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ABSTRACT Biological nitrogen fixation in rhizobium-legume symbioses is of major im-
portance for sustainable agricultural practices. To establish a mutualistic relationship
with their plant host, rhizobia transition from free-living bacteria in soil to growth down
infection threads inside plant roots and finally differentiate into nitrogen-fixing bacte-
roids. We reconstructed a genome-scale metabolic model for Rhizobium leguminosarum
and integrated the model with transcriptome, proteome, metabolome, and gene essen-
tiality data to investigate nutrient uptake and metabolic fluxes characteristic of these dif-
ferent lifestyles. Synthesis of leucine, polyphosphate, and AICAR is predicted to be im-
portant in the rhizosphere, while myo-inositol catabolism is active in undifferentiated
nodule bacteria in agreement with experimental evidence. The model indicates that
bacteroids utilize xylose and glycolate in addition to dicarboxylates, which could explain
previously described gene expression patterns. Histidine is predicted to be actively syn-
thesized in bacteroids, consistent with transcriptome and proteome data for several rhi-
zobial species. These results provide the basis for targeted experimental investigation of
metabolic processes specific to the different stages of the rhizobium-legume symbioses.

IMPORTANCE Rhizobia are soil bacteria that induce nodule formation on plant roots
and differentiate into nitrogen-fixing bacteroids. A detailed understanding of this
complex symbiosis is essential for advancing ongoing efforts to engineer novel sym-
bioses with cereal crops for sustainable agriculture. Here, we reconstruct and vali-
date a genome-scale metabolic model for Rhizobium leguminosarum bv. viciae 3841.
By integrating the model with various experimental data sets specific to different
stages of symbiosis formation, we elucidate the metabolic characteristics of rhizo-
sphere bacteria, undifferentiated bacteria inside root nodules, and nitrogen-fixing
bacteroids. Our model predicts metabolic flux patterns for these three distinct life-
styles, thus providing a framework for the interpretation of genome-scale experimen-
tal data sets and identifying targets for future experimental studies.

KEYWORDS Rhizobium leguminosarum, metabolic modeling, rhizosphere-inhabiting
microbes, symbiosis

Nitrogen is commonly the main limiting nutrient in agriculture because plants are
unable to assimilate atmospheric N2 (1). Some legumes, such as peas, beans, and

lentils, circumvent this problem by entering into complex symbiotic relationships with
soil bacteria called rhizobia. Legumes secrete signaling molecules (flavonoids) that are
recognized by compatible rhizobia, which produce their own signaling molecules (Nod
factors) in response. As a result of this signal exchange, rhizobia are typically entrapped
by root hairs and grow down so-called infection threads until they are endocytosed by
plant cells in the developing nodule. The bacteria then undergo further cell division
and eventually differentiate into bacteroids converting atmospheric N2 into ammonia,
which is secreted to the plant host in exchange for carbon sources, mainly dicarboxy-
lates (2–4).
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Symbiosis formation is a multi-stage process, requiring distinct metabolic capabil-
ities at each stage. The ability of rhizobia to adapt to various environmental conditions
is reflected in their large genomes, which often comprise several replicons (5–7), and
in the importance of different genomic regions for each lifestyle (8, 9). While significant
research efforts have focused on understanding bacteroid metabolism in rhizobium-
legume symbioses, several recent studies have begun to unravel the plant-bacteria
interactions preceding the formation of differentiated nitrogen-fixing bacteroids. For
example, transcriptomic changes in response to root exudates of different plants have
been investigated (10, 11) and biosensors have been developed to elucidate nutrient
availability in the rhizosphere (12). Importantly, a study using transposon-based inser-
tion sequencing (INSeq) assessed gene essentiality in Rhizobium leguminosarum for rhi-
zosphere bacteria, root-attached bacteria, undifferentiated nodule bacteria, and nitro-
gen-fixing bacteroids (13). It was found that 603 genetic regions were essential for a
successful transition from free-living bacteria to bacteroids, highlighting the complex-
ity of development during formation of a successful symbiosis. Understanding the met-
abolic features at different stages of symbiosis is required for developing effective rhi-
zobial inocula for agricultural applications. Rhizobia that efficiently fix nitrogen are not
necessarily adapted to persistence in the rhizosphere as well as nodulating a plant
host in the presence of genetically different bacterial strains, a characteristic described
as competitiveness (13–15). Knowledge of the nutrient exchanges between plants and
rhizosphere bacteria is thus required for the design of microbial inocula that are com-
petitive and stably persist when applied in the field (14, 16). Once rhizobia have suc-
cessfully entered the plant root, elucidating the metabolism of undifferentiated rhizo-
bia inside the nodule is important to avoid delays in the onset of nitrogen fixation.

Due to the complexity of nutrient exchanges in symbioses, metabolic modeling has
become a popular tool for investigating rhizobium-legume interactions (3, 17).
Metabolic models describe the reactions that are catalyzed by the enzymes annotated
in an organism’s genome (18, 19). By defining nutrient availability as well as an objec-
tive function reflecting the metabolic strategy of the organism, flux distributions at
steady state can be calculated using flux balance analysis (20). Due to the gene-pro-
tein-reaction associations contained in metabolic models, they also provide a conven-
ient framework for contextualizing genome-scale data obtained by omics technolo-
gies, such as transcriptomics or proteomics (21). Most metabolic models of rhizobial
species so far have focused on fully differentiated bacteroids (22–26). One in silico
study of Sinorhizobium meliloti has addressed the differences in metabolism for free-liv-
ing growth in the bulk soil, growth of the rhizosphere, and symbiotic nitrogen fixation
during the bacteroid stage (9). However, this study focused on the contributions of the
different replicons to fitness in the different environments rather than specifics of
changes in metabolic flux distributions and did not integrate experimental data.
Another study compared the metabolism of free-living Bradyrhizobium japonicum with
bacteroids (27). While transcriptome and proteome data sets were used to generate
condition-specific models, the data for the free-living model were obtained for bacteria
grown in a laboratory culture rather than the rhizosphere. Only one recent study has
addressed metabolic differences in the different nodule zones for the symbiosis
between S. meliloti and Medicago truncatula (28).

In this study, we reconstruct and extensively curate a genome-scale metabolic
model (GSM) for R. leguminosarum bv. viciae 3841 (Rlv3841). Various experimental data
sets exist for this strain at different stages of symbiosis with its native host pea. By inte-
grating transcriptome, proteome, and gene essentiality data with the GSM, we perform
a detailed investigation of nutrient uptake and metabolic pathway usage of Rlv3841 in
the rhizosphere, as nodule bacteria and as nitrogen-fixing bacteroids. This genome-
scale approach for data integration reproduced experimentally observed phenotypes
and particularly highlighted the role of different carbon sources and amino acids
throughout the different stages of symbiosis. The metabolic model developed herein
provides a valuable resource for targeted investigation of metabolic requirements of
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the different rhizobial lifestyles and may enable the identification of strategies for engi-
neering strains that are metabolically advantaged at all stages of symbiosis formation.

RESULTS
Reconstruction of a genome-scale metabolic model for Rhizobium leguminosarum.

