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Rigid-body protein-protein docking is very efficient in 
generating tens of thousands of docked complex models 
(decoys) in a very short time without considering struc-
ture change upon binding, but typical docking scoring 
functions are not necessarily sufficiently accurate to  
narrow these decoys down to a small number of plausi-
ble candidates. Flexible refinements and sophisticated 
evaluation of the decoys are thus required to achieve 
more accurate prediction. Since this process is time- 
consuming, an efficient screening method to reduce the 
number of decoys is necessary immediately following 
rigid-body dockings. We attempted to develop an effi-
cient screening method by clustering decoys generated 
by the rigid-body docking ZDOCK. We introduced  
the three metrics ligand-root-mean-square deviation 
(L-RMSD), interface-ligand-RMSD (iL-RMSD), and the 
fraction of common contacts (FCC), and examined vari-
ous ranges of cut-offs for clusters to determine the best 
set of clustering parameters. Although the employed 
clustering algorithm is simple, it successfully reduced the 
number of decoys. Using iL-RMSD with a cut-off radius 
of 8 Å, the number of decoys that contain at least one 

near-native model with 90% probability decreased from 
4,808 to 320, a 93% reduction in the original number of 
decoys. Using FCC for the clustering step, the top 1,000 
success rates, defined as the probability that the top 1,000 
models contain at least one near-native structure, reached 
97%. We conclude that the proposed method is very effi-
cient in selecting a small number of decoys that include 
near-native decoys.
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Protein-protein interactions play central roles in biologi-
cal process at the molecular level [1] and thus, structures of 
protein-protein complexes at atomic resolution provides 
valuable information for understanding the molecular 
mechanisms underlying these processes. Atomic-resolution 
structures of protein complexes are typically determined by 
X-ray crystallography, solution NMR, and cryo-electron 
microscopy, but studies are often time-consuming and some-
times very difficult. Therefore, computational approaches 
are very useful if they can predict protein-protein complex 
structures accurately and efficiently. To this end, the last 20 
years or so have seen the development of protein-protein 
docking prediction methods and their increasingly wide use 

We proposed an efficient screening method to decrease the number of protein-protein complex model structures 
(decoys) using a relatively simple clustering method. By applying our approach to the decoys generated by the rigid-
body docking method, ZDOCK, we reduced the number of decoys by 93% compared to ZDOCK in terms of the 
number of decoys containing at least one near-native decoy with 90% probability. After clustering using the fraction 
of common contacts, the top 1,000 success rate (defined as the rate having at least one near-native model in the 
selected decoys) reached 97%.
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aged over the top four decoys of each cluster. A recent update 
to HADDOCK introduced fraction of common contacts 
(FCC) as the clustering metric, calculated from residue-based 
inter-protein contact pairs which are common between two 
decoys [26]. A decoy is considered as a neighbor of another 
decoy if the FCC of the decoys is equal to or greater than 
0.75. Clustering used in FRODOCK [11,27] involves assign-
ing the top (highest-score) decoy as the center of the first 
cluster and the members of the first cluster are selected as the 
decoys if their ligand-RMSD (L-RMSD) from the top decoy 
is equal to or less than 5 Å. After removing the cluster 
members, the procedure is repeated until 10,000 clusters  
are obtained or all the decoys are clustered. This score-
based clustering requires less computation compared to  
the population-based clustering employed in ClusPro and 

[2–8]. Typical protein-protein docking techniques include 
rigid-body docking methods based on Fast Fourier trans-
form (FFT) which efficiently generate complex model 
structures (so-called decoys) [9–14], flexible docking and 
structure refinement approaches aimed at understanding 
structural changes upon complex formation [15–19], and 
binding free energy calculations which enables the accu-
rate evaluation of docking-generated decoys [20,21]. Each 
method offers different advantages in efficiency and accu-
racy and thus we propose using a procedure combining these 
different techniques (Fig. 1). The proposed procedure uses 
rigid-body docking to generate tens of thousands of decoys 
and to score-base rank the decoys, followed by clustering  
of decoys to narrow the number of candidates, and finally 
flexible structure refinement and binding free energy calcu-
lations to select the final predicted structures. Given the 
many rigid-body docking methods developed to date and 
their success in generating a set of decoys that includes 
structures similar to the native structures (called near-native 
decoys), it is essential to select near-native decoys from other 
generated structures by applying proper evaluation criteria. 
Over the past ten years we have developed a method,  
evERdock, to evaluate the decoys by calculating the bind-
ing free energies for decoys by combining a short all- 
atom molecular dynamics simulation with explicit solvent 
and solution theory in the energy representation [20–22]. 
Although evERdock was demonstrated to be applicable to 
hundreds of decoys, it remains time-consuming. Therefore, 
efficient screening of the decoys generated by rigid-body 
docking prior to applying evERdock is an important process 
in this procedure.

