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This work presents a new procedure to synthesize ruthenium–phthalocyanine complexes

and uses diverse spectroscopic techniques to characterize trans-[RuCl(Pc)DMSO] (I)

(Pc = phthalocyanine) and trans-[Ru(Pc)(4-ampy)2] (II) (4-ampy = 4-aminopyridine). The

triplet excited-state lifetimes of (I)measured by nanosecond transient absorption showed

that two processes occurred, one around 15 ns and the other around 3.8 µs. Axial

ligands seemed to affect the singlet oxygen quantum yield. Yields of 0.62 and 0.14 were

achieved for (I) and (II), respectively. The lower value obtained for (II) probably resulted

from secondary reactions of singlet oxygen in the presence of the ruthenium complex.

We also investigate how axial ligands in the ruthenium–phthalocyanine complexes

affect their photo-bioactivity in B16F10 murine melanoma cells. In the case of (I) at

1 µmol/L, photosensitization with 5.95 J/cm2 provided B16F10 cell viability of 6%,

showing that (I)wasmore active than (II) at the same concentration. Furthermore, (II)was

detected intracellularly in B16F10 cell extracts. The behavior of the evaluated ruthenium–

phthalocyanine complexes point to the potential use of (I) as a metal-based drug in

clinical therapy. Changes in axial ligands can modulate the photosensitizer activity of the

ruthenium phthalocyanine complexes.

Keywords: photodynamic therapy, photobiological assays, ruthenium-phthalocyanine complexes, B16F10 murine

melanoma cells, cell viability

INTRODUCTION

In recent years, the use of metal–photosensitizer compounds in photodynamic therapy (PDT)
has been proposed: such compounds allow a combinatory approach involving chemo and
light irradiation therapy to be applied against cancer (Zhang et al., 2018). In this context,
phthalocyanine-based complexes, which present strong absorption in the therapeutic window,
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good singlet oxygen quantum yield, and excellent thermal
stability (Robertson et al., 2009; Liu et al., 2018), have aroused
great interest and have been considered second-generation
photosensitizers for use in PDT. In general, hexacoordinated
phthalocyanine complexes bearing different d-metal ions can be
synthesized (Liu et al., 2007; Kabwe et al., 2019; Mohammed
et al., 2019; Yin et al., 2019), to afford flexible environments that
could form octahedral species. To explore the structure–activity
relationship of this group further, it is important to investigate
the anti-cancer efficacy and specificity of new phthalocyanine
complexes, which may shed light on the cytotoxicity of these
compounds during clinical therapy of different types of cancer.
To this end, new synthetic procedures involving template
processes have emerged as a possibility to overcome the low
yield and purity of metal–phthalocyanine species (Kantekin
et al., 2006; Alzeer et al., 2009; Bartlett et al., 2018) that
are usually obtained in reported synthetic procedures. Metal–
phthalocyanine complexes (MPcs) have had their photochemical
and photophysical extensively explored, but photobiological
assays involving these complexes have been described less
frequently (Nyokong, 2007; Lourenço et al., 2014; Ahmetali
et al., 2019; Uslan et al., 2019). Insertion of heavy metals in the
phthalocyanine cavity usually provides the complex with low
fluorescence intensity because the intersystem crossing effect is
enhanced (Tekdaş et al., 2012; Mehraban and Freeman, 2015;
Matlou et al., 2019). This effect has been considered a limitation
that prevents this kind of system from being applied in a
theranostic approach. Understanding the fundamental aspects
involved in the photo-reactivity of ruthenium–phthalocyanine
complexes may support the development of new strategies to use
metal-based drugs in light irradiation therapy.

Here, we present a new and potentially useful method to
synthesize MPcs. Bearing in mind that ruthenium complexes
containing DMSO and 4-amynopyridine ligands are toxic
to cancer (Krstić et al., 2010; Brabec and Kasparkova,
2018; Angerani and Winssinger, 2019; Shum et al., 2019),
we propose the synthesis of ruthenium–phthalocyanine
complexes such as trans-chloro(dimethylsulfoxide)phthalo
cyanineruthenium(III) (trans-[RuCl(Pc)(DMSO)], or (I),
and trans-bis(4-aminopyridine)phthalocyanineruthenium(II)
(trans-[Ru(Pc)(4-ampy)2], or (II), and describe the effect of the
molecular structure on their cytotoxicity to melanoma murine
cells. In the case of B16F10 cells, (I) provided interesting results:
at 1 µmol/L, it promoted light-induced cell death of 94.0%,
whereas (II) reduced cell viability even in the dark.

EXPERIMENTAL

Chemicals
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,2-dicyanobenzene,
1,3-diphenylisobenzofuran (DPBF), 4-aminopyridine, and
MTT–M5655 were purchased from Sigma-Aldrich and used
as received. Calf thymus DNA was acquired from Sigma
and purified by dialysis against 5mM Tris and 50mM NaCl
(pH = 7.5) buffer three times over a 48-h period. The non-
essential amino acids MEM, trypan blue solution, and culture
medium RPMI 1640 were purchased from Sigma-Aldrich.