Most published metabolic models for rhizobia focus on bacteroids and are therefore
limited to metabolic pathways active during nitrogen fixation. Curated genome-scale
reconstructions are so far only available for B. japonicum (27) and S. meliloti (28). With
the aim of investigating metabolism in the rhizosphere and during different stages of
bacteroid development, we developed a GSM for Rlv3841 using multiple sources of in-
formation. As shown in Fig. 1A, automated reconstructions based on the KEGG (29)
and MetaCyc (30) databases were combined with a homology-based reconstruction

FIG 1 Reconstruction of a genome-scale model for Rhizobium leguminosarum bv. viciae 3841. (A) Reconstruction
process for iCS1224 using automated reconstruction, template-based reconstruction, and data-based curation. (B)
Sources for the 913 metabolic reactions in iCS1224. Numbers indicate how many reactions from KEGG, MetaCyc, or
the template-based reconstruction were included in the final model, with numbers in the overlapping areas
indicating reactions that were present in multiple draft reconstructions. (C) Classification of the reactions in iCS1224.
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using a GSM for S. meliloti as a template and reactions from our previously recon-
structed bacteroid model of Rlv3841 (23) (Fig. 1B). Extensive curation was then per-
formed based on literature evidence, gene essentiality data (13, 31) and enzymatic
functions predicted by DeepEC (32). Comparison with iML1515, a high-quality model
for Escherichia coli (33) as well as the CarveMe template for Gram-negative bacteria
(34), was further used to correct reaction stoichiometry and reversibility if required. We
next defined a biomass function based on evidence from the literature (Table S1).
Because our previous work showed the dependence of carbon polymer synthesis on
environmental conditions (23), demand reactions for polymers such as glycogen, poly-
hydroxybutyrate (PHB), and exopolysaccharides were included in the model to allow
for their flexible accumulation. The final model contained 1,224 genes, 1,257 reactions,
and 984 metabolites (Table 1), and was named iCS1224 according to standard naming
conventions. The largest groups of metabolic reactions were associated with amino
acid and lipid metabolism (14.1% and 13.5% of model reactions, respectively), followed
by cofactor metabolism (10.7%) and purine/pyrimidine metabolism (9.0%) (Fig. 1C).
Cluster of orthologous genes (COG) (35) analysis of the model genes showed that all
COG categories associated with metabolic reactions were represented in iCS1224
(Fig. S1). The quality of the reconstruction was evaluated using MEMOTE (36), where
iCS1224 achieved an overall score of 89%.

Model validation. We validated our model for free-living Rlv3841 growing in mini-
mal media using various experimental data sets. First, we experimentally assessed
growth on 190 different carbon sources using phenotype microarrays (37) (Data set
S1). For the 109 carbon sources that were present as metabolites in iCS1224, an overall
predictive accuracy of 89.9% with 90.9% precision and 96.4% recall was achieved
(Fig. 2A), which is similar to the performance of curated GSMs for well-investigated
bacteria, such as Pseudomonas aeruginosa (38) or E. coli (39). In addition, we evaluated
the quality of gene essentiality predictions by comparing in silico gene essentiality
with the results of an INSeq gene essentiality screen of Rlv3841 performed in minimal
media supplemented with succinate and ammonia (31). Because the classification of
genes based on transposon mutagenesis screen is subject to some variability (40), the
list of essential genes was further curated by comparison with INSeq data for growth
on complex media (13). Predictions by iCS1224 for gene essentiality during growth in
minimal media achieved an accuracy, precision and recall of 91.0%, 89.6%, and 87.8%,
respectively (Fig. 2B), thus showing good agreement with the INSeq data and indicat-
ing high quality of the gene-protein-reaction associations as well as suitability of the
biomass objective function.

Finally, we performed quantitative validation of our model by comparing the pre-
dicted and experimentally measured growth rates in minimal media with glucose or
succinate as the sole carbon source. After constraining the carbon uptake flux to exper-
imentally determined values (41), the predicted growth rates were 0.150 h21 and

TABLE 1 Properties of iCS1224

Feature Value
Genes 1,224
Metabolites 984
Unique EC identifiers 603
Reactions 1,257
Metabolic reactions 913
Gene-associated metabolic reactions 897
Transport reactions 162
Gene-associated transport reactions 142
Sink reactions 155
Demand reactions 15
Other reactions (e.g. DNA synthesis,
protein synthesis, biomass objective function)
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0.149 h21 for glucose and succinate, respectively. These values are consistent with pre-
viously reported growth rates, which range between 0.131 h21 and 0.187 h21 for glu-
cose and between 0.102 h21 and 0.173 h21 for succinate (31, 41). While substantially
slower growth of Rlv3841 on succinate compared to glucose was observed in one
study (41), other studies reported similar growth rates for both carbon sources (31, 42),
which agrees with our model predictions. Predicted flux values for 17 reactions
involved in central carbon metabolism were further compared with published values
measured by 13C metabolic flux analysis of Rlv3841 grown in minimal media with succi-
nate and ammonia (43). As shown in Fig. 2C, we observed excellent agreement
between predicted and experimentally measured flux values. In all cases, the measured
flux was within the range determined by flux variability analysis. iCS1224 thus appears
to be an accurate representation of the metabolism of Rlv3841, both qualitatively and
quantitatively.

FIG 2 Validation of iCS1224. (A) Table showing the agreement between carbon source utilization
experimentally measured with phenotype microarrays and predicted by iCS1224. (B) Table showing
the agreement between gene essentiality determined by insertion sequencing (13, 31) and predicted
by iCS1224. (C) Comparison of metabolic fluxes determined by 13C metabolic flux analysis for Rlv3841
grown on succinate (43) with flux rates predicted by iCS1224. For experimental data, symbols and
bars indicate mean 6 SD. Note the error bars are too small to be visible for most data points. For in
silico data, symbols represent the flux rate predicted by flux balance analysis, with lines indicating
upper and lower bounds for each flux determined by flux variability analysis with at least 95% of the
optimum flux through the biomass objective function. Labels on the x axis indicate the name of the
reaction as reported in (43) (in bold), as well as the reaction identifier in the model.
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Metabolism of rhizosphere bacteria. Having validated the predictive capabilities
of iCS1224, we sought to extract condition-specific models for metabolism of Rlv3841
(i) in the rhizosphere, (ii) as undifferentiated nodule bacteria, and (iii) as nitrogen-fixing
bacteroids (Fig. 3). We chose the recently developed RIPTiDe algorithm (44) to obtain
condition-specific metabolic models. Based on gene expression data, RIPTiDe assigns
weights to all gene-associated reactions, assuming that higher transcript abundance
makes it more likely that the corresponding reaction is used in a certain environmental
condition. The overall flux through the network is then minimized and inactive reac-
tions are removed. Finally, flux sampling of the solution space is performed, where flux
through reactions associated with highly expressed genes is favored. In contrast to
other methods for transcriptome data integration, RIPTiDe does not impose arbitrary
thresholds on the gene expression data, it produces functional models with flux
through the objective reaction, and takes flux parsimony into account, i.e., the overall
flux is minimized to find cost-efficient solutions (44).

