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Background: Evaluating clinical outcomeprior to concurrent chemoradiotherapy remains challenging for oesoph-
ageal squamous cell carcinoma (OSCC) as traditional prognostic markers are assessed at the completion of treat-
ment. Herein, we investigated the potential of using sub-region radiomics as a novel tumour biomarker in
predicting overall survival of OSCC patients treated by concurrent chemoradiotherapy.
Methods: Independent patient cohorts from two hospitals were included for training (n = 87) and validation
(n = 46). Radiomics features were extracted from sub-regions clustered from patients' tumour regions using
K-means method. The LASSO regression for ‘Cox’method was used for feature selection. The survival prediction
model was constructed based on the sub-region radiomics features using the Cox proportional hazards model.
The clinical and biological significance of radiomics featureswere assessed by correlation analysis of clinical char-
acteristics and copy number alterations(CNAs) in the validation dataset.
Findings: The overall survival prediction model combining with seven sub-regional radiomics features was con-
structed. The C-indexes of the proposedmodel were 0.729 (0.656–0.801, 95% CI) and 0.705 (0.628–0.782, 95%CI)
in the training and validation cohorts, respectively. The 3-year survival receiver operating characteristic (ROC)
curve showed an area under the ROC curve of 0.811 (0.670–0.952, 95%CI) in training and 0.805 (0.638–0.973,
95%CI) in validation. The correlation analysis showed a significant correlation between radiomics features and
CNAs.
Interpretation: The proposed sub-regional radiomics model could predict the overall survival risk for patients
with OSCC treated by definitive concurrent chemoradiotherapy.
Fund: This workwas supported by the Zhejiang Provincial Foundation for Natural Sciences, National Natural Sci-
ence Foundation of China.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Previous studies revealed that biomarkers such as VEGF, cyclin D1,
Ki-67, and squamous cell carcinoma antigen are prognostic for oesoph-
ageal squamous cell carcinoma (OSCC) [1]. These biomarkers are all de-
rived frompathological analysis of tumour samples. Yet there remains a
large cohort of OSCC patients who are physiologically unresectable or
refused surgery. However, personalized treatment regimen and its
long-term efficacy significantly rely on bio-physiological assessment of
pre-treatment biomarkers. One alternative is through medical imaging
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Currently, predicting the clinical outcome remains challenging for
oesophageal squamous cell carcinoma (OSCC) patients treated
by concurrent chemoradiotherapy, as traditional prognostic
markers are mainly assessed at the completion of treatment.
Sub-regional radiomics analysis has been conducted with proven
prognostic power for many cancer types. At present, no previous
studies have applied sub-region based radiomics analysis for sur-
vival prediction of OSCC.

Added value of this study

In this study involving two medical centres, we performed a sub-
region cluster within the tumour region on planning CT. A survival
prediction model for OSCC was then constructed based on the
sub-regional radiomics features. The constructed sub-regional
radiomics survival prediction model showed high prognostic
value in both the training cohort and validation cohort.

