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We identified a novel repeat family, termed Platy-1, in the Callithrix jacchus (common marmoset) genome that arose around

the time of the divergence of platyrrhines and catarrhines and established itself as a repeat family in New World monkeys

(NWMs). A full-length Platy-1 element is ∼100 bp in length, making it the shortest known short interspersed element (SINE)

in primates, and harbors features characteristic of non-LTR retrotransposons. We identified 2268 full-length Platy-1 ele-

ments across 62 subfamilies in the common marmoset genome. Our subfamily reconstruction and phylogenetic analyses

support Platy-1 propagation throughout the evolution of NWMs in the lineage leading to C. jacchus. Platy-1 appears to
have reached its amplification peak in the common ancestor of current day marmosets and has since moderately declined.

However, identification of more than 200 Platy-1 elements identical to their respective consensus sequence, and the presence

of polymorphic elements within common marmoset populations, suggests ongoing retrotransposition activity. Platy-1, a

SINE, appears to have originated from an Alu element, and hence is likely derived from 7SL RNA. Our analyses illustrate

the birth of a new repeat family and its propagation dynamics in the lineage leading to the common marmoset over the last

40 million years.

[Supplemental material is available for this article.]

The common marmoset (Callithrix jacchus), also known as the
white-tufted-ear marmoset, is a platyrrhine native to the Atlantic
coastal forest of northeastern Brazil. Platyrrhines, commonly re-
ferred to asNewWorldmonkeys (NWMs), are primates indigenous
to South America. They represent a diverse group of animals
that diverged from catarrhines about 35–47 million years ago
(Schrago and Russo 2003; Perelman et al. 2011; The Marmoset
Genome Sequencing and Analysis Consortium 2014). The overall
repeat content of the C. jacchus genome, which represents the
first sequenced NWM genome, is similar to other previously ana-
lyzed primate genomes, with transposable elements making up
at least half the genome mass (International Human Genome Se-
quencing Consortium 2001; The Chimpanzee Sequencing and
Analysis Consortium 2005; Rhesus Macaque Genome Sequencing
and Analysis Consortium 2007; Locke et al. 2011; Carbone et al.
2014; The Marmoset Genome Sequencing and Analysis Consor-
tium 2014).

The major drivers of repeat-driven genome expansion in pri-
mate genomes are retrotransposons. They move in a “copy-and-
paste” fashion throughout the genome using an RNA intermediate
(Ostertag and Kazazian 2001; Belancio et al. 2008; Cordaux et al.
2009) and can be subdivided into elements with long terminal re-
peats (LTRs), i.e., endogenous retroviruses, and those that lack
LTRs. The latter are commonly referred to as non-LTR retrotranspo-
sons. In primates, the twomajor non-LTR elements and the largest
contributors to genome expansion are long interspersed element
1, L1 (LINE1) and the primate-specific Alu element, a short inter-
spersed element (SINE) (International Human Genome Sequenc-

ing Consortium 2001; Cordaux et al. 2009; Konkel et al. 2010).
A full-length Alu element is ∼300 bp in length and terminates in
an adenosine-rich tail (A-tail), a typical characteristic of non-LTR
retrotransposons (Batzer and Deininger 2002). L1 predates the or-
igin of primates, has been active throughout the radiation of pri-
mates, and represents the only known currently propagating
autonomous non-LTR retrotransposon in primate genomes (Smit
1999; Ostertag and Kazazian 2001; Cordaux et al. 2009; Burns
and Boeke 2012; Huang et al. 2012). LINEs and SINEs propagate
in genomes via a process termed target-primed reverse transcrip-
tion (TPRT) (Luan et al. 1993; Dewannieux et al. 2003) by utilizing
the reverse transcriptase and endonuclease encoded by open read-
ing frame 2 (ORF2) (Mathias et al. 1991; Feng et al. 1996; Cordaux
et al. 2009). As a consequence of TPRT, classical retrotransposon
insertions share hallmarks such as target site duplications (TSDs)
(International Human Genome Sequencing Consortium 2001;
Szak et al. 2002; Cordaux et al. 2009).

Following the divergence of two primate lineages, each line-
age evolves uniquely and independently. Over time, this results
in distinctive changes specific to each lineage; mobile elements
are no different in this regard. Consequently, each lineage accu-
mulates lineage-specific mobile element insertions and mobile el-
ement-mediated rearrangements (Cordaux et al. 2009; Konkel and
Batzer 2010; Konkel et al. 2010). Moreover, mobile element sub-
families evolve uniquely in each lineage. In this respect, the line-
age leading to the common marmoset had at least 35 million
years (Perelman et al. 2011) of platyrrhine-specific evolution
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(i.e., not shared with catarrhines) leading to thousands of lineage-
specific mobile element insertions primarily generated by NWM-
specific subfamilies (The Marmoset Genome Sequencing and
Analysis Consortium 2014).

A relatively small number of source elements are responsible
for the bulk of non-LTR retrotransposon insertions (Deininger
et al. 1992; Batzer and Deininger 2002; Brouha et al. 2003; Han
et al. 2005;Walker et al. 2012), meaning the majority of insertions
are dead upon arrival, i.e., they do not generate daughter copies.
Moreover, the stealth model of propagation proposes that a small
number of retrotransposition-competent elements propagate at a
slow rate over extended periods of time (Han et al. 2005). Some
daughter elements are highly active and generate many insertions
in a relatively short time. These elements are likely deleterious to
the host and, thus, are often lost from the population relatively
quickly.