Protein-protein docking methods are often accompanied 
by post-processing steps to reduce the number of docking 
generated decoys by clustering based on different algorithms 
and metrics. ClusPro server [23,24] calculates all pair-wise 
interface ligand root-mean-square distances (iL-RMSDs) 
between the top 1,000 decoys generated by rigid-body dock-
ing where iL-RMSD is defined as the RMSD for the inter-
face residues of the smaller protein after superposing the 
larger protein. In ClusPro, clustering is conducted based on 
the algorithm suggested by Daura, X., et al. [25]: a decoy is 
considered as a neighbor of another decoy if the iL-RMSD 
from the decoy is equal to or less than 10 Å. First, the decoy 
with the largest numbers of neighbors is considered as the 
center of the first cluster, then this cluster center and the 
neighbors are removed from the decoy pool. The remaining 
decoys with the largest number of neighbors is selected as 
the center of the next-ranked cluster, and the selected decoys 
are removed. This procedure is repeated for the remaining 
decoys until the specified number of cluster centers are 
selected. We call this procedure population-based clustering 
because clusters are rank-ordered based on the cluster popu-
lation. HADDOCK [15] generates decoys using molecular 
dynamics, conducts population-based clustering, and ranks 
the clusters based on the HADDOCK docking score aver-

Figure 1 Flow chart for the structure prediction of protein-protein 
complexes considered in this study.
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Re-ranking of generated decoys
The decoys generated by ZDOCK were re-ranked based 

on the following three methods. The first method is ZRANK 
2 [31,32], which is a docking refinement program developed 
to provide fast and accurate rescoring of models (hereafter 
denoted as ZDOCK/ZRANK). The second is the clustering/
re-ranking method CyClus [29] which rapidly clusters and 
re-ranks decoys using a cylindrical approximation of the 
protein-protein complex interface and hierarchical cluster-
ing (denoted as ZDOCK/CyClus). In the third method, we 
re-ranked the decoys using the atomic pair potential pro-
posed by Tobi (denoted as ZDOCK/Tobi) [33].

Clustering procedure
We conducted score-based clustering using the aforemen-

tioned scores and the three metrics L-RMSD, iL-RMSD, and 
FCC. L-RMSD is the simplest metric to calculate because 
receptor proteins are usually fixed during rigid-body dock-
ings and thus L-RMSD can be calculated without further 
structure superposition. Calculation of iL-RMSD requires 
assignments of interface residues and superposition of the 
interface residues between a pair of decoys because iL-RMSD 
is the L-RMSD of the interface residues. Here, the interface 
residues are defined as those having at least one heavy atom 
within 10 Å of any heavy atom of the partner protein [10]. 
The FCC clustering metric is efficient for clustering protein-
protein docking decoys [26]. To calculate FCC, a pair of  
residues from two distinct proteins are considered to be in 
contact if any of their atoms are within 5 Å [34]. We exam-
ined different cut-off values to assign decoys to clusters; the 
clustering with L-RMSD and iL-RMSD used RC values from 
5 to 15 Å with increments of 1 Å, and those with FCC used 
cut-off fractions (fC) from 0.2 to 0.8 with 0.05 increments.

After clustering, the decoys selected as the cluster centers 
are regarded as the cluster representatives and they are the 
only decoys considered in the following analysis, which 
means that the number of decoys is highly reduced in this 
step. The selected decoys are rank-ordered by the scores of 
the cluster centers as described above. We also conducted 
re-ranking of the selected decoys based on the average 
ZDOCK score of all decoys in each cluster and the average 
ZDOCK score of the top 10 ranked decoys in each cluster.

The population-based clustering requires calculation of 
all the pair-wise RMSDs or FCCs, which takes much longer 
computational time to conduct clustering of many decoys. 
To examine various combinations of cut-off values and  
metrics for clustering many (54,000) decoys, we decided  
to use the score-based clustering in this study.