Implications of all the available evidence

The sub-regional radiomics analysis showed potential in predicting
survival of OSCC patients treated by definitive concurrent chemo-
radiotherapy, which may improve personalized treatment and
achieve a better outcome for OSCC patients.
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assessment usingcomputed tomography (CT),magnetic resonance (MR)
and positron emission computed tomography (PET), which all play es-
sential roles in cancer diagnosis and tumour heterogeneity analysis
prior to radiotherapy. More specifically, PET/CT was used to predict sur-
vival in oesophageal cancer patients treated with chemoradiotherapy
[2]. However, there has not been a literature consensus in terms of prog-
nosis power in PET/CT. Atsumi et al. suggested the maximum standard-
ized uptake value (SUVmax) as a strong prognostic marker for primary
OSCC [3]. Lindner et al. found that SUVmax only correlates with survival
of OSCC patient in case of primary surgery but not if patients received
neoadjuvant therapy [4]. However, Myslivecek et al. concluded that the
contribution of (18)F-FDG PET/CT cannot be considered as a potential
marker for outcome of chemoradiotherapy [5]. The controversy over
the use of SUVmax from PET/CT has hampered its utility in clinical prac-
tice. Meanwhile, efforts have been focusing on radiomics as a potential
solution in providing surrogate information of the tumourmicroenviron-
ment utilizing quantification methods such as texture analysis [6].
Beukinga et al. found that the combination of texture features extracted
from PET and CT can improve the predictive power of tumour response
to neoadjuvant chemoradiotherapy (nCRT) in locally advanced OSCC,
compared to SUVmax alone [7]. Despite strong clinical indication, the
general clinical use of the PET/CT based radiomics features in tumour re-
sponse prediction is still limited, in part due to the high cost of PET/CT
scans for patients especially in rural areas or developing countries. CT
scans, on the other hand, aremore accessible and recent studies have ex-
plored features extracted from CT alone. Hou et al. found that CT-based
radiomics features can be used as imaging biomarkers to predict tumour
response to chemoradiotherapy in OSCC patients [8]. Five CT-based
radiomics features were found to discriminate responders from non-
responders (AUCs from 0.686 to 0.727). Ganeshan et al. showed correla-
tion between unenhanced CT textural features (entropy: p-value= .027,
r=0.512 and uniformity: p-value = .027, r=−0.521, Pearson's corre-
lation) and PET mean standardized uptake value (SUVmean) of non-
small cell lung cancer (NSCLC) [9]. Ganeshan et al. applied the same
methodology towards oesophageal carcinoma and found that entropy
and uniformity are correlated with SUVmean (entropy: p-value b .001, r
= 0.748 and uniformity: p-value b .001, r=−0.754, Pearson's correla-
tion) and SUVmax (entropy: p-value = .032, r=0.469 and uniformity:
p-value= .029, r=− 0.476, Pearson's correlation) in the corresponding
18F-FDG PET scans [10]. In other words, texture features from CT scans
alonemay be a prognostic indicator of survival prediction in OSCC. Thus
far, OSCC tumour heterogeneity and its quantitative feature analysis has
been carriedout for thewhole tumourvolume,without the consideration
of intra-tumoral variation in different sub-regions [11,12]. Yet sub-
regional radiomics analysis has been conducted with proven prognostic
power for NSCLC [13] and hepatocellular carcinoma [14]. To the best of
our knowledge, no previous studies have applied sub-region based
radiomics analysis for survival prediction of OSCC.

This study aimed to construct and validate a prognostic model for
pre-treatment survival prediction of OSCC patients, based on sub-
regional radiomics analysis of CT scans. To identify the clinical and mo-
lecular basis of quantitative imaging characteristics in this study, we
assessed the association of the radiomics features with the clinical fac-
tors and copy number alterations (CNAs).We also compared prediction
accuracy of the sub-regional radiomics model with the whole-tumour
radiomics model and conventional clinical factors.

2. Methods

2.1. Study design

Fig. 1 depicts the schema of the present study, with the following
steps: Image Acquisition, Volume of Interest Delineation, Sub-region
Clustering, Features Extraction, Feature Selection, Model Construction
and Validation. CT image datasets from two institutions were used for
training an overall survival predictionmodel and validation, respectively.
More specifically, tumour volumesweredelineatedon theCT scans of the
selected OSCC patients, followed by sub-region clustering and radiomics
feature extraction of different sub-regions. Features that showed signifi-
cant correlation with survival were identified and paired with the corre-
sponding clinical survival outcomes for training and validation using a
machine learning method. A survival prediction model was constructed
based on the training dataset. The model was then tested using the vali-
dation dataset by investigating the underlying genomics correlation of
the developed survival prediction model with CNAs and clinical factors.
We further validated the developed model by comparison with whole-
tumour based radiomics model and conventional clinical factors.