Results

We identified a nucleotide sequence of unknown origin specific
to C. jacchus on Chr 3 (139597231–139598086) based on a multi-
ple sequence alignment of commonmarmoset (calJac3.2), human
(hg19), chimpanzee (panTro2/4), orangutan (ponAbe2), rhesus
macaque (rheMac2/3), and squirrel monkey (saiBol1) that was
confirmed by locus-specific PCR using a phylogenetic panel (Sup-
plemental Table S1A; Supplemental Fig. S1). Our RepeatMasker
(Smit et al. 2013–2015) analysis revealed that part of the
sequence of unknown origin was not identified as a repeat.
Based on manual inspection, we determined that this sequence
was ∼100 bp in length and followed by an adenosine-rich tail
(hereafter referred to as A-tail). In subsequent analyses using
BLAT (Kent 2002) and BLASTN (Altschul et al. 1990), we deter-
mined that the original sequence of unknown origin was not
recognized in the human, chimpanzee, orangutan, or rhesus
macaque genome assemblies. In contrast, many high homology
matches were identified in the common marmoset genome as-
sembly, indicating identification of a novel repeat family, which
we termed Platy-1 because of its discovery in a NWM species
and its apparent limited distribution in
platyrrhines.

Characterization of Platy-1 elements

Our RepeatMasker (Smit et al. 2013–
2015) analysis of the C. jacchus assembly
using a custom library (see Supplemental
Methods S1) retrieved 2183 full-length
Platy-1 elements. Based on 474 elements
from six chromosomes (Chr 3, 10–13,
and 17) (Supplemental Table S2), we de-
termined the basic structure of the ele-
ment (Fig. 1A) and investigated typical
sequence features. About 90% of the in-
sertions contained TSDs of ≥7 bp, with
a length spectrum resembling a Poisson
distribution with a median and average
length of 15 bp (Fig. 1B), similar to TSD
lengths of other non-LTR retrotranspo-
sons (Roy-Engel et al. 2002; Szak et al.
2002; Chen et al. 2005; Zingler et al.
2005). Further analysis of all Platy-1 ele-
ments with TSDs confirmed the presence

of an endonuclease cleavage site (Fig. 1D) and termination in an A-
tail of varying length without a polyadenylation signal.

The majority of Platy-1 elements have an A-tail between 11
and 20 nucleotides, with 8.2% (57/427) having a pristine A-tail
larger than 20 bp (Fig. 1C). About one-third (37.6%) of the 427 an-
alyzed putative full-length Platy-1 elements have A-tails harboring
nucleotides other than adenosine. The two longest A-tails of puta-
tive Platy-1 elements contained tetranucleotide microsatellites
of 13 and 15 repeat units, respectively. Approximately 55% (41
of 75) of Platy-1 loci with an A-tail larger than 20 bp and at most
one substitution harbored a Pol III termination signal within
100 bp of the downstream flanking sequence and 21 loci within
25 bp. Some of these loci may be source elements and, thus, may
have contributed to the expansion of the Platy-1 repeat family.

Platy-1 subfamily reconstruction and evolution

Our Platy-1 subfamily structure analysis of all 2183 full-length
Platy-1 elements, for which we used a majority rule approach, re-
trieved 62 Platy-1 subfamilies and 2275 elements (Supplemental
Methods S1/Material S6; Supplemental Fig. S2). The higher num-
ber of Platy-1 elements in our final data set is a direct result of
the subfamily reconstruction, as elements too diverged to be ini-
tially identified as a Platy-1 element were discovered with a more
defined subfamily library. Of the 209 Platy-1 elements with an as-
terisk in our RepeatMasker output, indicating a second, higher
scoring match with partial overlap (Smit et al. 2013–2015), we de-
termined that the vast majority (95%) represent true Platy-1 inser-
tions (Supplemental Methods S1). The remaining seven loci
appear to be derived from a different repeat family. Thus, we esti-
mate that the common marmoset genome contains 2268 full-
length Platy-1 elements (Supplemental Table S3) translating to a
density of approximately 0.77 Platy-1 elements per megabase.

As expected, the Platy-1 subfamily sizes vary (Table 1), with
the largest subfamily (Platy-1-13) including 160 members and
the smallest subfamily (Platy-1-16c) encompassing seven ele-
ments. More than two-thirds (43/62) of the subfamilies contained
Platy-1 elements perfectly matching their respective consensus

Figure 1. Platy-1 characteristics. (A) The structure of Platy-1 (turquoise). The element terminates in an
A-tail (light turquoise) and is flanked by TSDs (purple). Flanking sequence is shown in dark gray. (B) The
TSD distribution length across 424 elements. (C ) The A-tail length distribution of all 424 Platy-1 elements
as well as the length distribution of pristine A-tails. (D) The endonuclease cleavage site across all elements
with TSDs is illustrated as a Weblogo (Crooks et al. 2004).
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sequence. Intriguingly, 26 subfamilies had three or more identical
members, with one subfamily having 44 perfect Platy-1 elements.
Altogether, almost 10% (224/2268) of Platy-1 elements are pris-
tine, and more than a quarter (628/2268) have a divergence of
1.5% or less (Fig. 2). Our analyses show that both the average per-
cent divergence and the divergence spectrum (i.e., element with
lowest/highest substitution rate) varied considerably between sub-
families, indicating that some subfamilies were active for a longer
time period than others (Table 1). Alternately, subfamilies with a
wider spectrummay harbor more than one subfamily that cannot
be distinguished due to high divergence and/or low number of
elements.

