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Abstract
Autism spectrum disorders (ASDs) are a range of complex neurodevelopmental conditions

principally characterized by dysfunctions linked to mental development. Previous studies

have shown that there are more than 1000 genes likely involved in ASD, expressed mainly in

brain and highly interconnected among them.We applied whole exome sequencing in Colom-

bian—South American trios. Two missense novel SNVs were found in the same child:

ALDH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq NM_003593:

c.146C>T (p.S49L)). Gene expression studies reveal that Aldh1a3 and Foxn1 are expressed

in ~E13.5 mouse embryonic brain, as well as in adult piriform cortex (PC; ~P30). Conserved

Retinoic Acid Response Elements (RAREs) upstream of human ALDH1A3 and FOXN1 and

in mouse Aldh1a3 and Foxn1 genes were revealed using bioinformatic approximation. Chro-

matin immunoprecipitation (ChIP) assay using Retinoid Acid Receptor B (Rarb) as the immu-

noprecipitation target suggests RA regulation of Aldh1a3 and Foxn1 in mice. Our results

frame a possible link of RA regulation in brain to ASD etiology, and a feasible non-additive

effect of two apparently unrelated variants in ALDH1A3 and FOXN1 recognizing that every

result given by next generation sequencing should be cautiously analyzed, as it might be an

incidental finding.

Introduction
Autism spectrum disorders (ASD) are a range of complex neurodevelopmental conditions
characterized by dysfunctions in mental development [1]. At the same time, it has been
hypothesized that ASD are a group of continuous disorders instead of a single discrete disorder
[2], explaining why ASD patient symptomatology is so variable. Although prevalence of ASD
has increased worldwide [3], in Colombia there are no official reports regarding its prevalence.
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A recent study has shown that ASD heritability is calculated closely to 50% [4] (lower than
the ~90% previously estimated [2,5]) leading to higher environmental factor’s impact on the
occurrence of the disorder. In fact, no clear environmental factors that have been unfolded
since the recurrence of ASD does not change statistically between dizygotic twins and complete
siblings [4].

Most of our understanding of the molecular basis of ASD comes from reports of rare copy
number variants (CNVs) [6–8] and the discovery of de novo single nucleotide variants (SNVs)
using Whole Exome Sequencing (WES) [9–13] or Whole Genome Sequencing (WGS) [14].
More than a 1000 genes are thought to be involved in ASD [15], most of them located in genes
of known function and involved in pathways related to cell and neuronal development, projec-
tion, motility and proliferation; also in genes involved in spine and dendrite plasticity regula-
tion, and gene regulation [8,15,16]. Additionally, variants affecting recurrent genes have been
associated to ASD by their single impact ignoring a possible synergic impact between two or
more de novo events in the same individual. Nonetheless, all this information has been derived
mostly from Caucasian individuals. Thus, novel genes and even novel pathways involved in
ASD pathogenesis might be found in understudied populations such as Colombian.

WES was applied in search of de novo variants that might be causative of ASD in four family
trios from Colombia. Two de novo non-synonymous mutations affecting ALDH1A3 (RefSeq
NM_000693, MIM:600463) and FOXN1 (RefSeq NM_003593.2, MIM:600838) genes were
uncovered in the same child (FAM07). Recently, retinoic acid (RA) pathways mediated by
Retinoid Orphan Receptor Alpha (RORA) have been implicated in ASD [17]. Furthermore,
homozygous ALDH1A3missense and nonsense mutations in humans have been linked to
anophthalmia and microphthalmia (MIM: 615113; A/M) with some affected individuals also
exhibiting autistic traits [18–23]. Though no clear evidence supports a link between variants in
ALDH1A3 with autism, mouse studies show that lack of Aldh1a3 (Gene NC_000073.6) results
in abnormal GABAergic neuronal differentiation in the forebrain basal ganglia [24]. Malfunc-
tions in this inhibitory system have been found to be associated to mental disorders like ASD,
schizophrenia and bipolar disorder [25,26]. Moreover, failures of this enzyme in the striatum
are related to elimination of dopamine receptor D2 in the nucleus accumbens [27].