Evaluation of the clustering results
To evaluate the decoys, we followed the criteria used in 

Critical Assessment of PRedicted Interactions (CAPRI) 
[35]. In this study, a decoy with an acceptable or better qual-
ity according to the CAPRI criteria is called a near-native 
decoy and thus should satisfy one of the following two  

HADDOCK because not all the pairs of decoys are neces
sarily compared. The InterEvDock server [28] employs  
FRODOCK for the rigid-body docking and conducts a 
clustering with the FCC metric at a later stage. CyClus [29] 
performs hierarchical clustering and re-ranks the decoys 
generated by a rigid-body docking method using both dock-
ing and clustering scores.

In this work, we survey better clustering metrics and  
cut-off parameters so as to better screen decoys generated  
by rigid-body docking. For this purpose, we conduct decoy 
clustering, employing L-RMSD, iL-RMSD, and FCC as the 
clustering metrics. We show that score-based clustering with 
the iL-RMSD metric efficiently (93%) reduces the number 
of decoys with at least one near-native decoy with 90% 
probability and that top 1,000 success rates (where ‘success 
rate’ is defined as a rate with at least one near-native decoy) 
was 97% using score-based clustering with FCC.

Methods
Benchmark dataset of protein-protein complex structures

We examined the performance of various clustering  
metrics by using the protein-protein docking benchmark 5.0 
[30] as a database of known protein-protein complex struc-
tures. Based on docking difficulty, this benchmark classifies 
target complexes into rigid, medium, and difficult classes 
comprising 151, 45, and 34 complexes, respectively. As 
mentioned in the Introduction, the purpose of this work is  
to efficiently reduce the number of decoys immediately  
following rigid-body docking, before refinement and evalu-
ation at later stages. Protein flexibility is considered after  
the docking and clustering stages (Fig. 1) and thus here we 
focus mainly on complexes in the rigid class. The results 
shown below are obtained from the complexes in the rigid 
class unless otherwise specified. Also, we focus on hetero-
oligomers in the benchmark set, resulting in 185 complexes 
which consist of 121 rigid, 37 medium, and 27 difficult  
complexes.

Decoy generation
Decoys were generated using the rigid-body protein- 

protein docking program ZDOCK 3.0.2 [10,12]. In ZDOCK 
3, optimal translational positions for a given orientation of 
the smaller protein relative to the fixed larger protein are 
determined using an FFT-based method. A total of 54,000 
decoys were generated by grid search of the rotational space 
at 6° increments.

For comparison, we employed another rigid-body  
protein-protein docking program FRODOCK 2.1 [11,27] 
with default settings. For a given translational position,  
FRODOCK performs a fast rotational search using spherical 
harmonics. After obtaining the optimized translational and 
rotational positions, FRODOCK conducts score-based clus-
tering with the L-RMSD metric and a 5 Å-clustering cut-off 
radius (RC) as mentioned in the Introduction.
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decoys in each cluster than L-RMSD clustering because 
iL-RMSD clustering focuses only on the interface residues 
and iL-RMSD tends to be smaller than L-RMSD for a given 
decoy. As the number of clusters decreased, the number of 
near-native decoys decreased (Fig. 2B). Also, the fraction  
of near-native decoys (the number of near-native decoys 
divided by the number of clusters) decreased after clustering 
(Fig. 2C). Overall Figure 2 shows the reasonable relation-
ship between cut-off value and clustering results. In the 
parameter range examined, FCC clustering generated more 
near-native decoys than the other approaches. Note that FCC 
does not show a linear relationship with RMSD. As an exam-

conditions: (i) the fraction of native contacts (fnat) is at least 
0.3 and (ii) fnat is at least 0.1 and L-RMSD is no more than 
10 Å (or the interface RMSD is no more than 4.0 Å). The 
cluster is called a near-native cluster if the cluster center is 
the near-native decoy.

After efficient screening of the decoys, our goal is to con-
struct a set of a small number of decoys that contains at least 
one near-native decoy with high probability. We evaluate the 
screening efficiency by introducing the numbers of decoys 
containing at least one near-native decoy with probabilities 
of 80% and 90% as N80% and N90%, respectively, among com-
plexes in the benchmark set. In other words, if the top N90% 
decoys are selected for a certain complex, we can expect that 
at least one near-native decoy is included in the selected 
decoys in 90% of the cases. We also evaluated the results 
using a second property by examining the success rate 
defined as the percentage having at least one near-native 
model in the top N ranked models among the examined 
complexes.