Since non-LTR retrotransposons mutate at a neutral rate
(Cordaux et al. 2006), the divergence from the consensus sequence
can be used to approximate the age of a subfamily if the mutation
rate is known and the molecular clock is constant. However, the
molecular clock appears heterogeneous across primates (Li and
Tanimura 1987; Hwang and Green 2004; Steiper et al. 2004; Kim
et al. 2006; Steiper and Young 2006; Perelman et al. 2011), making
time estimates more complicated. For mammals, an average neu-
tral substitution rate of 2.2 × 10−9 per base per year has been sug-
gested (Kumar and Subramanian 2002), whereas human neutral
substitution rates based on pedigrees have recently been estimated
to be between 1 and 1.2 × 10−8 per base per generation (Roach et al.

Table 1. Platy-1 subfamily sizes and age estimates

The age was calculated assuming two different mutation rates. For the calculation, the average divergence of each subfamily was
used. Gray data bars indicate relative values with respect to size or divergence estimates. (#) number; (my) million years ago; (age1)
assumed mutation rate of 2.2 × 10−9 (Kumar and Subramanian 2002); (age2) assumed mutation rate of 7.53 × 10−10 (Perez et al.
2013); (age3) assumed mutation rate of 0.55 × 10−9 (Lipson et al. 2015), integrating 29 yr/generation human-referenced estimate;
(age4) assumed mutation rate of 0.55 × 10−9 (Lipson et al. 2015), 6 yr generation time (Perez et al. 2013). These numbers should
be regarded as rough estimates.
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2010; Conrad et al. 2011; Kong et al. 2012; Scally and Durbin
2012). Alternate approaches utilize a comparison of current-day
genomes and precisely dated ancient genomes with estimate rang-
es from 1.1 to 1.7 × 10−8 per base per generation (Fenner 2005; Fu
et al. 2014). A recent study utilizes the fine-scale human recombi-
nation map for mutation rate calibration, resulting in a mutation
rate of 1.6 × 10−8 per base per generation or 0.55 ± 0.05 × 10−9 per
base per year (Lipson et al. 2015).

Non-CpG SNPs have been linked to the generation time and
body size of species (Kim et al. 2006; Perez et al. 2013), which can
vary considerably within primates. While a convergent slowdown
in primate sequence evolution rates has been proposed (Steiper
and Seiffert 2012), this could not be confirmed for platyrrhines
(Perez et al. 2013) in part due to varying body size and generation
time within NWMs. Given that the neutral mutation rate within
and between species continues to be a subject of debate, we pro-
vide average age estimates for Platy-1 subfamilies assuming differ-
ent mutation rates (Table 1). The divergence spectrum of Platy-1
elements (Fig. 2) suggests a slow propagation rate with only a
few subfamilies active in earlyNWMevolution. That is further sup-
ported by neighbor-joining (Saitou and Nei 1987; Kuhner and
Felsenstein 1994) and median-joining network analyses (Fig. 3;
Methods; Supplemental Methods S2; Bandelt et al. 1999).

Platy-1 genomic distribution

Our analysis of Platy-1 elements shows a scattered distribution
within and across all chromosomes, excluding insertions on “chro-
mosome” Random (Fig. 4; Supplemental Fig. S3A). All chromo-
somes except Y contain Platy-1 insertions; this is not unexpected,
as the Y Chromosome is relatively small in size, and the genome
of a female marmoset contains only a small fraction (3.5 Mb) of Y
chromosomal DNA from her fraternal twin due to chimerism. The
intrachromosomal distribution appears to be random, supported
by a random insertion model (Supplemental Methods S3; Sup-
plemental Fig. S3B). In contrast, we rejected a random insertion
model for Platy-1 distribution across the genome (i.e., the number
of insertions is not proportional to the size of the chromosome)
based on the results of a χ2 analysis (χ2 = 51.35, df = 25, P =
0.000656). Hence, Platy-1 elements are not evenly distributed

across all chromosomes. Chromosome 4
exhibited a much lower density and
Chromosomes 18, 19, and 22 a higher
density (Fig. 4). An uneven distribution
of non-LTR retrotransposons across the
chromosomes has been observed previ-
ously (e.g., SVA or Alu elements) (Inter-
national Human Genome Sequencing
Consortium 2001; Wang et al. 2005).