Dimethylsulfoxide (DMSO), methanol, chloroform, and 1-
pentanol were obtained from Synth. Ruthenium(III) chloride
hydrate (RuCl3.nH2O) was acquired from Acros. Silica gel 200–
400 mesh (Sigma-Aldrich) was employed for chromatographic
purification. All the other reagents were purchased from Sigma
and used as received.

Equipment
The ground-state electronic absorption spectra were recorded
on Agilent 8453 and Hitachi U-3501 spectrophotometers. The
Raman spectra were acquired on a HORIBA JobinYvonLab
Ram HR Micro Raman spectrometer (laser at 632.8 nm and 17
mW, exposure time of 80, two accumulations). The spectrum
of trans-[Ru(Pc)(4-ampy)2] NMR 1H (400 MHz) was recorded
on a BRUKER R©-Model DPX400 spectrometer; DMSO-d6 was
used as solvent. The mass spectra were acquired on a MALDI-
TOF/TOF Ultraflextreme (Bruker Daltonics) mass spectrometer.
Electronic Paramagnetic Resonance spectroscopy (EPR) was
carried out on a JEOLJEOL JES-FA 200 (9.5Hz) apparatus,
at room temperature. The fluorescence emission spectra were
registered on an RF-5301PC Shimadzu spectrofluorimeter. The
infrared spectra were acquired on a Prestige-21 Shimadzu
FTIR spectrometer (KBr pellets). The fluorescence lifetimes
were measured on a MicroTime 200–PicoQuant device (time-
resolved confocal fluorescence microscope with unique single
molecule sensitivity). The complexes were excited with a
diode laser bundle λex = 640 nm; FWHM: 0.080-ns excitation
pulse. Fluorescence was emitted, collected, and analyzed with
the software SymPhoTime 5.2.4. The nanosecond transient
absorption (nsTA) experiments were performed with an optical
parametric oscillator (basiScan, Spectra-Physics) excitation
source with pulsed Nd:YAG laser (Quanta-Ray INDI, Spectra-
Physics–FWHM ∼ 8 ns). The decay curves were plotted and
analyzed with the software Igor Pro (6.3). The complexes were
solubilized in DMSO, and the electronic spectra of all the
samples were registered before and after the measurements.
The irradiations were performed with Colibri Quantum Tech
laser at 640 nm. Intracellular ruthenium concentrations were
performed by using inductively coupled plasma optical emission
spectrometry (ICP-OES, Vista-MPX CCD Simultaneous, Varian,
Mulgrave, Australia).

Synthesis of Ruthenium Complexes
trans-[RuCl(Pc)DMSO] (I)
The trans-[RuCl(Pc)DMSO] complex was synthesized according
to methodology adapted by Adeloye and Ajibade (2014). Cis-
[RuCl2(DMSO)4] (0.200 g, 0.41 mmol), 1,2-dicyanobenzene
(0.480 g, 3.7 mmol), and 2.0ml of DBU were added to 15ml
of previously distilled pentanol. The reaction was heated to
130◦C under reflux and argon for 24 h. Subsequent addition of
100ml of methanol afforded a blue solid, which was separated by
filtration. The filtered solution was concentrated to dryness in a
rotary evaporator. Next, 30ml of toluene was added to the crude
product, and the resulting solution was submitted to liquid–
liquid extraction with three 20-ml portions of water. The toluene
solution was concentrated to dryness in a rotary evaporator,
solubilized in dichloromethane, and submitted to silica gel
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column chromatography. The desired complex was eluted with
dichloromethane/methanol 10:1. Yield: (0.110 g, 45.0%). UV-vis
(DMSO), λmax (nm) (log ε): 640 (4.24), 314 (4.32). IR [(KBr) νmax

(cm−1)]: 1488 (-N=); 1411(C-H) isoindol; 1286 (C-H) in plane;
1172 (C-H) isoindol; 753 ring Pc.

trans-[Ru(Pc)(4-ampy)2] (II)
Trans-[Ru(Pc)(4-ampy)2] was synthesized by adapting the
method described by Rawling et al. (2007). First, (I) (0.100 g, 0.16
mmol) and 4-aminopyridine (0.046 g, 0.48 mmol) were added
to chloroform. The resulting mixture was kept under reflux at
60◦C for 6 h, and the resulting solution was cooled to room
temperature. Methanol/water 3:1 was added, and the precipitate
was collected under vacuum filtration. The solid was successively
washed with water and methanol and dried under vacuum. Yield:
(0.01 g, 10%). UV-vis (DMSO), λmax (nm) (log ε): 623 (4.72), 385,
317 (4.82). IR [(KBr) νmax (cm−1)]: 3452 (N-H); 1511 (C=C)
aromatic; 1488 (-N=); 1414(C-H) isoindol; 1291 (C-H) in plane;
1172 (C-H) isoindol; 753 ring Pc. MALDI-TOF MS m/z calc.
802.160, found 802.172.