Although little is known about FOXN1, it is essential for proper immune system function,
especially in thymus development and maintenance during adulthood [28–30]. Foxn1 (Gene
NC_000077.6) knockout mice (commonly known as NUDE mouse) overexpress pro-inflam-
matory cytokines (Specially TH1) [31]. This overexpression has also been reported in ASD chil-
dren [32]. Besides T-cell immunodeficiency, mutations in FOXN1 have also been observed
together with congenital alopecia and nail dystrophy (MIM: 601705). A homozygote mutation
in FOXN1 was reported in a 15-week-old fetus with anencephaly and severe neural tube defect
(MIM: 601705) [33].

As ALDH1A3 is an enzyme responsible for Retinoic Acid (RA) synthesis, and FOXN1 has
been found to regulated by RORA (gene involved in RA cascade) [17], together with RA’s
major role in gene expression regulation during brain development [34], it was questioned if
RA might possibly regulate ALDH1A3 and FOXN1 through RA receptors (RARs). Predicted
RA Response Elements (RAREs) in the promoter regions of both genes where evaluated to be
recognized by RARs, using C57BL/6J (B6) mice, in two developmental stages. Rarb (Gene
NC_000080.6) was selected as the chromatin association target protein since it is known to reg-
ulate dorsal and ventral telencephalon development, hippocampal plasticity and brain barrier
development [35–38].

Results indicate that Rarb regulates Aldh1a3 and Foxn1 (NC_000077.6) in adult (~P30)
mice PC and in embryo (~E13.5) whole brain, as demonstrated by ChIP essay. We suspect that
both variants in genes ALDH1A3 and FOXN1 interact in a non-additive manner, where an
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epistatic interaction effect can be expected, possibly explaining the etiology in the affected
child.

Methods

Ethics statement
The study presented here involves human participation and informed consent and assent. The
study and consent procedure was approved by the ethical committee of Universidad de los
Andes (Acta 11, 2011). Informed consent and assent was given and explained to all partici-
pants. All participants provided a written informed consent to participate in this study. Each
consent was marked with a family and individual unique identifier, names and identifying
information are kept securely stored. Only the principal investigator is able to recognize per-
sonal data with unique identifiers.

Animal procedures were approved by Schepens Eye Research Institute Animal Care and
Use Committee (Permit number: S-309–0714) in compliance with the Animal Welfare Act
Regulations.

Cohort selection
Four family trios (family ID: Fam02, Fam07, Fam09 and Fam10) referred by Liga Colombiana
de Autismo (LICA) were selected to participate in the study. All individuals are from Bogotá
D.C.—Colombia. Affected individuals were engaged in a series of tests-tasks to evaluate pat-
terns and maturity of the child, interaction with parents and family patterns. Inclusion in the
present study required meeting criteria for autism on the ADOS [39] and ADI-R [40] and sub-
ject were confirmed to meet DSM-V (APA, 2012) criteria for autism by trained professionals
who observed and interacted with them over several visits. After psychological examination, a
genetic counselor physician discarded any comorbidity with other ASD related syndrome.

DNA sample preparation, exome sequencing and analysis
DNA extraction was carried out using FlexiGene DNA kit (Qiagen, Gaithersburg, MD, USA).
The extraction was carried out parting from 300uL of leucocytes following manufacturer
instructions. A mean of 8.7ug of DNA per individual was sent to Otogenetics Corporation in
Atlanta GA, USA. We applied WES using Agilent Sureselect All Exon V4 platform and PE100
Illumina HiSeq2000 platform to the four family trios selected (all family trios DNA samples
met the quality criteria for WES by Otogenetics Corporation, Atlanta, GA—USA). Sequence
reads were cleaned using the latest version of FASTX-Toolkit (V 0.0.13.2) (http://hannonlab.
cshl.edu/fastx_toolkit/index.html). Sequence mapping and variant calling was carried first by
mapping the short sequences using Burrows-Wheeler aligner (BWA) (from http://bio-bwa.
sourceforge.net) [41] on the latest version of the human genome available at UCSC Genome
Browser (HG19). SAM tools (from http://samtools.sourceforge.net) [42] and PicardTools
(from http://picard.sourceforge.net) were used to manipulate and mark sequence duplicates.
SNPs and small indel calling was achieved using HaplotypeCaller walker of Genome Analysis
Toolkit (GATK, from http://www.broadinstitute.org/gatk/) [43,44]. Best practices of GATK
were followed in order to guarantee an efficient variant calling. Annotation was performed
using snpEff (Human genome reference 37.5) [45]. Putative de novo variants were identified
using AWK language.
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Variant prioritization and validation
After identifying all the non-inherited variants, minor allele frequency (MAF) was revised
from dbSNP. Those variants that presented a MAF> 5% were discarded. Different sets of
primers were manually designed to flank the variants position obtained during calling. PCR
amplification protocol described in Perea, C.S. et al., 2012 was used [46]. Sanger sequencing at
Macrogen, Seul—Korea; and at Universidad de los Andes’ Sanger sequencing facility (3500
Genetic Analyzer; Applied Biosystems, USA) was used to corroborate the presence of each of
the variants unveiled.