Origin of the Platy-1 repeat family

Next, we investigated the origin of the
Platy-1 repeat family. The internal pro-
moter regions of known SINEs seem to
be derived from tRNA, 7SL RNA, or 5S
RNA. Another alternative, though less
likely, is the origin of a mobile element
through horizontal transfer (Gilbert
et al. 2012). To confirm that Platy-1 was
not derived from tRNA, we performed
a tRNA-Scan (Lowe and Eddy 1997;
Schattner et al. 2005) and confirmed

absence of a cloverleaf secondary structure using Mfold (Zuker
2003).OurBLAST (Altschul et al. 1990)queryof thewholedatabase
(excluding C. jacchus) with consensus sequences of the oldest
Platy-1 subfamilies identified mostly matches in primates, includ-
ing human, indicating that Platy-1 may be derived from 7SL RNA.
Our multiple sequence alignment of the Platy-1 consensus se-
quences against 7SL RNA, FRAM, FLAM, and a selection of AluJ/S
consensus sequences further supports that Platy-1 is derived from
7SL RNA (Fig. 5; Supplemental Fig. S4). More specifically, Platy-1
may be derived from an AluJ element based on sequence identity.

Amplification dynamics of Platy-1 repeat family

In order to determine when Platy-1 elements started amplifying in
primates, we compared full-length Platy-1 candidate loci with
orthologous sequences retrieved from the human genome
(hg19), which represents the genome with the highest quality of
all primate genomes. We did not find convincing evidence of
Platy-1 elements shared between commonmarmoset and human.
Given that some of the oldest elements may have accumulated
mutations to a degree that they are no longer recognized as
Platy-1-derived, we next screened the human genome for the pres-
ence of Platy-1 elements through a RepeatMasker analysis, reveal-
ing 27 full-length Platy-1 candidate loci (Methods; Supplemental
Table S4). We discarded 14 loci based on manual analysis because
of lack of TSDs and high sequence similarity upstream of or down-
stream from the putative Platy-1 sequence, with other Platy-1 can-
didate loci, an indication for nonproper Platy-1 insertions after
ruling out duplication events.

The remaining 13 putative Platy-1 loci appear to have been
active early in Platy-1 evolution based on the average sequence
divergence and absence of additional Platy-1 insertions in the rhe-
sus macaque genome (rheMac3) (Supplemental Table S5). For 10
of the catarrhine-specific Platy-1 candidate loci, we were able to
identify TSDs, A-tails of varying length, and endonuclease cleav-
age sites (Supplemental Table S6), suggesting insertion through
retrotransposition. Two additional loci likely represent Platy-1 in-
sertions; however, these insertions occurred into adenosine-rich
sequences, obscuring accurate TSD identification. For one putative
Platy-1 locus (Chr 16: 74696055–74696158 [hg19]), we could not

Figure 2. Platy-1 evolution in NWMs. The histogram shows the Platy-1 distribution based on the diver-
gence from the consensus sequence of all 2268 full-length sequences. The subfamilies are color-coded
based on subfamily affiliation and grouped together based on age. The divergence from the respective
consensus sequence was retrieved from RepeatMasker and is shown on the x-axis. The y-axis shows the
number of elements with the indicated divergence. The plot is generated with custom BioPython scripts
and the Vega + D3 Vincent wrapper/package (Bostock et al. 2011) (http://github.com/wrobstory/
vincent).
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identify TSDs. This locus terminated in an A-tail immediately fol-
lowed by a stretch of thymine nucleotides. The majority (seven of
13) of the putative Platy-1 loci were absent from the commonmar-
moset genome. Four loci, including the locus without TSDs, were
shared with common marmoset; none of these were present in
our commonmarmoset data set. For two loci, we could not unam-
biguously determine lineage specificity due to (partial) absence of
the flanking sequence in C. jacchus. Conceivably, the Platy-1 can-
didate locus on Chr 16 (hg19) could be the founding sequence for
Platy-1 because it is present in both catarrhines and platyrrhines,
and terminates in a pristine A-tail immediately followed by a Pol
III termination signal.

Our computational analysis of the Platy-1 repeat structure in-
dicates the presence of older subfamilies as well as subfamilies of
more recent origin. To better elucidate the amplification dynamics
of Platy-1 elements, we selected 308 full-length Platy-1 candidate
loci across the divergence spectrum for our PCR-based phylogenet-

ic analyses. We analyzed 271 loci on our phylogenetic panel
(Fig. 6; Supplemental Tables S1A, S6) and received informative re-
sults for 210 loci. Altogether, 101 putative Platy-1 loci were exclud-
ed based on no/unspecific amplification (37 loci), missing
amplification of more than four NWM species (10 loci), no ampli-
fication of the closest related specieswith resolved phylogenetic re-
lationships (50 loci altogether; most commonly Platy-1 amplicon
in marmosets and no amplification in tamarin), or no amplifica-
tion of Platy-1 in any species (four loci).

Occasionally, we encountered amplicon sizes of unexpected
length (i.e., a size different from the predicted filled or empty
amplicon size) in at least one NWM species. Given the different
amplicon size in one or more species, these loci were easily identi-
fied. Intriguingly, we identified one locus (on Chr 13, locus 157)
for which the amplicon pattern, i.e., a PCR product of the same
approximate size as the amplicon containing a Platy-1 element,
suggested a different relationship than the majority of the tested
loci, which were in agreement with previous phylogenies (Ray
et al. 2005; Osterholz et al. 2009). More specifically, the insertion
suggested a close relationship between marmosets and the family
Atelidae. DNA sequencing of this locus revealed a truncatedAlu in-
sertion of similar length as the Platy-1 insertion (Supplemental Fig.
S5; Supplemental Information S8).