Photophysical Studies
Fluorescence Quantum Yields
The fluorescence quantum yields of (I) and (II) were calculated
by a comparative method (D’Souza et al., 2011). Phthalocyanine
zinc(II) [Zn(Pc)] (8fstd = 0.2 in DMSO) was used as standard.
Excitation was conducted at 610 nm, slit 3, and Equation 1
was employed.

8f = 8fstd ·
F · Astd · n

2

Fstd · A · n2
std

(1)

where 8fstd is the fluorescence quantum yield of the standard;
Fstd and F are the area under the curve of the fluorescence
spectrum of the standard and the sample, respectively; Astd and
A are the area of the absorbance band of the standard and the
sample at the excitation wavelength, respectively; and n2 is the
refractive index of the solvent.

Photochemical Studies
Singlet Oxygen Quantum Yields
The singlet oxygen quantum yields of (I) and (II)were quantified
by an indirect method that used 1,3-diphenylisobenzofuran
(DPBF) as singlet oxygen acceptor (Tekdaş et al., 2012). Briefly,
2ml of a solution of (I) or (II) was prepared in DMSO, so
that absorbance of about 0.3 at 660 nm was achieved. [Zn(Pc)]
was used as reference, and DPBF was employed as chemical
quencher for singlet oxygen. The singlet oxygen quantum yield
was calculated on the basis of Equation 2:

81 = 81std ·
R · Iabs

std

Rstd · Iabs
(2)

where 81std is the singlet oxygen quantum yield for the standard
ZnPc (81std = 0.67 in DMSO); R and Rstd are the photobleaching
rates after irradiation of (I) or (II) and the standard, respectively;
and Iabs and Iabsstd are the rates of light absorption by (I) or (II) and
the standard, respectively.

Photodegradation Studies
The photodegradation studies were accomplished by preparing
solutions of (I) or (II) in DMSO, in order to obtain Q band
absorbance between 1.0 and 1.5. First, the spectra were registered;
then, the samples were irradiated with light at 640 nm and power
of 39 mW for 5min. The spectra were registered after each
irradiation. For each sample, between five and eight irradiations
were performed.

Cytotoxicity Studies
Cell Culture
The in vitro cytotoxicity of trans-[Ru(Pc)(4-ampy)2] (complex
II) against B16F10 murine melanoma cells in culture was
investigated. B16F10 cells were cultured in RPMI-1640
medium (R6504, Sigma-Aldrich) supplemented with 10%
fetal bovine serum and antibiotic antimycotic solution (A5955,
Sigma-Aldrich) containing 100 U/ml penicillin G, 0.1 mg/ml
streptomycin, 0.25µg/ml amphotericin B, and 2 g of sodium
bicarbonate, pH 7.4. The cells were cultured in 75-cm2 tissue
culture flasks in a humidified incubator at 37◦C with 5% CO2

until 75–90% confluence was achieved.

MTT Cell Viability Assay
B16F10 cell viability was assessed after treatments with (I), (II),
or vehicle (control condition; 1% DMSO); the thiazolyl blue
tetrazolium bromide (MTT, M5655, Sigma-Aldrich) colorimetric
assay was used. The cells were plated on 96-well cell culture plates
at 1× 105 cells/well for 24 h. The viability assays were conducted
at different concentrations, with and without light irradiation
(λ = 660 nm; dose = 5.95 J/cm2). After the treatments, the cells
were incubated with MTT solution (0.5 mg/ml) at 37◦C for 3 h
The MTT solution was discarded, and the cells were exposed to
100% DMSO at room temperature for 1 h. The absorbance was
measured at 492 nm with a multi-well plate reader. Cell viability
was expressed as the percentage of the absorption values in the
cells treated with (I) or (II) relative to the vehicle (control) cells.

Flow Cytometry Analysis
The cell death mechanism was evaluated by flow cytometer;
the Annexin V-FITC Apoptosis Detection Kit (APOAF; Sigma-
Aldrich) was used. B16F10 cells were incubated with (II) at 1
µmol/L for 24 h, with and without light irradiation (λ = 660 nm;
dose = 5.95 J/cm2). Then, the cells were incubated at 37◦C
and 5% CO2 for 24 h. After treatment, the cells were submitted
to trypsinization and stained with 5 µl of annexin V-FITC
and 1 µl of each sample (sample concentration = 100µg/ml).
The cells were then incubated at room temperature for 15min,
400 µl of 1× annexin-binding buffer was added, the mixture
was mixed gently, and the samples were kept on ice. For flow
cytometry analysis, the cells were exposed to 2% propidium
iodide solution. All the cells were analyzed by flow cytometry
(FACS CantoTM II, BD Biosciences; FAPESP #04/09448-5). The
fluorescence emission at 530/30 nm and 695/40 nm, with Argon
laser 488 nm, was measured. The data were analyzed by using the
software BD FACSDivaTM.
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FIGURE 1 | Ground-state electronic spectra of (I) (solid line) and (II) (dashed

line) at 1.3 × 10−5 mol L−1 in DMSO.