After validation of each of the variants was performed, depending on the predicted impact,
different bioinformatic tools were used to predict their impact. The possible effect of the synon-
ymous variant on mRNA stability was analyzed using SilVA [47], and ESEfinder for possible
de novo splicing regions [48,49]. Non-synonymous variants were analyzed using SIFT [50],
PolyPhen [51] and PROVEAN [52].

Retinoic acid regulation pattern discovery
Searching for the relaxed Retinoic Acid Response Element [RARE; 5’-(A/G)G(G/T)(G/T)(G/
C)A-3’motif separated by one, two or five nucleotides, which interacts with heterodimers of
RARs and retinoid X receptors (RXRs)] [34,53,54], was achieved using the online interface of
Patser (online site: http://stormo.wustl.edu/consensus/html/Html/main.html) [55]. Genomic
region spanning 30000bp upstream to 1000bp downstream from the initial transcription site
for humans and mice (Human genome build NCBI 37.5 and Mouse genome build GRCm38.
p2) in both negative and positive strands was analyzed.

Animals
Pregnant females and adults were obtained under standard conditions from Jackson Labora-
tory and housed in vivariums at Schepens Eye Research Institute. The study was carried out in
strict accordance with the recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institute of Health. Tissues were collected from C57BL/6J (B6) postna-
tal (~P30) and from B6 embryonic (~E13.5).

Aldh1a3 and Foxn1 expression study
Transcription was observed after total RNA extraction from piriform cortex (PC) from both
lobules of adult C57BL/6J (B6) brain mice (~P30), and B6 embryonic whole brain (~E13.5)
using Trizol. PC was chosen since Aldh1a3 expression has been reported in this region in
postnatal stages [56]. A total of 2μg of total RNA was reversed using random decamers, in inde-
pendent biological triplicates using Retroscript (Ambion). PCR, using primers flanking the
conserved splice regions of both genes (S2 Table), was used to check Foxn1 and Aldh1a3 tran-
scription. PCR products were run on agarose (2%) ethidium bromide stained gel.

Chromatin immunoprecipitation
Chromatin immunoprecipitacion assay (ChIP) against RARs-RARE interaction was used to
validate the bioinformatic predictions. ChIP, followed by PCR against the interaction of Rarb
with the predicted RAREs, was performed as described in Haider, N.B. et al., 2009 with modifi-
cations [57]. Briefly, three adult (~P30) mice PC and three embryo (~E13.5) mouse whole
brain were collected. Each sample was sonicated using three cycles. First cycle: 1s pulse�1s wait
between pulses; total of 20 pulses. Second cycle: 19 steps of ten pulses, 1s pulse�1s wait between
pulses, 30 seconds wait between steps; total of 190 pulses. Third cycle: 10s pulse�20s wait
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between pulses; total of three pulses. Average DNA fragment size obtained was ~300bp. Ali-
quots for Input (Positive control), Rarb antibody (SC-552, Santa Cruz Biotechnology, Inc.)
immunoprecipitation and rabbit IgG (2027, Santa Cruz Biotechnology, Inc.) (Negative control)
were taken and incubated overnight. PCR was performed using primers flanking each RARE
sequence found in mice (S3 Table), to amplify approximately 200 base pair amplicon. PCR
conditions used are previously described in Haider, N.B. et al., 2001 where an annealing tem-
perature of 58°C and 35 cycles were applied, and a dilution of 1:10 for the Input sample was
used [58]. PCR products were visualized by ethidium bromide staining.