All Platy-1 insertions were exclusive to platyrrhines. A few
Platy-1 insertions (10 loci) were shared across all NWM families,
and themajority (60.95%) of the sampled Platy-1 loci were specific
to marmosets, with a smaller number of elements (38 loci) being
unique to common marmoset (Fig. 6). In addition, we identified
31 Callithrichinae- and one Cebidae-specific Platy-1 insertions.
Our analyses of the common marmoset-specific insertions on
the population panel of 24 common marmosets (Supplemental
Table S1A) show that some (three loci) Platy-1 elements are poly-
morphic within C. jacchus (Supplemental Table S7).

Discussion

We identified a new SINE family, Platy-1, in the commonmarmo-
set genome that is most likely derived from AluJ. A full-length
Platy-1 element is only ∼100 bp in length, making it the shortest
SINE in primates. A few active Platy-1 subfamilies contain dele-
tions, illustrating that even shorter SINEs can maintain retrotrans-
positional activity. Although the A box shows considerable
variation during the evolution of Platy-1, the B box has primarily
remained stable. This, taken togetherwith the presence of TSDs, an
endonuclease cleavage site, and termination in an A-tail without
polyadenylation signal indicates transcription of Platy-1 by Pol
III and insertion into the genome via TPRT by the enzymatic
machinery of L1. The lack of a polyadenylation signal prior to
the A-tail also indicates that the A-tail is derived from the source
element as previously reported for Alu elements (Batzer et al.
1990; Deininger and Batzer 1993; Shaikh and Deininger 1996).
The absence of TSDs for ∼10% of Platy-1 elements is likely prima-
rily caused by decay due to the age of some of the insertions.
Alternate reasons include insertion in sequences with simple re-
peat characteristics and insertion of other mobile elements into
the tail immediately upstream of or downstream from Platy-1. A
fraction of these insertions may also have occurred through endo-
nuclease-independent insertion mechanisms as described for Alu
and L1 elements (Morrish et al. 2002; Gilbert et al. 2005; Sen
et al. 2007; Srikanta et al. 2009).

A-tail length and no accumulation of other nucleotides in
their tails have been associated with higher retrotransposition

Figure 3. Platy-1 subfamily tree reconstruction. A neighbor-joining tree
for all 62 Platy-1 subfamilies is shown. The excerpt (bottom left) shows a
network analysis for younger subfamilies. The nodes for each subfamily
represent the approximate size of each subfamily based on the number
of full-length Platy-1 elements.
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Figure 4. Platy-1 genomic distribution. The expected (yellow) and actual (purple) Platy-1 distributions across all chromosomes (excluding Chr Random
and Chr Y) are illustrated. In addition, the density per megabase is shown for each chromosome. Due to omission of putative Platy-1 loci on Chr Random,
2221 full-length elements were included in this analysis.

Figure 5. Alignment of Platy-1with 7SL RNA and Alu elements. Shown is amultiple sequence alignment usingMUSCLE (Edgar 2004) followed bymanual
curation of the oldest Platy-1 subfamilies with 7SL RNA, a selection of Alu consensus sequences, and FLAM. The alignment is visualized with AliView (Larsson
2014). Dashes indicate absence of the sequence. Also illustrated are the A box (consensus sequence: TRGYnnAnnnG) and B box (consensus sequence:
GWTCRAnnCc). The tail of the Platy-1 sequence aligned equally well to the regions prior to the middle A-rich region and the 3′ end of an Alu element.
In the latter case, the deletion may have been caused by recombination between homologous sequences. This alignment assumes that the element ter-
minates at the middle A-rich region. An alternate alignment is provided in Supplemental Figure S4.
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activity ofAlu (Roy-Engel et al. 2002; Bennett et al. 2008; Comeaux
et al. 2009); this is likely true for Platy-1 as well. Based on this and
the analysis of 427 elements, we estimate that ∼8% of elements
have a higher chance of being retrotranspositionally active (pris-
tine A-tail and length >20 bp). Of these, more than half contained
a Pol III termination signal downstream within 100 bp and 28%
within 25 bp. The latter elements have the highest probability of
being source elements, as a Pol III termination signal immediately
downstream from an Alu element has been positively correlated
with Alu retrotransposition efficiency in vitro (Comeaux et al.
2009). On the other hand, more than one-third of the inspected
Platy-1 A-tails harbored nucleotide substitutions, with many of
them containing microsatellites. This is in agreement with previ-
ous findings that A-tails of non-LTR retrotransposons, particularly
Alu elements, represent seeds for microsatellite formation (Arcot
et al. 1995; Nadir et al. 1996; Fungtammasan et al. 2012; Grandi
and An 2013; Grandi et al. 2013) and indicates a role of Platy-1
in the birth of microsatellites, and consequently, to structural var-
iation beyond insertional mutagenesis.