Generation of a rhizosphere-specific model thus required information about avail-
able nutrients as well as gene expression data. Nutrient availability in the rhizosphere
is mainly determined by plant root exudates, and plants modulate the composition of
their root exudates to select for specific soil microbes (45, 46). However, only a subset
of metabolites is used by the soil microbiota (47, 48), and elucidation of nutrient
uptake by rhizosphere bacteria usually requires extensive metabolomics profiling (49,
50). Taking a top-down approach for defining the rhizosphere environment, we first
compiled a list of compounds present in pea root exudates based on published experi-
mental data (10, 12, 51, 52) (Table S2). For those compounds that could be matched to
model metabolites, exchange reactions were added to the model with reaction bounds
set to allow for unlimited uptake. RNA-Seq data for Rlv3841 in the rhizosphere of pea
plants 7 days postinoculation was used as an input data set for model contextualiza-
tion. In addition, a list of genes that were classified as essential or defective in the rhi-
zosphere in an INSeq screen (13) was provided to prevent removal of reactions

FIG 3 Approach for generating lifestyle-specific models for Rhizobium leguminosarum bv. viciae. Based on iCS1224, transcriptome,
gene essentiality, and proteome data specific to a certain lifestyle were used to inform the extraction of context-specific models for
the rhizosphere, nodule bacteria, and nitrogen-fixing bacteroids. Boundary conditions were defined based on metabolome data and/
or literature information.
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associated with these genes from the rhizosphere-specific model. Biomass production
was set as the objective and additional positive lower bounds were placed on reactions
involved in exopolysaccharide, lipopolysaccharide and Nod factor synthesis. All of
these polymers are known to be important in the rhizosphere (4), and their forced pro-
duction ensured inclusion of the respective biosynthetic pathways in the contextual-
ized model. During data integration, constraining flux through the objective function
to values between 50% and 95% of its maximum was tested to identify the scenario
that gave the best match with the transcriptome data. Within the range of objective
values tested, the highest correlation (Spearman’s Rho = 0.237, P , 0.001) between
metabolic fluxes and transcript abundances was obtained with the biomass reaction
constrained to carry at least 77.5% of its maximum flux, and the rhizosphere-specific
model contained 606 reactions and 576 metabolites. Remarkably, out of the 134
nutrients available for uptake before data integration, only 51 were present in the rhi-
zosphere-specific model.

For the analysis of the contextualized model, we focused on those metabolic path-
ways that are either not universally essential or that are retained in the model despite
their end product being available for uptake from the environment. Pathways such as
membrane lipid or PHB synthesis, for instance, will always be retained in the model,
because they are required to maintain flux through the biomass objective function and
uptake of lipids and PHB is not possible. In addition, we limit our discussion to reac-
tions that had a non-zero median flux value based on the flux sampling results,
because those reactions are most likely to be active in the rhizosphere. The TCA cycle
was predicted to be a central catabolic pathway (Fig. 4), which is consistent with previ-
ous reports of organic acids being the predominant carbon sources for rhizobia in the
rhizosphere (9, 10). In particular, the model predicted high uptake of glycolate in
agreement with the induction of C2 metabolism observed in previous gene expression
studies (10). Glycolate was converted into pyruvate via glycolate oxidase and an ami-
notransferase. The model also showed high uptake rates for aspartate, which could
explain the induction of a dctA biosensor in Rlv3841 in the pea rhizosphere (12).
Aspartate and 2-oxoglutarate were transaminated to produce glutamate and oxaloace-
tate, which is a TCA cycle intermediate.

In addition to organic acids, amylotriose, which is hydrolyzed into glucose, was
partly metabolized via the Entner-Doudoroff pathway and glycolysis in the model and
entered the pentose phosphate pathway to enable production of nucleotides required
for the synthesis of various polysaccharides and Nod factors. The gene encoding the
solute-binding protein of a carbohydrate uptake transporter-1 (CUT1) family trans-
porter (RL3840) was 2.6-fold upregulated in the pea rhizosphere compared to free-liv-
ing cells (10), which supports the predicted uptake of a di- or oligosaccharide.
Ribulose, a monosaccharide metabolized via the pentose phosphate pathway was also
predicted to be taken up. Catabolism of a monosaccharide in the rhizosphere is highly
probable considering the strong signals of a fructose and a xylose biosensor in the pea
rhizosphere (12). The fructose biosensor is based on the solute-binding protein of the
CUT2 family frcABC transporter, which has been shown to transport ribose in addition
to fructose in S. meliloti (53) and may therefore also contribute to pentose uptake in
the rhizosphere. The model further contained reactions for glycerol uptake and catabo-
lism, which could explain the decreased competitiveness observed for a glycerol catab-
olism mutant of R. leguminosarum bv. viciae VF39 (54).

With regard to amino acids, all of which are present in root exudates, biosynthetic
pathways were generally retained in the rhizosphere model due to the essentiality of
the associated genes. Low levels of uptake were however predicted for most amino
acids, mainly to support protein synthesis. Notably, the biosynthetic pathway for leu-
cine was predicted to be active, which was partly supported by uptake of 2-isopropyl-
malate, an intermediate of branched-chain amino acid synthesis. The need for leucine
synthesis in the rhizosphere agrees with a leuD mutant of Rlv3841 requiring the addi-
tion of 1 mM leucine to nodulate pea (55). Mutation of the isopropylmalate synthase
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gene in S. meliloti impaired nodulation even in the presence of leucine, and it was
shown that either isopropylmalate synthase or intermediates of the leucine biosyn-
thetic pathway are required for the activation of nod gene expression (56). It is there-
fore possible that the predicted leucine synthesis is at least partly related to the syn-
thesis of Nod factors in the rhizosphere. High uptake rates were further predicted for
glutamine, which is consistent with its high concentration in pea root exudates (52).

FIG 4 Metabolism of Rhizobium leguminosarum in the pea rhizosphere. A rhizosphere-specific model was
extracted from iCS1224 using the RIPTiDe algorithm with RNA-Seq and gene essentiality data for R.
leguminosarum in the rhizosphere of pea plants. (A) Schematic representation of the main pathways predicted
to be active in the rhizosphere-specific model. Compounds predicted to be taken up are indicated in bold
green. Note that the magnitude of flux is not indicated in this summary map. (B) Bar graph showing the
uptake rates of metabolites predicted to be taken up from pea root exudate. Absolute flux values for the
exchange reactions were normalized by flux through the biomass reaction in each sample. Only metabolites
with non-zero median uptake for the 500 samples of the contextualized model are shown. Uptake of ions and
cofactors has been omitted for clarity. Bars and lines indicate median and interquartile range, respectively.
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Glutamine was converted into glutamate, which was mostly used to sustain leucine
synthesis. The model also contained active uptake reactions for several nucleotides.
This agrees with the reported uptake of nucleosides and nucleotides by rhizosphere
bacteria (47, 50, 57) and agrees with the gene essentiality predictions for rhizosphere
bacteria obtained by INSeq, where purine auxotrophs appear to be rescued by plant
root exudates (13).

Among biomass components that are present in root exudate but not predicted to
be taken up, biosynthesis of the polyamine putrescine was retained in the model,
attesting to the ability of the RIPTiDe algorithm to choose metabolic reactions that
agree with gene expression and/or essentiality rather than choosing the least
resource-intensive solution. Putrescine and related polyamines are important for sur-
vival under stress conditions and their synthesis has been suggested to play an impor-
tant role during root colonization (58). As part of the model reconstruction, several
demand reactions were included for compounds such as carbon polymers whose accu-
mulation can vary with environmental conditions. The only non-essential demand
reactions that were not removed during the pruning process were those for glutathi-
one and polyphosphate, where polyphosphate synthesis in particular had a non-zero
median flux. Glutathione is important to deal with stress conditions, such as osmotic
and oxidative stress, encountered in the rhizosphere, and mutants in glutathione bio-
synthesis are severely affected in rhizosphere colonization (41). The predicted catabo-
lism of glycolate via glyoxylate produces the reactive oxygen species hydrogen perox-
ide, which could contribute to the need for glutathione synthesis. Polyphosphate has
recently been suggested to play a role in the global carbon regulatory system (59), but
its function remains to be investigated in detail. It is interesting to note that an exopo-
lyphosphatase gene (RL1600) was classified as essential for persistence in the rhizo-
sphere (13), indicating an important role for phosphate homeostasis in rhizosphere col-
onization and/or competition.