2.2. Patients

Two cohorts of OSCC patients from Hangzhou Cancer Hospital and
the First Affiliated Hospital of Wenzhou Medical University were retro-
spectively identified and their CT scans were obtained upon Intuitional
Review Board approval from both hospitals. The written informed con-
sent was waived by IRB based on the retrospective nature of this study.
This study was constructed following ethical guidelines of World Med-
ical Association (WMA) Declaration of Helsinki. Inclusion criteria are
I) histological diagnosis of OSCC and staged according to the 2002
(version 6.0) American Joint Committee on Cancer staging system; II)
medically inoperable or refuse to surgery after discussion by the multi-
disciplinary treatment team; III) Eastern Cooperative Oncology Group
Performance Status (ECOG PS) of ≤2; and IV) no evidence of severe
organ dysfunction. The exclusion criteria are I) early-stage OSCC; II) ev-
idence of distantmetastasis at diagnosis; III) prior administration of sur-
gery or chest radiation or chemotherapy; IV) non-treatment related
death; and V) incomplete data on CT images and overall survivals.

All patients received a planning CT scan for treatment planning pur-
pose, followed by radiotherapy treatment with a total dose of 54–60 Gy
given in 27–30 fractions (2.0 Gy per fraction, 5 days per week). Treat-
ment plans involved 3-dimension conformal photon fields or Intensity
modulated photon fields. The majority of OSCC patients received



Fig. 1.Workflow in this study.
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definitive concurrent chemoradiotherapy based on cisplatin regimen.
For patients with advanced ages or poor performance status, radiother-
apy alone was delivered to these patients.

Paired CT images and overall survival outcomes of a total of 87 pa-
tients diagnosed between May 2012 and November 2016 from Hang-
zhou Cancer Hospital were used as the training cohort. Same dataset
pairs from 46 patients diagnosed between January 2008 and July 2011
from the First Affiliated Hospital of Wenzhou Medical University were
used to validate the developed model and to further improve the
model by feeding in genomics information with CNAs. Apart from age
and sex, patients' clinical characteristics including clinical stage, ECOG
PS, and tumour length were collected for both cohorts.

2.3. Image acquisition

The CT images of the training cohort were obtained from the Bril-
liance Big Bore CT scanner (Philips Electronics, Eindhoven,
Netherlands) in Hangzhou Cancer Hospital. The scanning voltage and
tube currents were 120 kVp and 406 mAs. The slice thickness ranged
from 3 to 5 mm. The CT images in the validation cohort were scanned
from the LightSpeed Pro 16 CT (GE Medical Systems, Milwaukee) in
the First Affiliated Hospital of Wenzhou Medical College, with 120 kVp
and 150 mAs. The slice thickness was 3–8 mm.

2.4. Volume of interest (VOI) delineation and sub-region clustering

The contoured gross tumour volume (GTV) in the radiation treat-
ment planning was used as the volume of interest (VOI) in the training
cohort. Because the patients' radiation therapy plans in the validation
cohort were not well preserved, the VOIs in the validation cohort
were depicted by two radiologists all with more than 10 years of expe-
rience. The VOI segmentation was performed using open-source soft-
ware, ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php). The
regions of VOIs in the validation cohort were agreed by both the two ra-
diologists. Air region in the VOI was excluded with a Hounsfield Unit
(HU) threshold of zero. VOIs were divided into sub-regions based on

http://www.itksnap.org/pmwiki/pmwiki.php
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the cluster of HUvalues and local entropy values of CT images. Amoving
window with the size of 9 × 9 was used in the calculation of local en-
tropy [13] on each slice of CT images. The K-means method was used
for clustering sub-regions in this study. The Calinski–Harabasz (CH)
value was used as the criterion in selecting the best number of clusters
at the patient population level [15]. The number of clusters from 2 to10
were tested in this study.