Statistical Analysis
The data are presented as the mean ± standard error mean
(S.E.M.) of at least three independent experiments (n), performed
in triplicate for each experimental n. Statistical analysis was
performed by two-way ANOVA, followed by Bonferroni post hoc.
Results with P < 0.05 were considered statistically significant.

RESULTS

Characterization of
Ruthenium–Phthalocyanine Complexes
We characterized the new ruthenium–phthalocyanine
compounds (I) and (II) by MALDI-TOF mass spectrum,
UV-vis, FTIR, EPR, Raman Resonance, and NMR. The MS
MALDI-TOF spectra showed a pseudo-molecular ion peak
for (I) and (II), which agreed with the proposed molecular
formula. For (I), we spotted peaks with m/z = 614.248 and
1226.092; for (II), the spectrum showed main peaks with m/z
= 614.056, 802.172, and 1227.102 (Supplementary Figures 1,
2). We assigned all the major peaks and considered the most
abundant ruthenium isotope. The ground-state UV-vis spectra of
(I) and (II) were typical of phthalocyanine-like species. Figure 1
shows the UV-vis absorption spectra of (I) and (II).

The electronic spectrum of complex (I) presented a Q-band
at 640 nm (log ε = 4.70) and a Soret band at 316 nm (log ε =

4.72). The electronic spectrum of (II) exhibited a blue-shifted Q-
band at 623 nm (log ε = 4.72) and a Soret band at 317 nm (log ε

= 4.82). The electronic spectrum of (II) also had an absorption
band at 385 nm. We observed the Q-band vibronic coupling
(Palys et al., 1994; Claessens et al., 2008; Ogunsipe and Nyokong,
2009) in the spectra of (I) and (II) as a shoulder at 581 and
568 nm, respectively. The FTIR spectra of (I) and (II) presented
vibrational modes at 1,488, 1,411, and 753 cm−1, which were
characteristic of phthalocyanine ring (data not shown). For (II),

FIGURE 2 | Resonance Raman spectrum of trans-[Ru(Pc)(4-ampy)2].

the absorption band at 3,452 cm−1 indicated the presence of
4-aminopyridine as axial ligand.

We obtained enhanced Raman Resonance with weak signals
for both complexes (Figure 2 and Supplementary Table 1). For
(II), we observed some bands attributed to the phthalocyanine
ring (1,414, 1,120, 954, and 730 cm−1) and a band at 239 cm−1,
described as being due to the metal–nitrogen vibration mode.

The 1H NMR spectra of (I) and (II) displayed proton
signals that were consistent with multiplets of the
phthalocyanine aromatic ring, –β H between 8.99 and 8.96
ppm and –α H between 7.90 and 7.86 ppm (Figure 3 and
Supplementary Figure 3). For (I), we observed a proton signal
at −1.18 ppm. The 1H NMR spectrum of (II) presented proton
signals due to the axial ligands 4-aminopyridine, –Hb δ = 4.53
ppm and Ha δ = 2.08 ppm.

Photophysical and Photochemical
Properties
We analyzed the photochemical and photophysical parameters
of (I) and (II) to understand how these photosensitizer
candidates behave. Table 1 summarizes the singlet oxygen
quantum yields (81), fluorescence quantum yields (8f ), and
singlet fluorescence lifetime (τ 1 and τ 2) of both complexes. These
yields were obtained at low concentration of the complexes to
avoid aggregation.

The measured fluorescence intensity decay profiles of (I) and
(II) related to the emission of the S1→S0 transition showed
similar trends. Figure 4 presents the temporal profiles recorded
at 670 nm following photoexcitation of (I) and (II) at 640 nm in
DMSO solution.

The curve in Figure 4 fit a bi-exponential curve well, and the
output provided two fluorescent lifetimes: the short one around
1.85 ns and the longer one around 3.20 ns (Table 1).

We measured the excited triplet-state transient time profiles
of (I) in deaerated DMSO in fluid solution at 25◦C by using
nanosecond laser flash photolysis at 620 nm. The features of
the transient absorption spectra revealed that the low-energy
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FIGURE 3 | 1H NMR and suggested molecular structure of trans-[Ru(Pc)(4-ampy)2]. In (A), 1H NMR spectrum of complex (II) in DMSO-d6. In (B), suggested

molecular structure of complex (II) poiting to specific ppm range hydrogens.

TABLE 1 | Photochemical and photophysical parameters of complexes (I) and (II).

