trajectories of 28 severe ICU COVID-19

patients. (B) Simulation illustrating the effect of pooling temporally shifted data. Left: Simulation of peaking biomarker progression, 100 identical time courses with

maximum value scattered around day 10 (normally distributed, σ = 1.5, one sampling per day). Dark gray line: true progression without temporal scatter; light gray

lines: 10 randomly selected curves of the simulation; yellow line: median ± MAD (median absolute deviation) of the 100 simulated curves. Middle panels: Gray lines

represent two identical curves that differ in height by 50%. Light colored curves: σ = 1.5, dark colored curves σ = 0.75. Right: Boxplot comparison of the simulated

curves in the middle panels at time point 10 days. (C) Heat plot of average measurement frequency around ICU admission. (D,E) Time course of CRP overall (D) and

CRP and NLR in severity subgroups (E). Synchronization based on onset of symptoms resulted in the exclusion of two deceased patients due to unclear data. Data is

shown as median ± MAD. Curves are cut-off when data of fewer than three patients was available. The respective patient numbers are shown in the bottom panels.

(F) Subgroup comparison of each alignment method at time point 0 for CRPmax-based, hospital and ICU admission-based and time point +5 days for onset of

symptoms based alignment (indicated by the gray line in subfigure E). Multiple comparison testing with Tukey post-hoc test was performed on single time points. ns =

not significant, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

the first local CRP maximum (CRPmax) decreased both
interpatient variability in the CRP curve (Figure 1D) and in
the variability of other laboratory values such as total leukocyte

and relative neutrophil and lymphocyte counts to a similar
extent than the clinically based ICU admission alignment
(Supplementary Figure 1).
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TABLE 1 | Patient characteristics at ICU admission.

Overall (n = 28) Spont. Breathing (n = 9) Mech. Vent (n = 13) Deceased (n = 6) p

Age, mean (SD) 65.5 (11.4) 67.8 (12.8) 62.6 (9.5) 68.5 (13.3) 0.46

Male sex, n (%) 0.8 (0.4) 0.7 (0.5) 0.8 (0.4) 1.0 (0.0) 0.26

BMI, mean (SD) 28.1 (4.2) 30.3 (5.5) 27.4 (3.4) 26.4 (2.0) 0.15

Coronary artery disease, n (%) 17 (60.7) 4 (44.4) 8 (61.5) 5 (83.3) 0.32

Chronic heart failure, n (%) 8 (28.6) 2 (22.2) 3 (23.1) 3 (50.0) 0.42

Peripheral artery disease, n (%) 1 (3.6) 1 (11.1) 0 (0.0) 0 (0.0) 0.33

Arterial hypertension, n (%) 9 (32.1) 1 (11.1) 5 (38.5) 3 (50.0) 0.23

Diabetes mellitus, n (%) 5 (17.9) 2 (22.2) 2 (15.4) 1 (16.7) 0.92

Insulin dep. diabetes mellitus, n (%) 11 (39.3) 3 (33.3) 4 (30.8) 4 (66.7) 0.30

Symptoms to hosp. time, mean (SD) 5.6 (5.0) 5.9 (4.8) 5.2 (5.8) 6.2 (4.5) 0.92

Hosp. to ICU adm. time, mean (SD) 3.0 (5.0) 3.9 (6.2) 3.2 (5.2) 1.3 (1.8) 0.63

ICU length of stay, mean (SD) 12.6 (11.3) 8.4 (17.0) 14.5 (7.9) 13.8 (8.8) 0.53

Apache II, mean (SD) 17.5 (8.0) 11.8 (7.0) 18.8 (6.9) 23.3 (6.6) 0.01

SAPS II, mean (SD) 57.5 (19.9) 43.2 (18.1) 60.6 (17.5) 72.2 (15.4) 0.01

SOFA, mean (SD) 13.0 (4.6) 9.9 (4.7) 14.2 (4.1) 15.0 (3.5) 0.04

Non-binary data is shown as mean (SD) and binary data as mean (%). p-Values indicate one-way ANOVA for normally distributed data, Kruskal-Wallis-test for non-normally distributed

data and χ
2-test for binary data.