F. Computational time
The computations were conducted using a single core 

Intel Xeon (R) CPU E3-1240, E3-1620, E5-1660, or E5-2695 
for a given complex. The computation times in this study  
for 185 complexes are as follows: rigid-body dockings by 
ZDOCK and FRODOCK took 2.2±1.2 hours and 1.0±1.0 
hours, respectively, re-rankings of ZDOCK decoys by 
ZRANK, CyClus, and Tobi required 1.2±1.1 hours, 4.5±1.0 
minutes, and 26±4.5 minutes, respectively, and computa-
tional times for score-based clustering of the ZDOCK- 
generated decoys with L-RMSD (with a cut-off radius 9 Å), 
iL-RMSD (cut-off radius 8 Å), FCC (cut-off fraction 0.3) 
were 15±13 minutes, 29±27 minutes, and 11±4.4 minutes, 
respectively. The score-based clustering methods proposed 
in this study required more computation time than CyClus 
but are acceptable. CyClus was developed in our group and 
optimized for our computer environment. Note that we used 
executable ZDOCK, FRODOCK, and ZRANK files distrib-
uted by the original authors, whereas we wrote VMD [36] 
scripts for Tobi and score-based clustering methods. The 
codes for the score-based clustering methods can be further 
optimized if necessary, however, we did not write optimized 
program in this work because the calculations with VMD 
scripts could be completed within a reasonable computa-
tional time frame.

Results and Discussion
Parameter dependence of the clustering results

As described in the Methods section, we employed the 
three metrics L-RMSD, iL-RMSD, and FCC to conduct 
score-based clustering 54,000 decoys generated by ZDOCK 
3.0.2 [10,12]. As RC increased or fC decreased, the number of 
decoys in each cluster increased and the number of cluster 
decreased (Fig. 2A). iL-RMSD clustering returned more 

Figure 2 Cut-off radius RC (fraction fC) dependence of (A) the 
numbers of clusters (open symbols), decoys in each cluster (filled sym-
bols), (B) near-native decoys, and (C) fractions of near-native decoys 
among the selected decoys. Red square, green circle, and blue triangle 
represent the results of clustering with L-RMSD, iL-RMSD, and FCC, 
respectively. Broken lines in (B) and (C) indicate the number of decoys 
and the fraction of near-native decoys before clustering, respectively.
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tion of the number of decoys that contain at least one near-
native decoy rather than the enrichment of near-native 
decoys among other decoys. Therefore, the current approach 
is not suitable for enrichment purposes.

We calculated N80% (Fig. 3A) and N90% (Fig. 3B) to exam-
ine the efficiency of the clustering in reducing the number of 
decoys that contain at least one near-native decoy. As RC 
increases, N80% and N90% first decreases and then increases, 
which means that N80% and N90% have a minimum value  
at optimum RC. FCC clustering also shows a similar trend. 
When top-ranked decoys generated by ZDOCK are not near-
native and resemble each other, clustering of these decoys 
into single cluster improves rankings of the near-native 
decoys. Such effects are enhanced by increasing RC or 
decreasing FC, which results in decrease of N80% and N90%. 
However, the use of larger RC or smaller FC leaded more 
near-native decoys to be the members of the non-near-native 
cluster; eventually, N80% and N90% increased. These effects 
determine the optimal values of RC and FC. We selected 
9.0 Å, 8.0 Å, and 0.3 as the optimal cut-off values to achieve 
the lowest N90% for clustering with L-RMSD, iL-RMSD,  
and FCC, respectively. In addition, we also selected 13.5 Å, 
12.5 Å, and 0.2 to achieve lowest N80% with L-RMSD, 
iL-RMSD, and FCC, respectively. Hereafter, we call these 
clustering methods Lr9, iLr8, Fc3, Lr13.5, iLr12.5, and Fc2 
which represent the combination of the metric and the cut-
off value.