2.5. Feature extraction

To compensate for the difference in radiomics features caused by dif-
ferent reconstruction slice thicknesses andpixel sizes [16], the voxel sizes
of all CT images in this study were reconstructed to 1 × 1 × 5 mm3. The
VOIs were normalized to 64 grey levels to compensate for the variation
of CT scanners. For each sub-region, region volume, shape, intensity,
and texturewerequantified as 548 radiomics features using texture anal-
ysis and wavelet decomposition method as described in the study of
Vallieres et al. [17]. For comparison purpose, 548 radiomics features
were also extracted from the whole tumour region for each patient. The
radiomics features used in this study were described in Supplementary
I. All sub-regional partitioning and radiomics feature extractionwereper-
formed on MATLAB 2015b (The Mathworks, Natick, MA).

2.6. Feature selection and survival prediction model construction

To eliminate the potential volume change effect caused by sub-
regional analysis on radiomics features, the correlation between the tu-
mour volume and radiomics feature value was assessed using the Pear-
son correlation method, as compared to the whole tumour region.
Radiomics features with a correlation coefficient (CC) of N0.75 were ex-
cluded from further study [18]. The redundant featureswithhigh internal
association (CCN 0.75) of all sub-regional radiomics featureswere further
excluded. The least absolute shrinkage and selection operator (LASSO)
for cox algorithmwas used to screen features thatwere highly correlated
with survival outcomes [19]. The LASSOalgorithmcontrols thenumberof
selected variables by adjusting theparameter,λ. The objective functionof
LASSO algorithm is shown in Function 1, where y is truth label, X is the
featurematrix, β is the coefficients of features and λ is the tuning param-
eter. TheLASSOmethodwasdesigned tominimize theobjective function.
The larger the λ is, the smaller the coefficients of features are. Features
with coefficient of larger than zero were selected. To determinate the
best λ in the LASSO algorithm, the 8-fold cross-validation strategy was
used [20]. The λ resulting the least mean difference between the pre-
dicted and actual survival in the cross-validations was used to select the
final features. A radiomics score was calculated based on the selected
sub-regional radiomics features and corresponding coefficients. The sur-
vival prediction model was built based on the radiomics score using the
Cox proportional hazards model and a radiomics nomogram was con-
structed based on this model for visualization purpose.

1
2

y−Xβj jj j22 þ λ βj jj j1 ð1Þ

2.7. Prognostic performance evaluation

The predictive performance of the radiomics score was evaluated in
the training cohort and verified in the validation cohort using the con-
cordance index (C-index) [21]. The patients were divided into a high-
risk group or low-risk group based on the predicted risk using the pro-
posed model. The receiver operation characteristics (ROC) curve was
used to determine the best cut-off risk to stratify patients. The ROC
curves for 1-year survival, 2-year survival, and 3-year survival were
plotted for the two datasets. The Youden index was used to select the
best cut-off value where the sum of sensitivity and specificity is maxi-
mized [22]. The optimal cut-off in the training dataset was used to
stratify patients in the validation dataset. The Kaplan-Meier survival
analysis and Log-rank test were used to compare the differences be-
tween the survival curves of the two groups [23].

2.8. Association of sub-regional radiomics features with clinical factors and
copy number alteration

The Spearman rank correlation test was used to assess the correla-
tion of sub-regional radiomics features included in the survival model
with clinical factors and CNAs in the validation cohort. A corresponding
p-value was used to determine the significance of the correlation (p-
value b .05). The CNAs of patients in the validation cohortwere acquired
bywhole exon sequencing using the IntegratedDNA Technologies (IDT)
xGen Exome Research Panel kit for exon capture and sequencing by the
Illumina HiSeq 2500. The alignment was performed by bwa 0.7.13 [24].
All CNAs were called by cn.mops [25] package in R language. A total of
1046 CNAs Indexes were analysed. The specific CNAs locations of each
CNA index were summarized in the supplementary (Supplementary
Table S3).

2.9. Comparison with whole-tumour based radiomics model

The same workflow of feature selection and model construction
were applied in building the whole-tumour survival prediction model
(WTPM) using the training cohort. Its prediction performancewas com-
paredwith the sub-regional predictionmodel (SRPM) using the C-index
in both training and validation cohorts.