Lineage-specific repeat families con-
taining Alu sequence have been iden-
tified in some primate lineages. For
example, the hominoid-specific SVA ele-
ment (Ostertag et al. 2003; Wang et al.
2005; Damert et al. 2009; Hancks and
Kazazian 2010) and the gibbon-specific
LAVA element (Carbone et al. 2012)
harbor Alu sequence as a component of
these composite mobile elements. In
the Galago crassicaudatus, a lineage-spe-
cific SINE derived from an Alu element,
into which a Type III element inserted,
has been reported (Daniels and Dein-
inger 1985; Roos et al. 2004). That said,
Platy-1 not only represents the first line-
age-specific SINE in NWMs, but also the
first SINE in primates that is solely de-
rived from an Alu element.

Platy-1 propagation

Overall, our results support the birth of
Platy-1 around the time of divergence
of catarrhines and platyrrhines, as both
lineages show at least some evidence for
Platy-1 mobilization. However, Platy-1
established itself as a repeat family only
in NWMs. This raises the question why
this may be the case, especially since
the potential founding element for the
Platy-1 repeat family, an element with
a perfect A-tail followed immediately by
a Pol III termination signal, appears to
be present in both lineages. It may be
that this sequence lost its propagation
properties in the lineage leading to hu-
man prior to the rise of daughter ele-
ments with propagation capabilities.
Alternatively, modifications in the up-
stream sequence (e.g., nucleotide sub-
stitutions or sequence rearrangements)
may have played a role, as it is known

that the upstream sequence of Alu elements is crucial for its retro-
transposition capabilities (Roy et al. 2000b). However, the exact
upstream sequence requirements remain elusive.

Platy-1 provided the unique opportunity to study its propaga-
tion dynamics from its birth up to the present—spanning more
than 40million years of evolution. Themammalian neutral substi-
tution rate seems to better reconstruct the evolution of Platy-1
(Table 1; Supplemental Table S4) with respect to primate radiation
estimates. This does not necessarily imply that the mammalian
substitution rate is more accurate, as the relatively short length
of the Platy-1 element does not allow for a fine-scale divergence
resolution. Also, its high GC content, resulting in above-average
CpG sites, may contribute to the uncertainty of the average substi-
tution rate and (consequently) age estimate of Platy-1 subfamilies.
Moreover, the reconstruction of older subfamilies is less accurate
due to mutation accumulation. Gene conversion represents an-
other factor that would result in a higher divergence of Platy-1 se-
quences and as a result could impact age estimates of subfamilies.
However, we believe that gene conversion plays a limited role for

Figure 6. Phylogenetic distribution of Platy-1. (A) Four agarose gel chromatographs of our locus-spe-
cific phylogenetic analyses. An upper fragment indicates presence of a Platy-1 insertion; a lower fragment,
absence. The vertical lines from left to right separate the outgroups from NWMs, Atelidae from Cebidae,
and Cebidae from Pitheciidae. The gel chromatographs show (from left to right): (A) 100 bp ladder; (B)
TLE; (C) human; (D) common chimpanzee; (E) African green monkey; (F) woolly monkey; (G) spider
monkey; (H) red howler monkey; (I) commonmarmoset; (J) pygmymarmoset; (K) tamarin; (L) capuchin
monkey; (M) squirrelmonkey; (N) owlmonkey; (O) titi; (P) saki. (Formore detailed information regarding
the species used, please see Supplemental Table S1A.) The top gel image shows a Platy-1 insertion shared
across all NWMs. The gel chromatograph below shows an insertion specific to Callithrichinae, which is
followed by amarmoset-specific insertion. The gel chromatograph on the bottom shows a commonmar-
moset-specific Platy-1 insertion. (B) The phylogenetic results for our informative loci are shown in a pie
chart: (Marm) marmosets; (cM) common marmoset; (fp) false positive; (NWM) New World monkey;
(Call) Callithrichinae; (Ceb) Cebidae.
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Platy-1 elements given the lower number of these elements in the
genome and the short length of Platy-1; both factors generally re-
duce the risk of gene conversion. Moreover, gene conversion
events should be relatively easily detected, and these elements
would have been grouped as a separate subfamily with hybrid se-
quence characteristics during manual curation, similar to those
found in human Alu gene conversion events (Kass et al. 1995;
Roy et al. 2000a).

Following an initially slowmobilization rate, Platy-1 propaga-
tion seems to have continuously increased until propagation
reached a peak that coincided with the rise of themarmoset ances-
tor, suggesting a recent Platy-1 expansion with several retrotrans-
position-competent subfamilies propagating in parallel. This is
in stark contrast to the early Platy-1 evolution, in which propaga-
tion was primarily linear (Fig. 3) and more closely resembled the
typical subfamily evolution of LINEs. This is likely a result of the
low number of source elements early in Platy-1 evolution—initial-
ly, of a single subfamily. In contrast, the more recent history of
Platy-1 follows a star-like pattern, typical for the propagation of
Alu elements (Cordaux et al. 2006). Most recently, Platy-1 retro-
transposition has somewhat slowed based on the relatively small
number of polymorphic Platy-1 insertions within common mar-
moset populations (Supplemental Table S7). However, Platy-1
has been active very recently and is likely still propagating in com-
mon marmosets.