Catabolism of several other compounds, such as erythritol, myo-inositol and homo-
serine, has been described to be important for competitiveness (10, 60, 61); however,
these compounds were not included in the rhizosphere model. This could be due to
the catabolism of these compounds being important at later stages of the symbiosis,
e.g., for growth in infection threads rather than in the rhizosphere. Alternatively,
uptake of these compounds could be masked in the model due to catabolic routes
that are shared with other metabolites. For example, erythritol is metabolized via the
pentose phosphate pathway (62); hence the predicted uptake and metabolism of ribu-
lose could partly be due to erythritol catabolism.

Reporter metabolites highlight plant-specific rhizosphere metabolism. As an in-
dependent validation and extension of our analysis of metabolic changes, we identified
reporter metabolites using previously published microarray data comparing Rlv3841 in
the rhizosphere of pea plants with free-living cells grown on minimal media with glucose
and ammonium chloride (10). Based on the network topology defined by a metabolic
model, the reporter metabolite algorithm identifies those compounds around which sig-
nificant changes in gene expression occur (63). This method is therefore independent of
specifying nutrient uptake from the environment. Reporter metabolites associated with
upregulated genes matched several observations from the RNA-Seq data integration
described in the previous section. In particular, several intermediates of branched-chain
amino acid synthesis, such as acetolactate, 2-hydroxyethyl-thiamine diphosphate and 2-
aceto-2-hydroxybutanoate, were identified as reporter metabolites (Fig. 5A). Significant
transcriptional changes were also observed around various nucleobase derivatives. This
may be related to their predicted uptake from plant root exudates but could also indi-
cate an increased need for nucleotide synthesis for the production of polysaccharides
and Nod factor. Phosphoribosyl-AMP and phosphoribosylformiminoaicar-phosphate are
intermediates of histidine biosynthesis and direct precursors of AICAR, which is involved
in purine metabolism. Because no additional metabolites of the histidine biosynthetic
pathway were identified as reporter metabolites, this analysis indicates an increase in
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AICAR synthesis, which seems to be required for successful legume infection by various
Rhizobium species (64).

Comparison of the rhizosphere reporter metabolites for pea (host legume for
Rlv3841) with those for alfalfa (non-host legume) (Fig. 5B) and sugar beet (non-legume)
(Fig. 5C) highlighted several plant-specific features. For alfalfa, phosphoribosyl-AMP
was identified as a reporter metabolite similar to pea. In addition, phenylalanine and
tyrosine support the role of aromatic amino acid metabolism in colonization competi-
tiveness (10). Significant transcriptional changes also occurred around the carbon poly-
mer beta-glucan and the diamine putrescine. While beta-glucan generally appears to
be important for persistence in the rhizosphere (10, 13), its identification as a reporter
metabolite together with putrescine indicates increased osmotic stress in the alfalfa
rhizosphere compared to pea. For sugar beet, the identification of several compounds
involved in nitrogen metabolism (ammonia, urea, urate) agrees with the suggested
nitrogen limitation in the sugar beet rhizosphere, but nitrogen sufficiency in legume
rhizospheres (10). This could also explain why the carbon polymer glycogen was a re-
porter metabolite specifically in the sugar beet rhizosphere because glycogen synthe-
sis is probably linked to nitrogen limitation (65). Notably, multiple mono- and disaccha-
rides and their derivatives indicate an increased importance of sugar metabolism
compared with legume rhizospheres. However, many genes involved in saccharide me-
tabolism are associated with multiple reactions (e.g., unspecific glucoside hydrolases),
and therefore the identity of the metabolized sugar cannot be derived from this analy-
sis. Finally, the reporter metabolites 3-dehydrocarnitine and betainyl-CoA indicate

FIG 5 Reporter metabolites in different rhizospheres. Reporter metabolites were calculated using microarray data for Rhizobium
leguminosarum bv. viciae 3841 in the rhizosphere of pea (A), alfalfa (B), and sugar beet (C) compared with free-living cells grown in minimal
media with glucose and ammonia (10). The heatmaps show the negative decimal logarithm of the P value for those metabolites that were
associated with significant (P , 0.05) transcriptional changes among genes upregulated in the rhizosphere. [c0] and [e0] indicate cytosolic
and extracellular metabolites, respectively.
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either accumulation of amines for osmoprotection or catabolism of carnitine or related
amines. These findings present interesting targets for future investigations using gene
essentiality screens on different plant hosts.

Overall, both the context-specific model obtained by transcriptome data integra-
tion and the reporter metabolite analysis were in good agreement with experimental
data for rhizobial metabolism in the rhizosphere without forcing the uptake of any
compound through arbitrary constraints. Instead, insights into nutrient uptake were
facilitated by the integration of gene expression and gene essentiality data with
iCS1224. If biomass production were simply maximized with unlimited availability of all
root exudate compounds, this would result in uptake of all available compounds that
are required for biomass formation, which would not reflect a biologically meaningful
scenario.

Metabolism of undifferentiated nodule bacteria. We next sought to develop
models for Rlv3841 inside the nodule environment. For this purpose, it is important to
differentiate between nodule bacteria at the tip of the nodule, which are dividing and
undergoing differentiation, and bacteroids in the central nitrogen fixation zone of the
nodule (66). While nodule bacteria are still dividing, bacteroids are growth-arrested
and mainly catabolize plant-provided dicarboxylates to fix atmospheric N2 into ammo-
nia. The distinction between these developmental stages is required in the context of
gene essentiality analyses because genes required for the differentiation process may
not be essential for nitrogen fixation and vice versa. Similar to the approach for the rhi-
zosphere model, we used RIPTiDe to obtain models for nodule bacteria and bacteroids
and performed flux sampling to identify those reactions that are most likely to be
active in each contextualized model.

The model for nodule bacteria was obtained using published dRNA-Seq data for
RNA extracted from nodule tips (67), as well as a list of genes that were predicted to be
specifically essential for nodule bacteria (13). Nutrient availability was defined based
on a study using biosensors to detect metabolites inside nodules (12) and our direct
measurement of metabolites in pea root exudate, in pea bacteroids and in the nodule
cytosol as described previously (43) (Table S3, Data set S2). The biomass objective func-
tion was used to account for the cell division occurring as rhizobia grow down infec-
tion threads and differentiate into bacteroids and positive lower bounds were placed
on demand reactions for exopolysaccharides and lipopolysaccharides. The nodule bac-
teria model contained 510 reactions and 502 metabolites and achieved highest corre-
lation with the transcriptome data (Spearman’s Rho = 0.335, P , 0.001) when the
objective value was constrained to 65% of its maximum. The observation that higher
correlation was obtained for lower flux through the objective reaction (compared to
the rhizosphere) indicates that the metabolism of nodule bacteria is not oriented to-
ward maximum growth. This agrees with experimental data showing that growth of
infection threads proceeds at highly variable rates controlled by the plant host (68).
The improved correlation of flux predictions and gene expression data compared with
the rhizosphere model can be explained by the lower number of essential genes,
which places fewer constraints on the reactions included in the contextualized model.