A B D

C E

FIGURE 2 | Timer-based risk stratification could improve outcome prediction. (A) Graphical representation of the data set generation and the applied 5-fold cross

validation model. (B,C) Mean accuracy performance (B) and mean Macro-f1 score (C) of ICU admission or CRPmax anchoring. Data is reported as mean ± SD. (D,E)

Confusion matrices constructed from the best performing trained model of each fold using the test data from all 5-folds of the ICU admission anchored (D) or CRPmax

anchored (E) window size 1 data set.

To test whether CRPmax-based synchronization improves
patient stratification in our ICU patient cohort, we
retrospectively defined three severity subgroups: (1) deceased
ICU patients (n = 6), (2) discharged ICU patients that had
been mechanically ventilated (n = 13) and (3) discharged ICU
patients that had been spontaneously breathing while in the ICU
(n= 9). CRP peak values were more than three-fold higher in the
mechanically ventilated patient subgroups (mean ± SD, 346 ±

147 mg/L) as compared to the spontaneously breathing subgroup

(99 ± 74 mg/L), but did not differ from the deceased subgroup
(338± 106mg/L) (Figure 1E). This lack of distinction is reflected
in all alignment methods. In accordance to current literature,
we further assessed the longitudinal progression of relative
neutrophils and lymphocyte counts (Supplementary Figure 2)
and the ratio thereof (NLR, Figure 1E) in the three severity
subgroups (3, 4). While both ICU admission-based and
CRPmax-based alignment improved subgroup separation,
only CRPmax-based synchronization revealed a distinct NLR
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turning point, occurring simultaneously with CRPmax, thereby
providing a window for maximal subgroup distinction. A
linear mixed effect model (13) employing subgroup and time
as fixed effects and per-patient random slopes as random
effects confirmed a difference between the subgroups and
the measured time points in a window of ±4 days around
CRPmax (p < 0.01, Supplementary Table 1), whereas the
time wise difference was not detected in the data shifted by
ICU admission (Supplementary Table 2). Similarly, when
comparing the subgroups in single time points of each alignment
method, only the CRPmax-based synchronization resulted in
a significant difference between the two most severe patient
subgroups (Figure 1F).

In a last step, we explored whether different patient
synchronization methods might have an impact on future
outcome prediction using machine learning techniques
(Figure 2). We generated two feature vectors for each patient
containing the mean values of CRP, relative neutrophils and
lymphocytes of a time window anchored on either ICU
admission or on CRPmax (Figure 2A, upper panel). Using
a stratified 5-fold cross validation logistic regression model,
we found that the CRPmax anchoring increased the overall
prediction accuracy by 9.6% and F1-macro score by 51.8%
(accuracy 0.68 ± 0.22, F-score 0.668 ± 0.23) as compared to the
ICU admission anchoring (accuracy 0.62 ± 0.10, F-score 0.44 ±
0.13) (Figures 2B,C, window size 1). Similarly, the corresponding
confusion matrices indicated a higher accuracy in distinguishing
between the most severe subgroups of mechanically ventilated
and deceased ICU patients (Figures 2D,E).

DISCUSSION

We demonstrated that longitudinal data synchronization based
on the inflammatory marker CRP reduces interpatient variability
at least to an equal extend as the ICU admission based alignment.
This pilot study is limited due to the monocentric design and the
low numbers of COVID-19 patients (n = 28) that we were able
to include during the first wave, which had a comparably mild
impact on the north-eastern part of Switzerland.