The timing of the recent Platy-1 expansion differs from the
Alu propagation dynamics in the lineage leading to the common
marmoset (The Marmoset Genome Sequencing and Analysis
Consortium 2014). The history of Alu elements shows an ex-
ceptional retrotransposition peak about 40 million years ago
(International Human Genome Sequencing Consortium 2001;
The Marmoset Genome Sequencing and Analysis Consortium
2014), coinciding with the estimated divergence of the NWM
lineage from the ancestral anthropoid lineage about 35–47million
years ago. This was followed by a decline of the Alu propaga-
tion rate both in Platyrrhini (The Marmoset Genome Sequencing
and Analysis Consortium 2014) and Catarrhini (International
HumanGenome Sequencing Consortium 2001). A second smaller
Alu retrotransposition peak occurred in the NWM lineage, leading
to the common marmoset in more recent history, and has sub-
sequently declined (The Marmoset Genome Sequencing and
Analysis Consortium 2014). Based on the divergence estimates,
Platy-1 propagation peaked more recently than Alu retrotrans-
position in the NWM lineage and coincided with the rise of the
common ancestor of marmosets. The more recent amplification
success of Platy-1 may be the result of different factors, including
a higher number of source elements in conjunction with escape
from the host response against Platy-1 elements. Although
speculative, the decline of the Alu mobilization rate could at least
partially be caused by the higher number of retrotransposition-
competent Platy-1 elements, as both Platy-1 and Alu likely com-
pete for the enzymatic machinery of L1. In general, the interplay
of different factors, including number of retrotransposition-com-
petent elements, preference of the L1 enzymatic machinery,
and host factors, all affect the amplification dynamics of non-
LTR retrotransposons and result in varying retrotransposition rates
over time.

Taken together, we identified and characterized a new SINE in
the NWM lineage leading to the commonmarmoset. The birth of
Platy-1 coincided with the rise of NWMs, allowing for the investi-
gation of the Platy-1 propagation dynamics throughout the radia-
tion of NWMs. The current study was performed through the lens

of the common marmoset. It remains to future studies to deter-
mine the fate of Platy-1 in other NWM species.

Methods

Analysis of the original Platy-1 element

We retrieved orthologous nucleotide sequences for the original
multispecies sequence alignment on Chromosome 3 using BLAT
(Kent 2002) from the common marmoset (calJac3.2), human
(hg19), chimpanzee (panTro2/panTro4), orangutan (ponAbe2),
and rhesus macaque (rheMac2/rheMac3) genome assemblies.
Assisted by the ClustalW function of BioEdit (Hall 1999), we per-
formed amultiple species alignment. Next, we queried the original
Platy-1 sequence against the C. jacchus genome (calJac3.2) using
BLAT, as well as against all other aforementioned genome assem-
blies and the squirrel monkey draft genome assembly (saiBol1).
We also queried the original sequence against the whole database
using BLASTN (Altschul et al. 1990) to determine if the sequence
was identified in species other than the commonmarmoset. To as-
sess if the sequence was derived from a known repeat, we checked
the sequence with RepeatMasker (Smit et al. 2013–2015).

Subfamily reconstruction

We selected the 10 best matches from our C. jacchus BLAT query
and reconstructed a preliminary query sequence using a majority
rule approach.We included this sequence in the library of our local
RepeatMasker analysis (Supplemental Methods S1) and retrieved
all full-length Platy-1 hits, defined as start position <4 bp and
end position not shorter than two nucleotides prior to the A-tail.
Following multiple sequence alignments with ClustalW (Hall
1999) and/or MUSCLE (Edgar 2004), and together with manual
curation, the Platy-1 elements were sorted based on presence/ab-
sence of SNPs and short indels (deletions/insertions of nucleo-
tides) using a majority rule approach (for further information,
please refer to Supplemental Methods S1). Following the creation
of Platy-1 consensus sequences, we RepeatMasked the C. jacchus
assembly and determined for each subfamily (1) if the minimum
requirements for the presence of a subfamily was met (i.e., mini-
mum number of elements); and (2) if we could identify additional
subfamilies. This step was repeated until we identified and con-
firmed all subfamilies.

Phylogenetic subfamily tree construction

We reconstructed the subfamily evolution using DNAdist, neigh-
bor, and drawgram from the Phylip v3.695 (Felsenstein 1989) an-
alytics suite for generation of a neighbor-joining tree using the
Kimura-2-parameter model. As input, we used a file containing
all Platy-1 subfamilies. Wemanuallymoved subfamilies with dele-
tions to the appropriate locations in the tree because these subfam-
ilies evolved most likely from each other, as the independent
recurrence of the same deletion is highly unlikely. In parallel, we
performed a network analysis using Network version 4.612
(Supplemental Methods S2; Bandelt et al. 1999). To avoidmisplac-
ing subfamilies, we removed all deletions except for one nucleo-
tide from the respective consensus sequences.

Platy-1 sequence feature analysis

For our Platy-1 sequence analyses, we scrutinized the elements as
well as sequences immediately upstream and downstream for the
presence of common sequence features. Specifically, A-tail length
and composition, TSDs, and endonuclease cleavage sites were
manually determined and recorded. For the determination of

Konkel et al.