Malate, fructose, xylose, myo-inositol, and g-aminobutyrate (GABA) were all pre-
dicted to be taken up by nodule bacteria (Fig. 6A and Fig. S2). Biosensors for these car-
bon sources were strongly induced in young nodules, whereas biosensors for the car-
bon sources that were removed during the data integration process (erythritol,
mannitol, formate, malonate, tartrate) only showed weak induction (12). Malate and
GABA are both catabolized in the TCA cycle, indicating that it is an important catabolic
route in differentiating nodule bacteria despite transport of dicarboxylates being non-
essential for differentiation into bacteroids (69). Enzymes involved in GABA metabolism
are highly induced in bacteroids, although GABA catabolism is not essential for effec-
tive nitrogen fixation (70). The predicted catabolism of fructose is consistent with the
strong induction of a fructose-specific biosensor in nodules (12) as well as a previous
modeling study of S. meliloti suggesting the use of sucrose-derived sugars as a carbon
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source by differentiating nodule bacteria (28). Sucrose uptake was removed from the
nodule bacteria model, which may be due to the inability of the model to accurately
distinguish between sucrose and fructose uptake based on the gene expression data.
It is interesting to note that Rlv3841 bacteroids mutated in a subunit of succinyl-CoA
synthetase, which had severely reduced nitrogen fixation capacity, had 168-fold higher
levels of fructose than wild-type bacteroids and 151-fold elevated levels of sucrose
(Data set S2), which may be the result of carbon source build-up in the developmen-
tally impaired nodule bacteria and bacteroids. Myo-inositol is present in the rhizo-
sphere (12) and abundant in pea nodules (71), and mutants in myo-inositol catabolism
have strongly reduced competitiveness compared with wild-type Rlv3841 (60).
However, the activity of enzymes involved in myo-inositol catabolism is very low in
mature bacteroids (71), and mutants in myo-inositol catabolism were not disadvan-
taged during growth in the rhizosphere compared to wild-type Rlv3841 (60). In addi-
tion, it has been proposed that catabolism of rhizopines, which are inositol derivatives,
by undifferentiated nodule bacteria may be important as a kin selection strategy (72).
Catabolism of myo-inositol is therefore most likely to play a role during infection and
in undifferentiated nodule bacteria, which is correctly predicted by the model. Xylose
enters the pentose phosphate pathway, and its predicted uptake could be related to

FIG 6 Metabolism of undifferentiated nodule bacteria and nitrogen-fixing bacteroids. Maps showing
schematic representations of the main pathways predicted to be active in undifferentiated nodule
bacteria (A) and nitrogen-fixing bacteroids (B). Compounds predicted to be taken up are indicated in
bold green. Note that the magnitude of flux is not indicated in these summary maps.
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the importance of nucleotide synthesis, both for DNA endoreduplication and synthesis
of exopolysaccharides and lipopolysaccharides. Similarly, uptake reactions for the
nucleoside guanosine and uridine as well as the nucleobase adenine were present in
the model.

Our nodule bacteria model predicted uptake of most amino acids, which agrees
with the severe symbiotic defect of a gltB mutant unable to transport amino acids (73)
but may also be a result of a beginning general downregulation of biosynthetic func-
tions as rhizobia transition into growth-arrested bacteroids. Similar to the rhizosphere
bacteria, leucine was predicted to be synthesized from 2-isopropylmalate. Expression
of nod genes is elevated in nodule bacteria at 7 days postinoculation (74), which could
explain the predicted leucine synthesis as discussed for the rhizosphere model.

Metabolism of bacteroids. To extract a model specific for nitrogen-fixing bacte-
roids, we used dRNA-Seq data derived from the middle of nodules (67), which contains
fully differentiated bacteroids performing nitrogen fixation (66). In addition, a list of 38
genes that were present in the model and encoded proteins significantly upregulated
in bacteroids compared to free-living bacteria (23) and the dct genes (75) were speci-
fied to ensure inclusion of those genes in the bacteroid model. Nitrogenase activity
was set as the objective function while low levels of protein and fatty acid production
were enforced through demand reactions. Nutrient availability was specified similar to
the considerations for nodule bacteria (Table S4). Gene essentiality data from the
INSeq screen were not included for model contextualization due to the aforemen-
tioned difficulty of determining the developmental stage where a gene is essential
inside the nodule environment. In contrast to our previously reconstructed model for
bacteroid metabolism (iCS323) (23), the bacteroid model was thus obtained using a
top-down approach to constrain iCS1224 rather than assembling individual pathways
in a bottom-up manner, and uptake of a wider range of nutrients was enabled. The
bacteroid model contained 307 reactions and 308 metabolites and achieved significant
correlation with the transcriptome data (Spearman’s Rho = 0.348, P , 0.001) when
nitrogenase activity was constrained to 65% of its maximum. The reduced model size
compared to both the rhizosphere and the nodule bacteria model is in agreement
with the reduced physiological complexity of the non-dividing bacteroids (3, 74). Out
of the 236 metabolic reactions in the bacteroid model, 137 (58.1%) are not present in
iCS323. This difference is partly due to a more detailed representation of fatty acid bio-
synthesis in the bacteroid model derived from iCS1224, accounting for 50 reactions
that are not shared with iCS323. In addition, pathways for the synthesis of cofactors
such as cobalamin, ubiquinone, and heme comprise 53 reactions in the bacteroid
model derived from iCS1224 but are not included in iCS323. Out of the 108 metabolic
reactions that are present in iCS323 but absent from the bacteroid model derived from
iCS1224, 64 are involved in amino acid biosynthesis because amino acid uptake was
not permitted in iCS323.

The bacteroid model contained the C4 dicarboxylates malate, succinate, and fuma-
rate as the main carbon sources in agreement with experimental evidence (42, 69)
(Fig. 6B and Fig. S3), and only low levels of GABA uptake were predicted. Ammonia
was the only nitrogenous export product. Consistent with our previous modeling study
of Rlv3841 bacteroids (23), constraining the oxygen uptake prior to data integration
resulted in nitrogen partly being secreted as alanine. With the metabolites provided in
initial simulations, the glyoxylate cycle comprising isocitrate lyase and malate synthase
was contained in the model, which is consistent with the high induction of malate syn-
thase (74) but disagrees with the lack of isocitrate lyase activity in pea bacteroids (76).
The source of glyoxylate for the malate synthase reaction has so far not been eluci-
dated. Because the metabolomics data showed that glycolate is present in the nodule
cytosol and glycolate concentrations in bacteroids are 2-fold elevated compared to
free-living cells (Data set S2), we allowed for glycolate uptake by the bacteroid model
and inactivated the isocitrate lyase reaction. This resulted in substantial uptake of gly-
colate, which was converted into glyoxylate that was used in the malate synthase
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reaction. Glycolate provision by the plant may therefore explain the increase in malate
synthase expression in the absence of isocitrate lyase activity.

The model also predicted uptake of xylose, which was metabolized in the pen-
tose phosphate pathway to support synthesis of nucleotides. Dicarboxylate catabo-
lism generally requires gluconeogenesis to provide precursors for the synthesis of
nucleotides and some amino acids. Due to the predicted uptake of xylose, only
minor fluxes through the reactions involved in gluconeogenesis occurred, highlight-
ing the importance of this pathway in bacteroids as an interesting question to
explore using targeted mutant studies. Proton uptake by bacteroids was required as
previously predicted for S. meliloti bacteroids (28) and a demand reaction for PHB
was retained in the model. PHB synthesis was highly variable across flux samples,
which is in agreement with its previously suggested role for carbon and redox bal-
ancing (23, 43).