Nevertheless, our study revealed that both “onset of
symptoms” and “hospital admission” appear as poor temporal
markers, leading to increased variability, blurring of subgroup
differences and, in case of “onset of symptoms,” to patient
exclusions due to unclear data. The interpretation and translation
of noteworthy symptoms from patients to clinicians make
“onset of symptoms” a highly subjective value for patient
synchronization, which is reflected in our data and early reports
of exaggerated incubation periods until onset of disease (5, 14).
While ICU admission is a consistent clinical marker in our
monocentric study, this might not be the case when comparing
patients from different hospitals with less stringent or deviating
ICU admission criteria, resources or ICU capacity. Furthermore,
COVID-19 associated symptoms might not be the primary
reason for ICU admission in some patients and, obviously,
this temporal marker cannot be applied to non-ICU patients.
These problems are encountered by most medical centers and

researchers alike and highlight the necessity for an objective
temporal marker that synchronizes individual patient trajectories
with the underlying pathophysiology (8). Our findings suggest
that in case of COVID-19, CRP can serve as such a marker that
allows alignment of disease trajectories independent of hospital
specific policies. We therefore encourage multicentric studies
that aim at reproducing the results of this pilot study with a
special focus on non-ICU ward patients. Further studies that
incorporate data from subsequent COVID waves should address
whether changes in patient dispositions and or treatments, such
as the early administration of anti-inflammatory therapy, may
limit the informative value of CRP.

In line with previous literature, our subgroup analysis of
both CRPmax and ICU aligned data reproduced the COVID-
19 severity markers: neutrophilia, lymphocytopenia and the
ratio thereof (3–7). However, only CRPmax-based longitudinal
alignment improved distinction between the most severe
subgroups of mechanically ventilated patients and deceased
patients. Although this pilot study relies on a small cohort, our
data suggests a central role for CRP in the timing of COVID-19
immunopathology by marking the turning point of longitudinal
NLR dynamic and thereby providing a window for maximal
subgroup distinction. CRP is under direct transcriptional control
of IL-6, but shows slower dynamics, making it more likely that
its maximum can be captured by daily measurements and when
the patient is hospitalized (12). Interestingly, CRP itself has
immune-modulating functions such as complement activation,
regulation of apoptosis and cellular processes of both neutrophils
and monocyte-derived cells (12). Although an elevation of CRP
is generally associated with bacterial rather than viral infections
(12, 15, 16), elevated CRP levels have been observed in COVID-
19 patients as well as in severe progression of other respiratory
viral diseases such as influenza (3, 4, 6, 17, 18). It is tempting
to speculate that elevation of CRP in severe respiratory viral
infections marks a shift from a more localized inflammation of
the lungs to a multi-organ systemic immune response.

Digitalization of modern medicine has led to increased
availability of continuous patient data that should be used
to describe and define longitudinal disease progression and
pathophysiology of novel and known diseases alike. Our data
highlights that proper synchronization of longitudinal patient
data has the potential to improve mortality-risk stratification
and subgroup distinction both in a clinical setting and for
research purposes.
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Supplementary Figure 1 | Dynamic changes of CRP, leukocytes and relative

neutrophils and lymphocytes. Longitudinal CRP, leukocyte, neutrophils and

lymphocytes shifted relative to symptom onset (left), hospital admission (middle,

left), ICU admission (middle, right) or first local CRP maximum (right).

Synchronization based on onset of symptoms resulted in the exclusion of two

deceased patients due to unclear data. Data is shown as median ± MAD. Curves

are cut-off when data of fewer than three patients was available. The respective

patient numbers are shown in the bottom panels.

Supplementary Figure 2 | Dynamic changes of leukocytes, relative and absolute

lymphocytes and neutrophils of severity subgroups. Patients were retrospectively

divided into three severity subgroups: spontaneously breathing (blue, n = 9),

mechanically ventilated (yellow, n = 13) and deceased patients (red, n = 6).

Longitudinal data is synchronized based on onset of symptoms (left) hospital

admission (middle, left), ICU admission (middle, right) or first local CRP maximum

(right). Synchronization based on onset of symptoms resulted in the exclusion of

two deceased patients due to unclear data. Data is shown as median ± MAD.

Curves are cut-off when data of fewer than three patients was available. The

respective patient numbers are shown in the bottom panels.

Supplementary Table 1 | Mixed linear regression model for ICU shifted data.

P-Value indicate likelihood ratio test for overall analysis and Satterthwaite

approximation for subgroup analysis.

Supplementary Table 2 | Mixed linear regression model for CRPmax shifted

data. P-Value indicate likelihood ratio test for overall analysis and Satterthwaite

approximation for subgroup analysis.
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