656 Genome Research
www.genome.org

http://www.genome.org/lookup/suppl/doi:10.1101/gr.199075.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199075.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199075.115/-/DC1
http://www.genome.org/lookup/suppl/doi:10.1101/gr.199075.115/-/DC1


TSDs, we allowed for the presence of up to four SNPs, because TSDs
decay over time—likely at a neutral rate similar to non-LTR retro-
transposons (Cordaux et al. 2009). We excluded loci without
TSDs from our downstream analyses and used Weblogo (Crooks
et al. 2004) to visualize the endonuclease cleavage site.

Platy-1 genomic distribution

Wecalculated the density of full-lengthPlaty-1 elements across the
C. jacchus genome by counting Platy-1 elements per chromosome
divided by the number of megabases of nucleotide sequences for
each chromosome (excluding ChrRand, which, reduced the data
set from 2268 to 2221 putative Platy-1 loci) and performed a χ2

analysis. We utilized the GATK software (McKenna et al. 2010)
to calculate the GC content of the flanking sequence. We also de-
termined the intrachromosomal Platy-1 distribution and per-
formed simulations of a random intrachromosomal distribution
model (Supplemental Methods S3).

Determination of Platy-1 lineage specificity

To determine when Platy-1 originated, we queried all full-length
Platy-1 elements, including 500 bp of flanking sequence, against
the human genome (hg19) using a local BLAT installation (Kent
2002) and retrieved the resulting sequences. We aligned the hu-
man sequence against the C. jacchus sequence using MUSCLE
(Edgar 2004) for matches in human of <10,000 bp in length
and manually determined the presence of Platy-1 in catarrhines.
In addition, we RepeatMasked the human genome (hg38) with a
custom library and retrieved all full-length Platy-1 elements, in-
cluding 500 bp of flanking sequence. Next, we performed the
same analysis as described above by querying against the common
marmoset genome and checked all putative Platy-1 loci for the
presence of typical non-LTR features. We also RepeatMasked the
rhesus macaque (rheMac3) genome, retrieved all full-length
Platy-1 insertions, and compared Platy-1 insertions from the rhe-
sus macaque genome with hits from the human genome.

Age estimate calculation

Based on neutral mutation rate estimates of 8.5 × 10−10–6.06 ×
10−10 per base per generation for crown Platyrrhini and of 9.07 ×
10−10–6.47 × 10−10 for crown Cebidae (Perez et al. 2013), we as-
sumed an average substitution rate of 7.53 × 10−10 per base per gen-
eration for our subfamily age estimates. We used 8 yr as an
approximate generation time given that marmosets have a gener-
ation time of about 6 yr, and the generation likely was longer
earlier in primate radiation. We also calculated the average age of
the elements using an estimated neutral substitution rate formam-
mals of 2.2 × 10−9 per year per base (Kumar and Subramanian
2002) and one derived from human studies using 0.55 × 10−8

and varying generation times (Lipson et al. 2015).

Oligonucleotide primer design and PCR analyses

For primer design, we retrieved the Platy-1 element plus 600 bp of
flanking on either site from the C. jacchus genome using BLAT
(Kent 2002). Orthologous sequences to the flanking sequence
were retrieved from the human (hg19), chimpanzee (panTro2/4),
orangutan (ponAbe3), and rhesus macaque (rheMac2/3) genome
assemblies using BLAT; and a multiple species alignment was
performed with ClustalW (Hall 1999). We designed primers with
Primer3 (Rozen and Skaletsky 2000) using the default settings
with the following exceptions: only mononucleotide repeats
with up to four consecutive identical nucleotides were permitted,
the minimum nucleotide number for primers was increased to 20,

the annealing temperature range was set to 57°C–61°C, and the al-
lowed PCR amplicon sizewas increased to 1400 bp. All primer pairs
that passed our downstream screening (SupplementalMethods S4)
were ordered from Sigma Aldrich (Supplemental Table S8).

In preparation for sequencing (Supplemental Methods S5)
andwet bench-based phylogenetic analyses (for species and origin
of DNA, see Supplemental Table S1A), we performed PCRs in a 96-
well format using a BioRad iCycler thermocycler in a final volume
of 25 µL. Each PCR reaction contained 25 ng of template DNA; 200
nM of each oligonucleotide primer; 1.5 mMMgCl2; 1X PCR buffer
(50 mM KCl; 10 mM TrisHCl, pH 8.3); 0.2 mM dNTPs; and 2 units
TaqDNA polymerase. PCR reactions were performed using the fol-
lowing conditions: initial denaturation for 90 sec at 94°C, followed
by 32 cycles of denaturation for 30 sec at 94°C, annealing at opti-
mal temperature for 20 sec, and extension for 30 sec at 72°C. PCRs
were terminated with a final extension for 3 min at 72°C. The PCR
amplicons (20 µL of each PCR product) were size fractionated in a
horizontal gel chamber on a 2% agarose gel containing 0.1 µg/mL
ethidium bromide for 50 min at 200 V. DNA fragments were visu-
alized with UV-fluorescence and images were saved using a BioRad
ChemiDoc XRS imaging system.

Data access

Sequencing data generated for this study have been submitted to
GenBank (http://www.ncbi.nlm.nih.gov/genbank/) under acces-
sion numbers KT427526–28 and are shown in the alignment of
Supplemental Figure S5.
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