81 8f τ1 (ns) α1/% τ2 (ns) α2/%

Complex (I) 0.62 0.007 1.8 68.2 3.2 31.8

Complex (II) 0.14 0.011 1.9 23.3 3.1 76.7

FIGURE 4 | Fluorescence curve decays for (I) and (II).

absorption band, described as Q-band, diminished, whereas new
absorption bands appeared. Typical transitions originating from
T1 to T2 and upper triplet states (T1 to Tn) were evident for
(I)—Figure 5—as observed in a similar system (Anula et al.,
2006). The triplet–triplet absorption bands emerged at 520 and
360 nm. We also noted that the triplet excited state formed

at the 700-nm region, but this was not completely clear due
to the wavelength range. The triplet state lifetime fit a bi-
exponential curve well (Figure 5). It comprised a fast process
with a time constant of 15 ns, which suggested a triplet–
triplet recombination process detected in highly concentrated
metal–phthalocyanine solutions (Debacker et al., 1988; Nwaji
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FIGURE 5 | Nanosecond TA spectra of (I) in deaerated DMSO after pulsed laser excitation (λex = 620 nm).

FIGURE 6 | B16F10 cell viability in the presence of (I) or (II). The cells were incubated with different concentrations of (I) or (II). (0.5 or 1 µmol/L) for 24 h and were

irradiated with 660-nm light at 5.95 J/cm2. Data are the mean ± S.E.M. Two-way ANOVA, with Bonferroni post-hoc (P < 0.05). *different from Dark control; **different

from Control under 5.95 J/cm2; #different from (I) dark. All the results in this figure are representative of independent experiments (n = 3) performed in triplicate for

each experimental n.

and Nyokong, 2017) or probably a process of aggregation of
excited states (FitzGerald et al., 2002). A slower process with a
time constant of about 3.68 ± 0.02 µs was consistent with the
triplet state of ruthenium phthalocyanines (Ferraudi and Prasad,
1984).

Photobiological Properties
We investigated the viability of B16F10murinemelanoma cells in
the dark or following irradiation with 660-nm light at 5.95 J/cm2

in the presence of (I) or (II) at 0.5 or 1 µmol/L. Figure 6 shows
the B16F10 cell viability.
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FIGURE 7 | Apoptosis and necrosis evaluation in B16F10 cells in the presence of (II). B16F10 cells, in culture, were exposed to (II) (1 µmol/L, 24 h) in the culture

medium, in the dark or under 660-nm light irradiation (5.95 J/cm2 ). Data are presented as mean ± S.E.M. Two-way ANOVA followed by Bonferroni post-hoc (P <

0.05); n = 3. *different from respective Live cells Dark; **different from Live cells Light irradiation 660 nm; #different from Early apoptosis Dark.

The presence of (I) only decreased B16F10 cell viability after
light irradiation at 660 nm, independent of the concentration of
(I) [0.5 µmol/L of (I): 9.32 ± 4.00%; and 1 µmol/L of (I): 6.43
± 2.38%; n = 3] compared to dark (100.01 ± 13.66%; n = 3)
and control light (100.03 ± 2.40%; n = 3) conditions (Figure 6).
However, (I) did not exhibit significant effects in the dark [0.5
µmol/L of (I): 87.80 ± 21.24%; and 1 µmol/L of (I): 73.81 ±

19.00%; n= 3].
Figure 6 also shows B16F10 cell viability after treatment with

(II) for 24 h. Compared to the control condition, B16F10 viability
in the presence of (II) reduced in the dark [0.5 µmol/L of (II):
60.97 ± 12.20%; and 1 µmol/L of (II): 37.41 ± 2.11%; n = 3–4]
or after light irradiation [0.5 µmol/L of (II): 51.37± 14.00%; and
1 µmol/L of (II): 29.62± 8.09%; n= 4] at both concentrations of
(II). Increasing the concentration of (II) to 2 or 4µmol/L boosted
its cytotoxicity effect (Supplementary Figure 4). In addition,
after B16F10 cells were treated with (II), ruthenium was detected
intracellularly in cellular extracts (0.8584 ng/µl), as observed
in Supplementary Table 2, but this metal was not detected in
control cellular extracts.

We also investigated the cell death mechanism of B16F10
cultured cells in the dark condition or under 660-nm light
irradiation after the cells were treated with (II) for 24 h
(Figure 7).

In the presence of (II) and in the dark condition, there were
early apoptosis (30.97± 4.21%; n= 3) and necrosis (5.1± 0.06%;
n = 3) activation compared to live cells (37.60 ± 3.33%; n= 3).
In addition, after light irradiation at 660 nm (5.95 J/cm2), B16F10
cells also presented early apoptosis (21.47 ± 3.52; n= 3) and
necrosis (4.4 ± 0.25; n = 3) compared to live cells (55.43 ±

5.09; n = 3). Both (I) and (II) could exert cytotoxicity effects
by interacting with DNA, which could somehow contribute to
the biological mechanism related to cancer cell death. Therefore,
we evaluated the interaction of (I) or (II) with DNA by UV-
visible spectroscopy. A typical UV-visible spectrum of (I) with
Calf Thymus (CT) DNA is shown in Supplementary Figure 5.
While the Q-band of (I) decreased with increasing CT DNA
concentration, the spectroscopic bands of (II) did not change
after CT DNA supplementation, suggesting that DNA did not
interact with (II).