2.10. Comparison with the clinical factors

The prediction performance of SRPM was also compared with con-
ventional prognostic factors, clinical stage and ECOG PS using the C-
index in both training and validation cohorts.

2.11. Statistical analysis

Statistical analysis was done with the R software (R Core Team. R: A
language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL: http://www.R-project.org,
2016). TheMann–Whitney U test and chis-q test were used to compare
the difference in patient clinical characteristics in the two cohorts. The
student t-test was used to compare the C-index of different methods.

3. Results

3.1. Patient characteristics

Patient characteristics in the two cohorts showed consistent demo-
graphic distributions, which was summarized in Table 1. The survival
analysis showed no significant difference (p-value = .388, Log-rank
test) in survival between the two cohorts (Supplementary Fig. S3).
Among them, 61 and 37 patients were confirmed deceased during the
follow-up period in the training group (70.11%), and the validation
group (80.43%), respectively. The median and mean survival time of
the training cohort were 13.00 months (10.00–19.00, 95% Confidence
Interval [CI]) and 25.66 months (19.85–31.47, 95% CI), respectively. In
the validation cohort, median and mean survival time were
12.77 months (9.77–15.43, 95% CI) and 24.21 months (21.27–33.16,
95% CI), respectively.

3.2. Sub-region cluster and feature extraction

The selection process of the best number of clusters was shown in
(Supplementary Fig. S4). When the number of clusters is four, the CH
value reached the optimal in the training cohort. Thus, the tumour re-
gion was clustered into four sub-regions, as shown in Fig. 2c. Finally,



Table 1
The patient characteristics in training and validation cohorts.

Characteristic Training Cohort
(n = 87)

Validation Cohort
(n = 46)

p-value

Age, years .611
Median (range) 64 (45–85) 61.5(48–75)

Sex .122
Male 59 37
Female 28 9

ECOG PS .73
0–1 45 26
2 42 20

T stage .613
T3 38 18
T4 49 28

N stage .209
N0 30 11
N1 57 35

Differentiation .826
Well 17 7
Fairly 32 18
Poorly 38 21

Clinical Stage .068
III 54 36
IVa 33 10

Treatment modality .914
RT alone 10 5
Chemoradiotherapy 77 41

Tumour Length (cm) .982
≤5 49 26
N5 38 20

RT: radiation therapy.
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548whole-tumour radiomics features and 2192 sub-regional radiomics
features were extracted from each patient.

3.3. Feature selection result

None of radiomics feature were found to have high correlation (CC N

0.75) with the tumour volume. Three hundred and forty features
remained after the internal correlation exclusion. The best lambda was
set as 0.157851, with log(lambda) = −1.846106, as shown in Fig. 3a.
The feature selection process in the LASSO method was shown in
Fig. 3b and c. Seven sub-regional radiomics features with non-zero coef-
ficient at the best lambda were selected in the LASSO method. The de-
tailed information of the seven sub-regional features was described in
Supplementary Table S1. The corresponding coefficient in LASSO and
the p-value in the multivariable analysis for each selected feature were
summarized in Supplementary Table S2. Four features are from sub-
region 1, two from sub-region 3, and one from sub-region 4. Features
Subregion1_LLL_GLCM_inf2h, Subregion1_HHL_Histogram_Uniformity,
and Subregion3_LLL_GLCM_inf1h are all independent prognostic factors
in the multivariable analysis. The radiomics score was constructed by
summing the seven features multiplied with their corresponding coeffi-
cient in LASSO.
Fig. 2. (a) The tumour region in the CT images; (b) T
3.4. Sub-regional radiomics survival prediction model

With the coefficient of each radiomics feature in the LASSO method,
the radiomics score can be formulated as:

Radiomics Score for SRPM ¼ 5:473
� Subregion1 LLL GLCM inf2h−14:175
� Subregiona1 HHL Histogram Uniformity−14:671
� Subregion1 HHL GLSZM SZE−9:539
� Subregion1 HHH GLSZM SZE
þ 16:778
� Subregion3 LLL GLCM inf1h
þ 16:158
� Subregion3 HHH GLCM corrm−0:116
� Subregion4 GLCM Contrastþ 22:5 ð2Þ

A constant value 22.5 was added to the formula to make positive
radiomics score values. The radiomics survival prediction model was
constructed based on the radiomics score. The constructed nomogram
was shown in Fig. 5.