Low levels of uptake were predicted for most amino acids to support the required
synthesis of protein, but no significant catabolism of any amino acid was observed.
Mutant studies have shown a requirement for branched-chain amino acid supply to
bacteroids (55), and the model predicted that isoleucine is supplied by the plant.
Interestingly, histidine was predicted to be synthesized rather than taken up by bacte-
roids. Several proteins involved in histidine synthesis were upregulated or unchanged
in abundance in the bacteroid proteome compared to free-living Rlv3841 (23), in con-
trast to the general downregulation of amino acid biosynthesis (3). Similar results were
obtained in a proteome study of Rhizobium etli (24) and RNA-Seq data for bacteroids of
R. leguminosarum bv. viciae A34 and R. leguminosarum bv. phaseoli 4292 (77). In addi-
tion, mutants of R. leguminosarum bv. trifolii lacking histidinol dehydrogenase activity
formed ineffective nodules on clover (78). To investigate the requirement for histidine
biosynthesis, we compared the amino acid composition of the Nif and Fix proteins,
which are highly expressed in bacteroids, with the overall amino acid composition of
the Rlv3841 proteome (Table S5). We found a significant (P = 0.042) enrichment of his-
tidine in the Nif and Fix proteins, which could at least partly explain why histidine bio-
synthesis is required in bacteroids.

DISCUSSION

In this study, we present the first curated GSM for Rlv3841, a model strain for inves-
tigating rhizobium-legume interactions and a natural symbiont of the agriculturally im-
portant crop pea. GSMs have emerged as promising tools for informing experimental
design, addressing fundamental research questions, and contextualizing experimental
data (79). In order to obtain a high-quality model, integration of experimental data dur-
ing model curation and validation is essential (80). We therefore evaluated our model
using carbon source utilization, gene essentiality data and flux data obtained by 13C
labeling and observed high agreement between model predictions and experimental
data.

We further used the GSM to elucidate metabolic changes in Rlv3841 as it transi-
tions from a free-living soil bacterium in the rhizosphere to an undifferentiated nod-
ule bacterium and finally to a nitrogen-fixing bacteroid. While significant advances in
determining metabolic requirements for successful symbiosis formation have been
made using transcriptome data (10) and gene essentiality screens (13), genome-scale
data sets are often difficult to interpret without the framework of a comprehensive
model, especially when information about nutrient uptake is missing. To this end, we
employed approaches integrating gene expression and metabolome data as well as
gene essentiality predicted by INSeq to obtain condition-specific models. This
allowed us to contextualize our model based on experimental data without assuming
uptake rates for any nutrient. In addition, during the process of data integration, dif-
ferent fractions of the optimum objective value were tested as constraints to find a
solution with the highest correlation between gene expression and associated reac-
tion fluxes. Especially for nodule bacteria and bacteroids, using sub-optimal fluxes
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through the objective function as constraints during model contextualization was
found to produce better agreement with experimental data. Objective functions can
be difficult to define outside of defined growth in a laboratory culture, and our
results highlight the need to adopt strategies beyond maximization of a biomass
objective function to accurately capture metabolic behavior in complex environmen-
tal settings. A clear limitation of our approach is the imperfect correlation of gene
expression and protein abundance, as well as protein abundance and enzyme activ-
ity (81, 82). Catabolic pathways common to multiple different compounds can further
make it difficult to specifically determine which nutrient is taken up. Nevertheless,
our model predictions are in good agreement with known metabolic characteristics
of the different lifestyles of Rlv3841, attesting to the biological relevance of our
findings.

The rhizosphere model showed substantial uptake of glycolate, aspartate, and
glutamine as well as mono- and oligosaccharides. These predictions are consistent
with our previous transcriptional study of Rlv3841 in the rhizosphere of pea, alfalfa,
and sugar beet (10) as well as nutrient uptake of a Rhizobium sp. from root exudates
of Arabidopsis (47). Similarly, a model of S. meliloti predicted the importance of gluco-
neogenesis in the rhizosphere due to uptake of organic acids (9). We further identi-
fied a requirement for leucine synthesis in the rhizosphere, as well as a potentially
important role for polyphosphate synthesis. However, the predicted nutrient uptake
was not supported by gene essentiality predictions in all cases. While both genes pre-
dicted to be essential by INSeq and our metabolic model generate predictions that
warrant detailed investigation using isolated mutant strains, there are other possible
explanations for this observation. First, root exudates might contain insufficient
quantities of a compound to complement an auxotrophy. In addition, the composi-
tion of plant root exudates changes over time (50), and compounds present at the
time of RNA extraction may not be present at inoculation, causing the loss of some
mutants. Finally, for genes that are essential on complex media, the corresponding
mutants may already be lost from or underrepresented in the bacterial population
inoculated onto plants.

The model for nodule bacteria confirmed previous results suggesting supply of
nutrients other than dicarboxylates, in particular sucrose-derived sugars, to S. meliloti
during the differentiation process (28). Interestingly, we found that myo-inositol ca-
tabolism was only predicted for nodule bacteria, but not in the rhizosphere or in bac-
teroids. While the importance of myo-inositol catabolism for competitiveness has
been established (60), our results suggest that it may be particularly important for
differentiating bacteria rather than those in the rhizosphere. In contradiction to our
model for Rlv3841, myo-inositol catabolism in bacteroids was predicted for R. etli
(26), S. meliloti (9), and S. fredii (22). However, given the absence of transcriptional up-
regulation of myo-inositol catabolic genes (74) and enzyme activity in Rlv3841 bacte-
roids (71), our model is consistent with experimental data, suggesting that myo-inosi-
tol catabolism in bacteroids may only occur in some symbioses. For bacteroids,
biosynthesis of histidine was found to be important in contrast to the general uptake
predicted for most other amino acids. In addition, low levels of xylose uptake were
predicted to support nucleotide synthesis in bacteroids. This result indicates that a
carbon source metabolized in the pentose phosphate pathway may be provided to
bacteroids, which presents an interesting area to explore experimentally using
mutants affected in gluconeogenesis. Substantial activity of the pentose phosphate
pathway in bacteroids has also been predicted for S. meliloti (9) and R. etli (24), but
only small fluxes through this pathway were predicted for S. fredii (22), indicating
strain- and/or host plant-specific differences. Initial predictions of isocitrate lyase ac-
tivity, which disagree with measured enzyme activities in bacteroids, led us to
hypothesize that glycolate is provided to bacteroids. This is supported by metabolo-
mics data and could explain the induction of malate synthase in bacteroids without
concomitant expression of isocitrate lyase.
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In summary, our results provide insights into rhizobial metabolism in the rhizo-
sphere, which can inform the design of more competitive rhizobial inocula as well as
plants that secrete metabolites to specifically enrich beneficial bacterial strains. Our
understanding of the nutrient exchanges between plants and rhizobia at different de-
velopmental stages inside nodules remains incomplete (3, 83), and the predictions pre-
sented herein provide a foundation for targeted investigation of amino acid and cen-
tral carbon metabolism in particular. We anticipate that the highly curated metabolic
model for Rlv3841 presented in this article will provide a valuable resource for the
reconstruction of GSMs for related species.