DISCUSSION

Metal–phthalocyanine synthesis is key to improving the use of
these complexes in PDT (Allison et al., 2004; Boyar and Çamur,
2019; Fujishiro et al., 2019). Among such complexes, ruthenium–
phthalocyanine has emerged as a promising molecule because
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ruthenium complexes generally have octahedral geometry,
and ruthenium–phthalocyanine is a hexacoordinated species
that can still bind two new axial ligands (Heinrich et al.,
2014; Teles Ferreira et al., 2017). The main concern involving
ruthenium–phthalocyanine complexes is their synthesis and
difficulties related to impurities are frequently reported.
Previous communications described that cis-[RuCl2(DMSO)4]
is the precursor for the preparation of many substituted
and unsubstituted phthalocyanines (pc-R) (Adeloye and
Ajibade, 2014). The synthesis of [Ru(pc-R)] comprises steps
such as addition of phthalonitrile and appropriate reagents
to cis-dichlorotetrakis(dimethylsulfoxide)ruthenium(II) in
dimethylformamide and heating under reflux for several hours.
We followed a similar procedure to prepare ruthenium–
phthalocyanine, but we used 1-pentanol as solvent. The
spectroscopic results suggested that our final product
composition differed from the final product composition
reported in the literature. The electrophoretic mobility
gel measured for the ruthenium–phthalocyanine complex
synthesized in this work did not show any movement toward
applied positive or negative charge, which was consistent with a
neutral species (data not shown).

The 1H-NMR spectrum of the ruthenium–phthalocyanine
complex prepared here displayed broad multiplets in the 7–9
ppm region, which corresponded to the macrocycle aromatic
portion (Kobel and Hanack, 1986; Rawling and McDonagh,
2007). The most intriguing 1H NMR signal emerged at −1.15
ppm (Supplementary Figure 3) and had been observed for the
ruthenium–phthalocyanine complex previously synthesized by
following the Kobel and Hanack method (Kobel and Hanack,
1986). Comparison of our NMR data with the 1H NMR of
trans-[Ru(pc)(DMSO)2] (Kobel and Hanack, 1986) allowed us to
detect a similar signal at −1.18 ppm, which had previously been
attributed to the methyl group of coordinated dimethylsulfoxide.
Therefore, we suggested that dimethylsulfoxide coordinated to
the ruthenium ion in the ruthenium–phthalocyanine complex
prepared herein. Although some ruthenium(III) complexes can
exhibit changes in NMR signals due the paramagnetic metal,
ruthenium(III) phthalocyanines can show no significant changes
in NMR signals (Guo et al., 2012).

We also used MALDI-TOF mass spectrometry to investigate
the structure of the ruthenium–phthalocyanine complex
(Supplementary Figure 1). We observed relevant peaks
ascribed to [Ru(pc)]+ (m/z= 614.248) and {[Ru(pc)]2}+ (m/z=
1226.092), respectively (most abundant ruthenium isotope).
A previous report had also described these species for axial
ruthenium–phthalocyanine complexes (Rodríguez-Morgade
et al., 2009). The EPR spectra of the ruthenium–phthalocyanine
complex synthesized here indicated the same pattern that
is usually verified for Ru3+ species (Khan et al., 1990)
(Supplementary Figure 6). The complex exhibited three
lines with different “g” values, gx = 2.53, gy = 2.57, and gz
= 2.54. The neutral character of the prepared ruthenium–
phthalocyanine complex evidenced by gel electrophoresis
suggested coordination of a monoanionic ligand, which we
inferred as being chloride because we used cis-[RuCl2(DMSO)4]
as precursor. Taken together, these results indicated that the

ruthenium–phthalocyanine complex synthesized in this work
could be better described as (I). Despite the suggestion, we
were not able to identify (I) by MALDI-TOF unambiguously
probably because axial ligands were lost. The overall reaction for
the synthesis of (I) could be summarized as a template process
during which the ruthenium ion governs macrocycle cyclization
(Scheme 1). Isolation of [RuCl2(DMSO)2(phthalonitrile-R)]
as intermediate for the synthesis of asymmetric ruthenium–
phthalocyanines (Negri et al., 2018) reinforced the reaction
mechanism depicted in Scheme 1.