The predictive performance of the model was tested in the training
set and validation set. The C-index was 0.729 (0.656–0.801, 95% CI)
and 0.705 (0.628–0.782, 95%CI) in the two cohorts, respectively. Our
evaluation result reflected good prognostic value of the developed
model. High C-index value in the validation cohort showed survival pre-
diction feasibility of the model for test cohorts.

As shown in Fig. 4, the 1-year survival ROC curve showed an AUC of
0.800 (0.704–0.896, 95%CI) in the training cohort and 0.794
(0.652–0.936, 95%CI) in the validation cohort. The stratified high-risk
and low-risk group showed significant difference of survival in both
the training (p-value b .001, Log-rank test) and validation (p-value b

.001, Log-rank test), as shown in Supplementary Fig. S5. The 2-year sur-
vival ROC curve showed an AUC of 0.821 (0.711–0.931, 95%CI) in train-
ing and 0.805 (0.638–0.973, 95%CI) in validation. The stratified high-risk
and low-risk group showed significant difference of survival in both
training (p-value b .001, Log-rank test) and validation (p-value =
.012, Log-rank test). The 3-year survival ROC curve showed an AUC of
0.811 (0.670–0.952, 95%CI) in training and 0.805 (0.638–0.973, 95%CI)
in validation. The stratified high-risk and low-risk group showed signif-
icant difference of survival in both the training cohort (p-value b .001,
Log-rank test) and validation cohort (p-value b .001, Log-rank test). Re-
sults showed clinical utility of the developed model in stratifying high-
risk patients regarding 1-year survival, 2-year survival and 3-year sur-
vival for treatment strategies adjustment.

3.5. Clinical and biological association

The correlation analysis showed that subregion1_HHL_Uniformity
was significantly correlated with tumour length (Fig. S6).
Subregion1_HHL_SZE and subregion3_HHH_corrm were significantly
he local entropy image. (c) The cluster results.



Fig. 3. (a) The change of partial likelihood deviance with responding to the change of lambda in the cross-validation process. The green line showed the optimal lambda in the LASSO
method with the least partial likelihood deviance. (b) The change of coefficients of each feature in the LASSO method with responding to the change of lambda. (c) The zoomed view
of the coefficient change. The green line showed the optimal lambda.
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correlatedwithECOGPS. Subregion3_LLL_inf1hwas correlatedwithboth
clinical stage and tumour length. Subregion4_Contrast was correlated
with the tumour length and ECOG PS.

One hundred and ninety-five CNAs showed non-zero variance
among patients. Thirty-one CNAs showed significant correlation with
at least one of the selected radiomics features (Fig. S7). The correlation
analysis showed the underlying relationship between clinical factors,
gene expression and radiography characteristics in oesophageal
tumours.
3.6. Comparison with whole-tumour based radiomics model

The WRPM were established by the following radiomics score:

Radiomcis Score for WRPM ¼ −11:680
�WholeRegion LLL GLCM inf1h
þ 0:386
�WholeRegion LLH Histogram Skewness−3:223
�WholeRegion LLH Histogram Uniformity−0:021
�WholeRegion LHH NGTDM Strength−3:984
�WholeRegion HHL GLRLM GLV
þ 0:002
�WholeRegion HHH GLSZM GLV ð3Þ

The WRPM showed a C-index of 0.704 (0.637–0.770, 95%CI) in the
training cohort and 0.601 (0.531–0.672, 95%CI) in the validation cohort.
The C-index ofWRPMwas lower than that of SRPM,while the statistical
analysis showed non-significant difference between the C-indexes of
WRPM and SRPM (p-value = .754[Training]; p-value = .982[Valida-
tion], t-test).
3.7. Comparison with clinical model