Comparison of docking/clustering performance
Table 1 summarizes the docking/clustering performances 

obtained using Lr9, iLr8, Fc3, Lr13.5, iLr12.5, and Fc2.  
For comparison, we also show the docking and docking/ 
re-ranking results obtained using several methods (see the 
Methods section for details). We mainly focus on the results 
for the rigid class but also show the results obtained for all 
complexes of all classes in the benchmark in parentheses. 
Compared to the ZDOCK results, the value of N90% obtained 

ple of this non-linear relationship, the values of the fraction 
of native contacts used to define acceptable, medium, and 
high quality in CAPRI are 0.1, 0.3, and 0.5, respectively, 
whereas those of L-RMSD are 10, 5, and 1 Å, respectively. 
The fractions after clustering are lower than the fraction of 
near-native decoys (the number of near-native decoys among 
the selected decoys divided by 54,000). As mentioned in the 
Introduction, the purpose of this work is the efficient reduc-

Figure 3 Cut-off radius (fraction) dependence of the number of 
clusters containing at least one near-native cluster at (A) 80% and (B) 
90% probability. Red squares, green circles, and blue triangles repre-
sent the results obtained using L-RMSD, iL-RMSD, and FCC clustering, 
respectively. Filled symbols indicate the cut-off values which provide 
the smallest numbers of clusters.

Table 1 Summary of docking/clustering performance

Method N80% N90%

Top N success rate (%)

N=10 N=100 N~1000a Allb

ZDOCK 1552 (3306) 4808 (18207) 28 (24) 50 (46) 77 (69) 98 (94)
ZDOCK/ZRANK 364 (1641) 2036 (11567) 37 (29) 67 (53) 87 (78) 98 (94)
ZDOCK/CyClus 362 (732) 1083 (2679) 36 (31) 67 (59) 89 (82) 98 (94)
ZDOCK/Tobi 557 (1645) 2304 (10204) 31 (26) 60 (52) 85 (77) 98 (94)
FRODOCK 537 (1350) 1973 (–) 36 (30) 64 (56) 84 (78) 94 (89)
ZDOCK/Lr9 169 (342) 342 (1210) 44 (36) 75 (65) 93 (86) 98 (92)
ZDOCK/iLr8 164 (320) 320 (1137) 43 (36) 74 (65) 95 (89) 98 (92)
ZDOCK/Fc3 165 (335) 350 (1300) 43 (36) 73 (64) 97 (89) 98 (91)
ZDOCK/Lr13.5 149 (–) – (–) 41 (35) 74 (63) 88 (79) 88 (80)
ZDOCK/iLr12.5 126 (–) – (–) 45 (37) 74 (62) 88 (77) 88 (77)
ZDOCK/Fc2 134 (479) 368 (–) 46 (37) 74 (63) 93 (83) 93 (83)

aAfter clustering, the numbers of clusters for some complexes are less than 1,000. bAll the 54,000 decoys are considered in ZDOCK. In  
FRODOCK, the numbers of decoys are at most 10,000. The average numbers of the cluster after clustering are 2222, 1588, 1224, 845, 559, and 
681 for Lr9, iLr8, Fc3, Lr13.5, iLr12.5, and Fc2, respectively. Values in parentheses are the results for complexes in all classes in the benchmark.
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Clustering of the decoys ranked by other methods
Our score-based clustering approaches, Lr9, iLr8, and  

Fc3 efficiently screen ZDOCK-generated decoys. We also 
applied the Lr9, iLr8, and Fc3 methods to the decoys 
re-ranked by ZDOCK/ZRANK, ZDOCK/CyClus, ZDOCK/
Tobi and those generated by FRODOCK (Table 2). We 
obtained similar or even better performance when we applied 
the Lr9, iLr8, and Fc3 methods to the decoys re-ranked by 
ZRANK and CyClus. For instance, N80%=113 with ZRANK/
iLr8 is smallest of any result obtained so far, and the N90% 
and the top N success rates are similar to those shown in 
Table 1. ZDOCK/Tobi improved the ZDOCK results, but 
further clustering provided results that were slightly worse. 
The improvement obtained with ZDOCK/Tobi did not out-
perform ZRANK or CyClus in terms of N90% or the top N 
success rates. Since the cut-off values (9.0 Å, 8.0 Å, and 0.3) 
were optimized for the decoys generated by ZDOCK, addi-
tional parameter tunings might improve performance for 
decoys generated by other ranking methods. Lr9, iLr8, and 
Fc3 did not improve the FRODOCK results probably 
because FRODOCK provided the results of clustering with 
L-RMSD and RC=5 Å and thus further clustering did not 
improve the results.