(I) was a versatile starting material for [Ru(pc)L2] species.
Therefore, we prepared (II) to understand how 4-aminopyridine
(4-ampy) as axial ligand affected cytotoxicity. In time, 4-
ampy has been used as an antiproliferative agent in cancer
cells (Woodfork et al., 1995; Wang et al., 2011; Hassan
et al., 2018), and it may add some biological properties
to the ruthenium–phthalocyanine complex. trans-[Ru(Pc)(4-
ampy)2] was EPR silent, which suggested that free 4-ampy
reduced (I) during the synthesis (Díaz-García et al., 2009).
The MS MALDI-TOF spectrum showed main peaks (most
abundant ruthenium isotope) that agreed well with the
molecular formula of [Ru(pc)]+ (m/z = 614.056), {[Ru(Pc)(4-
ampy)2]+} (m/z= 802.172), and {[Ru(pc)]2]+}(m/z= 1227.102)
(Supplementary Figure 2) (Rodríguez-Morgade et al., 2009).
The 1H NMR spectrum presented proton signals that were
assigned to the axial ligands, which were shifted to higher field
(Hb δ = 4.53 ppm and Ha δ = 2.08 ppm—see Figure 3) as
compared to free 4-ampy, as also reported by Rawling et al.
(2007) for the 1H NMR spectra of tetrasubstituted ruthenium–
phthalocyanine complexes coordinated with 4-ampy ligands. The
authors commented that the shifts were probably due to the
proximity of the axial ligands with the diamagnetic ring and that
the major shift in Ha signals was consistent with the proximity
of these protons with the Pc ring. The well-resolved 1H NMR
spectrum revealed a diamagnetic molecule profile.

The general UV-visible spectrum of phthalocyanine
complexes presents particular bands in the visible region,
attributed to electronic transitions from HOMO (the highest
occupied molecular orbital) to LUMO (the lowest unoccupied
molecular orbital). The ground-state electronic spectra of free
phthalocyanine (H2Pc) and MPcs generally differ significantly:
H2Pc displays two bands between 600 and 700 nm and two
other bands between 290 and 350 nm as a result of their
lower symmetry. Metal insertion promotes higher symmetry
and causes degeneracy in LUMO, so only one band can
be observed in each of the aforementioned regions (Lever
et al., 1981; Claessens et al., 2008; Van Leeuwen et al., 2014;
Martynov et al., 2019). We verified these characteristics in
the electronic spectra of (I) and (II) (Figure 1). Compared
to the electronic spectrum of (I), the electronic spectrum
of (II) exhibited blue-shifted Q- and Soret bands, which
suggested that coordination of the axial ligands modified the
molecular orbitals. The electronic spectrum of (II) also had an
absorption band at 385 nm, which we ascribed to metal ligand
charge transfer (MLCT) dπ(Ru)-π

∗(4-ampy) by comparison
with a similar species (Rawling et al., 2007; Heinrich et al.,
2014).
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SCHEME 1 | Mechanism of the synthesis of (I).

We recorded enhanced Raman Resonance spectra for (I) and
(II) and correlated themwith the respective UV-visible spectrum.
Analysis of both complexes showed two different features. When
excited at 632.8 nm, (I) presented very weak Raman Resonance
(RR) signals, which made attribution impossible. We speculate
that the reason for this could be the existence of chromophores
of the molecule that are not involved in the resonance Raman
enhancement of a particular vibrational mode, which should
attenuate the Raman intensities (Hong and Asher, 2015).
Excitation at 632.8 nm selectively enhanced the phthalocyanine
vibration modes for (II) (Figure 2), which essentially showed
that there was no molecular orbital contribution from 4-
aminopyridine to the band located in the 660-nm region.
We identified the nature of the individual RR bands of (II)

and describe them in Supplementary Table 1. We ascribed the
weak band at 239 cm−1 to the Ru-N(Pc) bond, and this band
attested that the metal orbitals contributed to the composition
of the Q-band.

We also investigated the photophysical and photochemical
properties of (I) and (II) in solution. Upon excitation at
610 nm, the fluorescence bands of these complexes arose in
the region of 670 nm. Table 1 lists the fluorescence quantum
yields and lifetime decays of (I) and (II). The low values
of fluorescence quantum yields were consistent with heavy
metal–phthalocyanines spin-orbit coupling favored intersystem
crossing (Guo et al., 2012). Furthermore, we observed two
lifetimes, which indicated two different molecular populations:
τ1 was related to changes in the vertical of the metal ion in
relation to the planar aromatic ring, and we detected a metal-free

phthalocyanine emission (Guo et al., 2012). The second lifetime
τ2 was typical of metal–phthalocyanine compounds (Vincett
et al., 1971; Byun et al., 2019; Sen et al., 2019). Ruthenium orbitals
mixed with the molecular orbital of phthalocyanine to some
degree, favoring the non-radiative deactivation process.