Results

Exome sequencing, technical outcomes, variant calling and de novo
variant discovery
After applying WES, a ~69.1X coverage was yielded. In average, ~228,116.1 variants per family
trio were obtained. A total of three SNVs and one Indel were validated by PCR amplification
followed by Sanger sequencing (Table 1). We observed a transvertion-transition ratio of 1:2
and non-coding SNV or Indel were found in two of the families studied. None of the genes
found in this study have been reported in the 982 WES studies [9–13], or in any of the ten
WGS family trios [14] performed to date. All other NGS data is stored at the Universidad de
los Andes bioinformatic facility and it is freely available upon request.

Variant prioritization and analysis
One synonymous de novo SNV, located in NR4A2 (Table 1, RefSeq NM_006186.3, MIM:
601828; c.779G>T [p.S119]) and one de novo insertion in the ORF GAS8-AS1 (Table 1, RefSeq
NC_000016.10, MIM:605179; g.90095617_90095618insCTGCGGGGCAGC) were found in
the proband of Fam10. The possible effect of the synonymous variant on mRNA stability was
analyzed using SilVA [47], as in O’Roak, B.J. et al., 2012 another synonymous variant was
reported in this gene [10], and ESEfinder for possible de novo splicing regions [48,49], but no
effects on mRNA stability or possible new splice sites were found (Table 2). The insertion in

Table 1. Non-inherited variants found in families Fam07 y Fam10.

Family ID Gene name Chr. Chr. Pos. Ref. Allele Altern. Allele A.A. Change Sanger Validation

Fam07 ALDH1A3 15 101454953 T C I505T +

FOXN1 17 26851543 C T S49L +

Fam10 NR4A2 2 157186342 C A S119 +

GAS8-AS1 16 90095617 G GCTGCGGGGCAGC � +

doi:10.1371/journal.pone.0135927.t001

Table 2. Predicted impact using SIFT, PROVEAN and PolyPhen to the non-synonymous de novoNovel variants in proband from family Fam07.

Family Variant class Gene Software

SilVA ESEfinder PROVEAN (Cutoff<-
2.5)

SIFT
(Cutoff<0.05)

PolyPhen (Cutoff<0.878)

FAM07 Non-
Synonymous

ALDH1A3 NA NA Deleterious (-3.534) Tolerated (0.142) Possibly Damaging
(0.878)

FOXN1 NA NA Neutral (-0.241) Harmful (0.006) Benign (0.137)

FAM10 Synonymous NR4A2 Likely
benign

No splice site
found

NA NA NA

Insertion GAS8-AS1 NA No splice site
found

NA NA NA

doi:10.1371/journal.pone.0135927.t002
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GAS8-AS1 (Table 1) was analyzed using ESEfinder to determine if it might alter GAS8 gene
(MIM:605178) splice since it is located in intron 2. ESEfinder did not show any new probable
splicing site for the Indel in GAS8-AS1 or even GAS8 (Table 2).

Two non-synonymous de novo variants were uncovered in the affected child of family
Fam07 within ADLH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq
NM_003593: c.146C>T (p.S49L)) (Fig 1). SIFT [50] predictions indicate that the FOXN1 alter-
ation is harmful; while PolyPhen [51] and PROVEAN [52] predict that the SNV located in
ADLH1A3 is deleterious (Table 2). The other two families: Fam02 and Fam09 did not reveal
any de novo mutations on the affected probands. The study further focused on studying both
ALDH1A3 and FOXN1 since the variants found have a potential negative impact.

RAREs prediction
After looking for the RAREs patter using Patser in the positive and negative strands of the pro-
moter region of genes ALDH1A3 and FOXN1 in humans, as in Aldh1a3 and Foxn1 in mice
[55], four possible RAREs for ALDH1A3 and 18 for FOXN1 in humans, and ten possible
RAREs for Aldh1a3 and 11 for Foxn1 in mice were found (S1 Table).