Effect of different cluster ranking methods
The clustering conducted thus far ranked the clusters 

according to the score of the decoy selected as the cluster 
center. Some docking methods rank the clusters differently. 
For example, ClusPro [23] employs population-based clus-
tering that ranks the clusters by the number of decoys in  
each cluster. In contrast, HADDOCK [15] ranks the clus-
ters based on the average score of the top four decoys of 
each cluster. We attempted variations of the clustering based 

by iLr8 decreased from 4,808 to 320 (93% reduction). The 
decreases achieved with the other metrics (Lr9 and Fc3) 
were also significantly better than that by ZDOCK but were 
slightly less than that achieved with iLr8. Other docking and 
re-ranking methods also decreased the required number of 
decoys; however, iLr8 outperformed all the other methods to 
obtain the smallest N90%. The clustering with iLr12.5 obtained 
the smallest N80%.

As a typical evaluation of docking methodologies, we 
also show the top N (N=10, 100, and 1,000) success rates in 
Table 1, which show the expected percentage (probability) 
that at least one near-native decoy is included in the top N 
decoys. The top 10 and 100 success rates were highest in the 
Lr9 result (44% and 75%, respectively) whereas the top 
1,000 success rate was highest in the Fc3 results (97%). The 
numbers of clusters generated by Lr9, iLr8, Fc3, Lr13.5, 
iLr12.5, and Fc2 are on average 2,222, 1,588, 1,224, 845, 
559, and 681, respectively, and less than 1,000 for some 
complexes. Thus, the top 1,000 success rates contain results 
from less than 1,000 clusters. Although the fraction of near-
native decoys decreased (Fig. 2C), the clusters obtained by 
Lr9, iLr8, and Fc3 still contain near-native decoys in most of 
the benchmark complexes (rightmost column in Table 1). On 
the other hand, the clusters obtained by Lr13.5, iLr12.5, and 
Fc2 do not contain near-native decoys in some cases, which 
results in lower top 1,000 success rates than those obtained 
by Lr9, iLr8, Fc3. Therefore, we focus on Lr9, iLr8, and Fc3 
in the following analysis.

Overall, our approaches successfully reduced N90% from 
4,808 in ZDOCK to a few hundred. Also, we achieved a very 
high top 1,000 success rate (97%) using Fc3. To our knowl-
edge, no docking methods with this high success rate have 
been reported to date.

Table 2 Docking/clustering performance combined with other ranking methods

Method N80% N90%

Top N success rate (%)

N=10 N=100 N=1000 Alla

ZDOCK/ZRANK 364 (1641) 2036 (11567) 37 (29) 67 (53) 87 (78) 98 (94)
ZRANK/Lr9 120 (472) 525 (2842) 46 (36) 77 (64) 92 (85) 97 (91)
ZRANK/iLr8 113 (455) 440 (–) 46 (36) 77 (63) 93 (84) 97 (89)
ZRANK/Fc3 109 (409) 379 (–) 46 (36) 78 (64) 93 (84) 96 (86)

ZDOCK/CyClus 362 (732) 1083 (2679) 36 (31) 67 (59) 89 (82) 98 (94)
CyClus/Lr9 176 (403) 412 (2764) 42 (35) 72 (62) 94 (86) 98 (90)
CyClus/iLr8 158 (338) 412 (1488) 41 (34) 72 (62) 96 (89) 98 (91)
CyClus/Fc3 154 (394) 396 (–) 40 (33) 73 (63) 94 (87) 96 (89)
ZDOCK/Tobi 557 (1645) 2304 (10204) 31 (26) 60 (52) 85 (77) 98 (94)
Tobi/Lr9 293 (601) 831 (4516) 34 (28) 65 (57) 93 (84) 98 (90)
Tobi/iLr8 254 (509) 702 (–) 34 (28) 64 (56) 93 (84) 97 (89)
Tobi/Fc3 232 (524) 763 (–) 32 (26) 63 (55) 93 (83) 93 (85)

FRODOCK 537 (1350) 1973 (–) 36 (30) 64 (56) 84 (78) 94 (89)
FRODOCK/Lr9 688 (–) – (–) 36 (29) 61 (54) 84 (75) 86 (77)
FRODOCK/iLr8 670 (–) – (–) 35 (28) 60 (54) 84 (73) 86 (75)
FRODOCK/Fc3 318 (949) 1326 (–) 37 (30) 66 (58) 88 (80) 91 (82)
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maximizes such effects and contributes to the successful 
results obtained in this study.

on the average score of the top 10 decoys of each cluster 
(Top 10 in Table 3), the average score of all the decoys in 
each cluster (Average), and the number of members in each 
cluster (NDecoys).