MATERIALS ANDMETHODS
Model reconstruction. To reconstruct a GSM for Rlv3841, we combined information from multiple

databases, which has been shown to significantly improve the scope of metabolic network reconstruc-
tions (84). All reconstructions were performed based on RefSeq assembly GCF_000009265.1. We used
the RAVEN Toolbox 2.0 (85) to create draft models from KEGG (29) and MetaCyc (30) using the functions
getKEGGModelForOrganism and getMetaCycModelForOrganism, respectively. In addition,
template-based reconstruction based on BLAST bidirectional hits was performed using a curated GSM
for S. meliloti 1021 (iGD1348 [28]) as a template for the function getModelFromHomology. All models
were merged into one reaction list and reaction and compound identifiers were unified based on the
reaction database provided by the ModelSEED (86), followed by removal of duplicate reactions. Starting
from this database of reactions compiled from different sources, the reconstruction was curated. First,
reactions without gene association were removed. Reactions involving nonspecific compounds such as
“acceptor” or “protein” were also deleted, as well as reactions involved in the biosynthesis and catabo-
lism of secondary metabolites and non-metabolic processes, such as DNA and RNA modification
because those were outside of the scope of our model. Extensive curation was then performed by evalu-
ating metabolic pathways guided by the literature and the KEGG database. Pathways for catabolism of
small carbon sources in particular were reconstructed based on predictions obtained from GapMind
(87). Gene-protein-reaction associations were curated based on published gene essentiality data for
growth in minimal (31) and complete (13) media as well as enzyme commission (EC) number predictions
obtained from DeepEC (32).

Transport reactions were annotated based on literature evidence, in particular homology to experi-
mentally characterized transporters in S. meliloti (88) and the annotation obtained from TransportDB 2.0
(89). We manually reconstructed pathways for organism-specific biomass components, such as lipopoly-
saccharides and exopolysaccharides, as well as pathways which were not present in any of the databases
used for reconstruction, such as carnitine metabolism. To improve information on reaction directionality,
upper and lower bounds were adjusted according to the information in a highly curated model for E.
coli (iML1515 [33]) and the CarveMe template model for Gram-negative bacteria (34).

The biomass objective function was defined as follows: The composition of DNA was determined
from the RefSeq genome sequence. Similarly, RNA and protein composition were determined by
counting nucleotides or amino acids in the annotated RNAs and protein coding sequences, respec-
tively. Because the lipid composition of Rlv3841 has not been investigated so far, we adopted the val-
ues reported R. leguminosarum bv. trifolii ANU843 (90). R. leguminosarum produces predominantly C18
fatty acids, as well as smaller quantities of C16 fatty acids (43, 91), and representative phospholipids in
our model included fatty acids with these chain lengths. Lipopolysaccharides and exopolysaccharides
were included with the fractions previously reported for S. meliloti (92). Cyclic beta-glucans have so far
not been considered in metabolic models for rhizobia; however, they can make up a significant frac-
tion of the cellular dry weight (93) and were therefore also included as a biomass component. Apart
from the main cell components, trace amounts of cofactors identified as universally essential in pro-
karyotes (94) were included in the biomass objective function. Phytoene was also added to the bio-
mass reaction due to the essentiality of the genes associated with its biosynthetic pathway. Carbon
polymers such as glycogen, PHB, and fatty acids, as well as polyamines such as homospermidine and
putrescine, are known to be produced by Rlv3841; however, the quantities in which they are produced
vary depending on nutrient availability. Similar to our previous work (23), we therefore added demand
reactions for these compounds to allow for variable accumulation. Glycogen and PHB were also
included in the biomass objective function as they are commonly synthesized by free-living R. legumi-
nosarum (95). A complete description of the biomass composition used in this study is given in
Table S1.

General modeling procedures. Standard metabolic modeling computations were performed in
MATLAB R2020b (Mathworks) using scripts from the COBRA Toolbox v3.0 (96) and the Gurobi 9.1.1
solver (www.gurobi.com). When using the optimizeCbModel function, the Taxicab norm was mini-
mized to avoid loops in the calculated flux distributions. All scripts are available on Github (https://
github.com/CarolinSchulte/Rlv3841-lifestyles).

Model validation. To evaluate the agreement between model predictions and experimentally deter-
mined carbon source utilization, we limited our analysis to those compounds that were either present in
the model or showed a positive growth phenotype in the phenotype microarray experiment. The lower
bounds for the exchange reactions were then adjusted according to the composition of universal mini-
mal salts (UMS) media (31) with ammonium as a nitrogen source, and flux through the biomass reaction
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was evaluated for each carbon source individually added to the model. Accuracy, precision, and recall
for carbon source utilization and gene essentiality analysis were calculated according to the following
equations:

accuracy ¼ TP1 TN
TP1 TN1 FP1 FN

precision ¼ TP
TP1 FP

recall ¼ TP
FP1 FN

TP: true positives FP: false positives
TN: true negatives FN: false negatives

Gene essentiality analysis was performed using the function singleGeneDeletion with the mini-
mization of metabolic adjustment (MOMA) option in the COBRA Toolbox, while all components of UMS
media with succinate and ammonia were available without constraints on their uptake rate. The predic-
tions were compared with gene essentiality data for Rlv3841 determined by INSeq (13, 31). Genes that
were experimentally classified as essential or defective were considered essential in our analysis. The
threshold for a gene to be considered essential in silico was set to 50% of the wild-type growth rate
because all mutant strains are grown in a single culture for an INSeq experiment, and a slower growth
rate will therefore decrease the abundance of a mutant even if the gene carrying the insertion is not
absolutely essential. Growth rates were determined by allowing unlimited uptake of UMS media compo-
nents and ammonia while either glucose or succinate was provided as the sole carbon source. Uptake
rates of glucose and succinate were constrained to the experimentally determined values of 1.710 mmol
h21 per g cellular dry weight and 3.224 mmol h21 per g cellular dry weight, respectively (41).

For comparison with 13C labeling data, boundary conditions were set to allow for unlimited uptake
of UMS media components. The succinate uptake rate was constrained to 1 flux unit and flux balance
analysis was performed maximizing the biomass objective function. In addition, loopless flux variability
analysis was performed where the objective fraction was set to 95% of the optimum value.

Data integration for model contextualization. The Python implementation of RIPTiDe (https://
github.com/mjenior/riptide) (44) was used to generate condition-specific models of iCS1224. Max fit
RIPTiDe was run for objective flux fractions between 0.5 and 0.95 with 0.05 increments, and the context-
specific models with the highest correlation between flux values and transcriptome data were used in
further analyses.

In addition to the nutrient availability determined based on experimental data, trace elements and
vitamins required for flux through the objective function were added to the in silico representation of
each environment. If an exchange and transport reaction for a compound already existed in the model,
the lower bound of the exchange reaction was set to –1,000. If a compound was only present as an in-
tracellular metabolite, a sink reaction for this metabolite with lower bound set to –1,000 and upper
bound set to 0 was added. This was done to avoid erroneous exclusion of metabolites which are present
in the environment, but for which transporters have not been identified. Some cofactors and central
intermediates of carbon metabolism, such as glyceraldehyde 3-phsophate, were excluded from environ-
mental representations because their uptake would result in unspecific predictions for metabolic path-
way activity.