Aldh1a3 and Foxn1 expression in mice brain tissues and regulation by
Rarb
According to the expression analysis performed on adult (~P30) PC and in embryo (~E13.5)
whole brain, electrophoretic run indicates that both genes are transcribed in ~P30 mouse PC
and in ~E13.5 mouse whole brain Fig 2A.

Fig 1. Pedigrees of family FAM07 showing chromatogramswhere the de novo Novel mutation event occurred for genes ALDH1A3 (c.1618T>C [p.
Ile505Thr]) and FOXN1 (c.175C>T [p.Ser49Leu]).

doi:10.1371/journal.pone.0135927.g001
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Chromatin Immunoprecipitation results demonstrate that Rarb binds to one predicted
RARE upstream of Aldh1a3 and to two predicted RAREs upstream of Foxn1 in the adult PC
(Fig 2B, Table 3) in mice. In the embryo’s stage, we observed that Rarb binds to one predicted
RARE for Aldh1a3 and two for Foxn1 (Fig 2B, Table 3) in mice. These results indicate that
both RAREs are probably recognized independently of the developmental stage.

Discussion
Most ASD studies highlight a strong genetic heterogeneity where both de novo germline and
rare inherited variants are distributed across numerous genes yet, interconnected in similar

Fig 2. Transcription and ChIP PCR results for genes Foxn1 and Aldh1a3 in adult ~P30 (A) piriform cortex and Embryo ~E13.5 (E) mice. A) Foxn1
and Aldh1a3 message is observed at ~E13.5 and ~P30 stages. B) Rarb-Rare interaction observed for two predicted RAREs (-17828bp and-7438bp
upstream initial transcription site) in gene Foxn1 and one in gene Aldh1a3 (-16982 upstream initial transcription site). In-E: Input control for embryo, In-A:
Input control for adult.

doi:10.1371/journal.pone.0135927.g002

Table 3. RARE sequences and their relative positions to the initial transcription site, found by ChIP for genes Foxn1 and Aldh1a3 in mice in adult
(~P30) piriform cortex and embryo (~E13.5) whole brain.

Gene RARE Sequence Relative Position Strand

Aldh1a3 GGGGGAGTGGGGGA -16982 -

Foxn1
AGGTGACAATGGGGTGA -7422 +

GGTTCATCAGTTCA -17785 +

doi:10.1371/journal.pone.0135927.t003
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biological processes such as chromatin remodeling and transcription regulation [8,10–13,16]
or target of fragile X mental retardation protein (FMRP) [59]. Furthermore, previous WES
studies associate genes to ASD only if two or more disrupting variants are observed in the same
gene in different individuals. Variant and gene association depends uniquely on the effect the
affected gene has [6,10–13,15,59], though it is also important to examine how two or more de
novo variants in the same individual might play a synergic role on ASD phenotype. Moreover,
every result given by WES or WGS trio studies should be carefully analyzed, as it might be an
incidental finding unless function studies are performed.

The findings of RAREs sequences in the promoter regions, in humans as in mice, made us
consider that RARs family might regulate FOXN1 and ALDH1A3 genes. Thus, we aimed to
determine if any of those RAREs predicted might be functional using mice as models. We first
confirm expression of Aldh1a3 in PC during in adult (~P30) mouse brain as previously shown
[56] and evaluated co-expression of Foxn1 in the same region and stage. Moreover, we demon-
strate that both genes are also expressed in embryo (~E13.5) mice. ChIP-PCR results suggest
that Foxn1 and Aldh1a3 expression is promoted by Rarb binding to different RARES in both
tissues (adult PC and embryo whole brain; Fig 2B, Table 3). Since ChIP was only carried out to
analyze Rarb-RARE interaction, we could not assure that any other members of the Rar family
or other transcription factors might contribute to Foxn1 or Aldh1a3 regulation during the
stages analyzed. Therefore, it is possible that gene RA regulation is exerted by other proteins in
both tissues at both stages. Based on known functions of RARs/RXRs, these results predict a
possible positive regulation by Rarb for both genes. The RA regulation model predicts that in
RA presence, RARs/RXRs release co-repressor proteins and recruit co-activation complexes
[34]. In fact, it has been demonstrated that RA promotes Rars binding to putative RAREs in
mouse embryonic stem cells working as transcription enhancers [60]. As Rarb and the other
RAR family members regulate many genes at different stages and tissues at time-specific peri-
ods, lack of RA might contribute to a transcriptional deregulation.