Photobleaching studies of (I) and (II) provided fascinating
results (Supplementary Figure 7). Both complexes exhibited
sluggish photodegradation kinetics as judged from the
unchanged UV-visible spectra in DMSO solution even after
irradiation for 40min. This suggested that the ground-state
complex or triplet oxygen might not attack the excited state of
the ruthenium–phthalocyanine complexes under irradiation
at 660 nm, as opposed to what is generally observed for
phthalocyanine derivative complexes (Idowu and Nyokong,
2009; Demirbaş et al., 2019; Güzel et al., 2019). Molecular orbital
mixing between phthalocyanine and Ru(II) or (III) might have
stabilized the phthalocyanine cycle due to the high activation
energy process involving attack by singlet oxygen. We evaluated
the efficiency of the potentially new ruthenium-based PDT
agents by singlet-oxygen quantum yield (Table 1). (I) was an
efficient photosensitizer for singlet oxygen production, while (II)
showed an opposite behavior. (I) had around four times more
efficient singlet oxygen production than (II). This difference
could be due to the fast nonradiative decay of excited states or
perhaps to the fact that 4-ampy suppressed the singlet oxygen
quantum yield in (II) (Kearns, 1971; Ushakov et al., 2015; Petit
et al., 2019). Al-Nu’airat and co-workers (Al-Nu’Airat et al.,
2017) have recently described the well-known singlet oxygen
scavenging character of amine groups in the photo-oxidation of
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aniline. This process was attributed to the singlet oxygen energy
transfer process. At this point of our work, the nature of the
products involving auto-oxidation of (II) by singlet oxygen is
not clear.

By analyzing the photobiological properties of (I) and (II)

on the basis of the viability of B16F10 murine melanoma cells
(Figure 6) and by considering complex (I) as a photosensitizer,
our results corroborated with the findings of Maduray and
Odhav (Maduray and Odhav, 2013), who used gallium (GaPcCl),
indium (InPcCl), or iron (FePcCl) phthalocyanine chlorides as
photosensitizers in PDT on human lung adenocarcinoma cells
(A549). In the latter case (Maduray and Odhav, 2013), compared
to the control, 2µg/ml GaPcCl, InPcCl, or FePcCl decreased
A549 viability to 30, 36, and 49%, respectively, after 661-nm light
irradiation at 2.5 J/cm2.

In contrast to the results obtained after treatment of B16F10
cells with (I), treatment of these cells with (II) induced
cytotoxicity even in the dark, probably because the axial ligands
(4-ampy) in (II) interacted with cell components. The ligand
4-ampy is known as a non-selective voltage-gated potassium
channel (KV) blocker (Renaudo et al., 2004), and this ligand
in the axial position of (II) might interact with these channels
in the B16F10 cell plasma membrane. In addition, the channel
subtype KV1.3 has been found in the plasma membrane of
humanmelanoma cells (Artym and Petty, 2002), and 4-ampy can
block KV in T-leukemic Jurkat cells, decreasing cell growth and
proliferation by accumulating cyclin-dependent kinase inhibitor
p27kip1 with low effects on apoptotic mechanisms (Renaudo
et al., 2004). Therefore, it is evident that K+ channel regulation
could affect cell proliferation, and (II) might be retained in
plasma membrane in association with KV. However, this putative
interaction could minimize the effects of (II) on B16F10 cells,
impairing its singlet oxygen production (see Table 1) and hence
its cytotoxic action as a photosensitizer. We investigated the
mechanism of B16F10 cell death in the presence of (II) in a
flow cytometry experiment (Figure 7). (II) seemed to induce a
weaker apoptosis mechanism after 660-nm light irradiation than
in the dark condition, but this was not statistically significant.
Furthermore, the value of live cells after 660-nm light irradiation
was higher than in the dark condition. This could be related to an
impaired action of (II) as a photosensitizer due to its interaction
with KV channels in B16F10 cell plasma membrane.

Our results about the interaction of the complexes with CT
DNA suggested that (I) could interact with DNA, as judged from
the Q-band hypochromism in the UV-vis spectra, which pointed
out an intercalation between this compound and DNA. Similar
results have been observed for planar aromatic molecules that
can interact by π-π stacking interactions with DNA base pairs
(Sirajuddin et al., 2012, Sirajuddin et al., 2013). However, further
experiments are needed to verify this interaction. Contrary to
(I), (II) did not interact with CT DNA, so we can suggest
that B16F10 cell death could be related with KV channels
in B16F10 cell plasma membrane, which impaired the action
of (II) as a photosensitizer, leading to low apoptosis and
weak cytotoxicity effects that do not depend on interaction of
(II) with DNA.

In conclusion, the adapted methodology we used to
synthesize (I) and (II) is advantageous in terms of purification,
providing the complexes in good yields. The photochemical
and photophysical properties of (I) and (II) revealed interesting
characteristics including photostability, which indicated that
these compounds could be photosensitizer candidates. Insertion
of different axial ligands modified some properties like singlet
oxygen quantum yields and cytotoxicity effects. Results of
the cytotoxicity assays attested to the high cytotoxicity of
(I) under irradiation and to a different behavior of (II),
which exerted cytotoxic effects in the dark. Complex (I) has
potential application as a photosensitizer, whereas (II) seems
to behave differently, with no photosensitizing potential. The
application of (I) in PDT needs to be exploited in other
cell lines.
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