Data integration for rhizosphere model. For the rhizosphere model, compounds that have been
detected in pea root exudates (10, 12, 51, 52) and that could be matched to model metabolites were
specified with unlimited availability (Table S2). Flux through the biomass reaction as described in the
previous section was set as the objective function and, in addition, a lower bound of one flux unit was
set for demand reactions for Nod factor, lipopolysaccharides, and exopolysaccharides, because these
compounds are known to be produced as part of the root colonization process (4). RPKM values for
RNA-Seq data obtained from Rlv3841 in the pea rhizosphere 7 days postinoculation were provided as an
input, and all genes that are present in the model and were classified as essential or defective in the rhi-
zosphere (13) were specified as model tasks to prevent removal of the associated reactions during the
pruning process.

The reporter metabolite algorithm was implemented as previously described (63) using the
reporterMetabolites function from the RAVEN Toolbox 2.0 (85).

Data integration for nodule bacteria model. For nodule bacteria, all metabolites that were
detected by rhizobial biosensors in pea nodules (12) were allowed to be taken up without limitation, as
well as all amino acids and metabolites whose abundance was at least 10-fold higher in the nodule cyto-
sol compared to root exudates (Table S3). A lower bound of one flux unit was set for lipopolysaccharide
and exopolysaccharide demand reactions and biomass production was used as the objective function.
RPKM values for dRNA-Seq data obtained from the tip of pea nodules were provided as an input, and all
genes that were classified as essential or defective for nodule bacteria (13) were specified as model tasks
to prevent removal of the associated reactions during the pruning process.

Data integration for bacteroids. Similar to the nodule bacteria model, metabolites detected in nod-
ules by rhizobial biosensors, and all amino acids were made available to the bacteroid model (Table S4).
However, fructose and sucrose were not included since they are known to be poorly oxidized by
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bacteroids (97). Inclusion of the metabolites increased in the nodule cytosol compared with root exu-
dates led to a decrease in correlation of flux predictions and gene expression data, and those metabo-
lites were therefore omitted from the nutrients available to bacteroids. A lower bound of 1 flux unit was
set for the synthesis of fatty acids and proteins and flux through the nitrogenase reaction was used as
the objective function. RPKM values for dRNA-Seq data obtained from the middle of pea nodules were
provided as an input, and all genes associated with proteins significantly upregulated in bacteroids com-
pared to free-living cells (23) were specified as model tasks to prevent removal of the associated reac-
tions during the pruning process.

Phenotype MicroArrayTM analysis. Carbon source utilization of Rlv3841 was assessed using the phe-
notype microarray technology (Biolog, Hayward, USA). A liquid culture of Rlv3841 was grown at 28°C in
UMS media supplemented with 10 mM glucose, 10 mM ammonium chloride, and a vitamin solution as
previously described (31). Cells were spun down and washed three times in UMS without addition of a car-
bon or nitrogen source. The optical density at 600 nM was then adjusted to 0.1 with UMS supplemented
with 10 mM ammonium chloride and vitamins, and 100 mL of cell suspension were added to each well of
the phenotype microarray plate. After overnight incubation without shaking at 28°C, 10 mL of a 0.1% (wt/
vol) stock solution of 2,3,5-triphenyltetrazolium chloride in water were added to each well. Plates were
then incubated in an Omega FluoStar plate reader with double orbital shaking at 500 rpm and the absorb-
ance at 505 nm was measured every 15 min. Absorbance values were analyzed using the DuctApe soft-
ware (98), and all carbon sources with an activity value higher than the water control were considered to
support growth. For activity values close to the growth threshold, curves were manually inspected, and lit-
erature searches were performed to determine if the carbon source supports growth of R. leguminosarum.
The full DuctApe output for the phenotype microarray analysis is available in Data set S1.

Metabolomics data. Metabolomics data were obtained in a previous study (43), where only values
for metabolites relevant to the investigated metabolic pathways were published. The full metabolomics
data set is included as Data set S2.

Sample preparation for RNA-Seq of rhizosphere bacteria. For total RNA extraction from Rlv3841
in the pea rhizosphere, Pisum sativum cv. Avola seeds were surface sterilized and sown in sterilized boil-
ing tubes with fine vermiculite and nitrogen-free rooting solution. Pea seeds were grown in the dark for
3 days and then transferred to a controlled environment room, where they were grown at 25°C with a
16:8-h photoperiod for another 4 days. On day 7, 1 mL (108 CFU/mL) of washed Rlv3841 cells was added
near the root. At 7 days postinoculation, rhizobial cells were harvested from the rhizosphere as previ-
ously described (10). RNA was extracted for three biological replicates where the total RNA extracted
from the pea rhizosphere of 16 boiling tubes was pooled for each replicate. Quality and quantity of the
total RNA was assessed using Experion StdSens (Standard Sensitivity) and HighSens (High Sensitivity)
analysis kits. Total RNA (3 mg per sample) was treated with the TURBO DNA-free kit (Invitrogen AM1907)
as previously described (10). Depletion of genomic DNA was confirmed by performing a Qubit fluorome-
ter double-stranded DNA broad range assay. Finally, the rRNA was depleted from the RNA sample using
the Illumina Ribo-Zero rRNA removal kit, Gram-negative (MRZGN126) according to the manufacturer’s
instructions. The rRNA-depleted mRNA was purified using the ZymoResearch RNA Clean & Concentrator
50. mRNA samples were used to generate barcoded cDNA libraries for multiplexing during sequencing
using the Ion Total RNA-Seq kit v2 (Thermo Fisher Scientific). Each barcoded cDNA library was quantified
using the Agilent Bioanalyzer High Sensitivity DNA kit and diluted to a final concentration of 70 pM.
Equal volumes of the diluted cDNA libraries were pooled before loading on the IonChef for template
preparation and chip loading. Finally, the chips were sequenced in an Ion Proton Semiconductor based
sequencing platform (Thermo Fisher Scientific). The full data set is available on the NCBI SRA database,
BioProject number PRJNA748006.

Data analysis for RNA-Seq of rhizosphere bacteria. RNA-Seq data was de-multiplexed based on
valid barcodes and data for each library was downloaded in fastq format. The overall quality of the
sequencing and the data was assessed based on the Torrent Browser suite sequencing run report sum-
mary. Data from each library was assessed using FastQC (Babraham Institute; https://www.bioinformatics
.babraham.ac.uk/projects/fastqc/) and any remaining adapters and low-quality reads were filtered using
cutadapt (99). The data for each library was mapped against the Rlv3841 genome using EDGE-pro (100)
developed specifically for bacterial RNA-Seq data. EDGE-pro uses Bowtie2 to map the reads to the genome
and calculates the frequencies per nucleotide. EDGE-pro calculates the number of reads and RPKM value
for each gene feature in the genome including mRNA, rRNA, and tRNA. The mapped reads from each
library were visualized with the Integrative Genomics Viewer (101) for further analysis.

dRNA-Seq data for nodule bacteria and bacteroids. The dRNA-Seq data used for creation of the
nodule bacteria and the bacteroid model were described previously (67) and are available on the NCBI
SRA database, BioProject number PRJNA748006.

Data availability. All data needed to evaluate the conclusions in this article are present in the article
and/or the supplementary materials. RNA-Seq data for Rlv3841 in the pea rhizosphere are available on
the NCBI SRA database, BioProject number PRJNA748006. All code and metabolic models are available
on Github (https://github.com/CarolinSchulte/Rlv3841-lifestyles).
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