Top 10 and Average did not improve the results in all 
cases as shown by the increases of N80% and N90% and the 
decrease in most of the top N success rates compared to the 
Lr9, iLr8, Fc3 results shown in Table 1. The average  
numbers of decoys in each near-native cluster after Lr9, 
iLr8, and Fc3 is 101, 142, and 154, respectively, and are 
higher than those in the non-near-native cluster (24, 34, and 
43, respectively). Since the near-native clusters contain many 
non-near-native decoys with low scores, the average score  
is lowered by averaging. Such effects were prominently vis-
ible in the results using the average score of all the decoys. 
Interestingly, NDecoys provided smaller N80% and N90% values 
than those obtained using the average scores. The partial 
success of NDecoys is related to the fact that the near-native 
clusters tend to have a larger number of decoys. In summary, 
these trials did not considerably improve the results.

We further focus on the aforementioned tendency that  
the near-native clusters have a larger number of decoys. For 
this purpose, we investigated NDecoys averaged over all,  
near-native, and top 10 clusters for each of complexes  
(〈NDecoys〉). A histogram of 〈NDecoys〉 over 121 complexes 
was calculated and shown in Figure 4. The near-native  
clusters tend to have smaller 〈NDecoys〉 than the top 10 clus-
ters. The near-native clusters have more decoys than other 
clusters on average as shown before, but they have a 
smaller number of decoys in some cases. In these cases, the 
re-ranking by the NDecoys is not suitable. The top 10 clusters 
contain many decoys, indicating that many of them are sim-
ilar to the top-ranked decoys. When the top-ranked decoys 
are not near-native, the score-based clustering methods  
conducted in this study effectively decrease the number of 
non-near-native decoys and improve the ranking of the 
near-native decoys. The use of optimal clustering cut-offs 

Figure 4 Histogram of the average number of decoys (〈NDecoys〉) 
with a bin size of 20. The numbers of decoys were averaged over all 
(black), the top 10 (red), and the near-native (green) clusters using (A) 
Lr9, (B) iLr8, and (C) Fc3.

Table 3 Docking/clustering performance with different cluster ranking methods

Clustering Re-ranking N80% N90%

Top N success rate (%)

N=10 N=100 N=1000

Lr9

– 169 (342) 342 (1210) 44 (36) 75 (65) 93 (86)
Top 10 286 (639) 669 (1781) 45 (36) 70 (60) 96 (86)

Average 477 (877) 786 (1978) 8 (6) 36 (27) 95 (83)
NDecoys 153 (426) 619 (1893) 39 (31) 70 (60) 93 (86)

iLr8

– 164 (320) 320 (1137) 43 (36) 74 (65) 95 (89)
Top 10 310 (541) 541 (1319) 45 (35) 71 (62) 94 (87)

Average 465 (742) 730 (1624) 5 (4) 26 (21) 95 (86)
NDecoys 149 (400) 536 (1270) 31 (24) 72 (60) 94 (88)

Fc3

– 165 (335) 350 (1300) 43 (36) 73 (64) 97 (89)
Top 10 223 (543) 471 (1243) 46 (37) 72 (62) 94 (87)

Average 446 (651) 651 (1468) 10 (8) 34 (26) 93 (85)
NDecoys 160 (409) 409 (1322) 26 (19) 73 (62) 97 (89)
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Conclusion
Protein-protein complex structure prediction remains a 

challenging problem. Considering the docking procedure 
shown in Figure 1, an efficient method is required for reduc-
ing the number of candidate models after decoy generation 
to reduce the expected computation time of flexible refine-
ment and free energy evaluation. This work proposed a  
simple but very efficient clustering approach to achieve this 
purpose. Using iLr8, N90% decreased from 4,808 to 320, 
which is a 93% reduction in the number of decoys, and using 
Fc3, the top 1,000 success rate was as high as 97%.

Although we obtained promising results, further parame-
ter tunings may improve this method. Possible modifica-
tions include the choice of rigid-body docking software, a 
combination of RMSD and FCC to distinguish decoys for 
clustering, and re-ranking using consensus selections after 
clustering. Since our score-based clustering approach with 
iL-RMSD, L-RMSD, or FCC successfully reduces the num-
ber of decoys, the following flexible refinements and free 
energy calculations will be able to treat all models after the 
clustering. For example, evERdock can evaluate all the 
selected decoys after the score-based clustering method 
because it has previously treated 300 decoys for multiple 
complexes [21]. We believe that this type of approach would 
improve the current status of protein-protein complex struc-
ture predictions.
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