Recently, non functional ALDH1A3 alleles have been reported as responsible for ophthal-
mologic diseases as A/M in which four of the six reports mention that some affected individu-
als also have ASD like features or intellectual disability in different degrees, even though these
findings are generally considered as incidental [18,19,21,23]. However, it is not possible to dis-
card the idea that mutations in ALDH1A3might alter brain development since it has been
described that RA is essential for brain cortex development facilitating transcription of essen-
tial genetic markers [61]. Additionally, FAM07 child carries a non-synonymous variant, pre-
dicted to be pathogenic in ALDH1A3 (Table 2). One would thus predict that RA synthesis and
concentration in basal ganglia, nucleus accumbens, striatum, and PC would be lower than nor-
mal levels.

Since RA mediates transcription of different genes, variants in ALDH1A3 in conjunction
with other inherited rare variants or de novo variants potentially act synergistically causing
ASD. This might also be the case in the A/M phenotype where some of the affected individuals
also have ASD or intellectual disability [19]. Yet, if another pathogenic variant is present on a
gene that is regulated by retinoic acid, the altered concentrations levels of RA together with a
deficient function of a second gene might end up in a phenotype such as ASD.

As no clear data of FOXN1 regulation of brain development is clear, we cannot predict a
direct effect of the non-synonymous variant observed in this child. Since this nuclear receptor
is apparently regulated by RA via Rarb, the lack of this metabolite due to the mutation in
ALDH1A3might cause a lower transcription of FOXN1, leading to a dysregulation of genes
and pathways not yet described. Moreover, nude affected humans by mutations or truncations
in the FOXN1 gene do not present gross central nervous system alterations [62], but they how-
ever present changes in the corpus callosum, neural tube and choroid plexus [33,62]. This
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suggest that FOXN1 has similar functions as other member of the FOX family like FOXP1 and
FOXP2 [63,64], which have been already associated to ASD [6].

In conclusion, the results indicate that next generation sequencing from under-studied
cohorts provide new genetic data that might conduct to new perspectives and hypothesis to
explain genetic basis of ASD. Our results are in concordance with previous studies demonstrat-
ing that transcription factors play significant roles in ASD [8,10–13,16]. A previous study of
our group reported that genes involved in transcription regulation are essential to serotoniner-
gic pathway stability in depression [65]. Moreover, even though ASD is highly heritable, a mul-
titude of environmental influences play a fundamental role on ASD incidence [4], which might
interact with the proband’s genetic variants causing the disorder. Though carrying a variant in
one allele of ALDH1A3 might not cause a defined phenotype such as A/M, this can act as a risk
allele to ASD since lower levels of RA might contribute to a poor transcription of several genes,
one of them being FOXN1. Additionally, the second gene variant present in FOXN1, might
affect this transcription factor´s function by not properly regulating yet uncovered pathways in
brain. Finally, when attributing causation to de novo variants prudence needs to be exercised.

Supporting Information
S1 Table. Retinoic Acid Response Elements (RAREs) found 30000bp upstream and 1000bp
downstream from the initial transcription site in both DNA strands for ALDH1A3 and
FOXN1 genes in humans, and Aldh1a3 and Foxn1 genes in mice. Relative positions are
given from the initial transcription site of each gene.
(PDF)

S2 Table. Primer sequences flanking conserved regions of Aldh1a3 and Foxn1 transcripts
in mice. Sequences are given 5’!3’ direction.
(PDF)

S3 Table. Primer sequences used to amplify each flanking RARE bioinformatically pre-
dicted sequences for Aldh1a3 and Foxn1 genes in mice. Sequences are given 5’!3’ direction.
(PDF)
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