The clinical stage showed a C-index of 0.510 (0.364–0.656, 95%CI) in
the training cohort and 0.515 (0.272–0.756, 95%CI) in the validation co-
hort. The ECOG PS showed a C-index of 0.528 (0.401–0.655, 95%CI) in
the training cohort and 0.578 (0.417–0.740, 95%CI) in the validation co-
hort. Both clinical stage and ECOG PS showed significantly lower C-
index than SRPM in the training cohort (p-value = .006 [clinical
stage]; p-value = .004 [ECOG PS], t-test). In the validation cohort, no
significant difference was observed at 95% confidence interval for clini-
cal stage (p-value = .059, t-test) and ECOG PS (p-value = .061, t-test).
When the confidence interval is at 90%，the difference has statistically
significance.
4. Discussion

In this study, we performed a sub-region cluster within the tumour
region on planning CT. A survival prediction model for OSCC was then
constructed based on the sub-regional radiomics features. The con-
structed sub-regional radiomics survival prediction model showed
high prognostic value in both the training cohort (C-index = 0.729
(0.656–0.801, 95% CI)) and validation cohort (C-index = 0.705
(0.628–0.782, 95%CI)). Consistent results on the validation cohort
showed utility of this model in independent datasets. The developed
model can provide powerful prognostic information to clinicians before
radiation therapy and help tailor treatment strategy for patients. For pa-
tients with high risk as evaluated by our prediction model the outcome
is dismal with chemoradiotherapy and chemoradiotherapy in combina-
tion with target drug or immunotherapy are suggested as shown in
many clinical trials [26–28].

We also assessed the correlation between sub-regional radiomics
features and CNAs or clinical factors. The sub-regional radiomics fea-
tures showed potential in reflecting gene expression. The SRPM
outperformed the WRPM regarding C-index in both datasets, while
not statistically significant. The SRPM showed superior prognostic
value than conventional clinical factors, clinical stage and ECOG PS
and the difference was statistically significant at 90% confidence level.
The encouraging prognostic value of CT-based radiomics may shed
light on the pre-radiotherapy tumour evaluation and prognosis of OSCC.

The sub-region cluster performed in this study demonstrated the
importance of the sub-region analysis in reflecting tumour heterogene-
ity of OSCC. This result is consistent with previous studies which sug-
gested the prognostic role of sub-regional heterogeneity [12]. The
correlationwith clinical factors and gene expression showed the poten-
tial of sub-regional radiomics features in reflecting tumour biological
behaviour. Segal et.al found that genomic activity of human liver can-
cers can be decoded by non-invasive imaging, namely radiomics fea-
tures [29]. Combinations of 28 imaging traits can reconstruct 78% of
the global gene expression profiles, revealing cell proliferation, liver
synthetic function, and patient prognosis. This study showed the poten-
tial of radiomics features to reflect gene expression. Also, Hugo et.al sug-
gested that radiomic signature, capturing intratumor heterogeneity, is
associated with underlying gene-expression patterns in lung cancer
[30]. In the study of Xia et.al, eight sub-regional CT radiomics features
were significantly correlated with prognostic gene modules in hepato-
cellular carcinoma [14]. In the present study, we found that, in oesoph-
ageal cancers, 31CNAs showed significant correlation with at least one
of the selected radiomics features, which is consistent with previous
studies. It may be of interest for future studies to combine radiomics
with genomics in the clinical practice and demonstrate the underlying
biological pathway for radiomics [31]. The sub-regional radiomics anal-
ysis method may better quantify the tumour sub-region which was



Fig. 4. ROC curves for 1-year (a), 2-year (b) and 3-year (c) survival prediction using developed radiomics survival predictionmodel in the training cohort (a1, b1, c1) and validation cohort
(a2, b2, c2).
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more correlated with the tumour growth or aggressiveness [12]. A
seven-feature based radiomics score was constructed in this study in-
cluding six wavelet-based radiomics features showing the importance
of wavelet decomposition in the radiomics analysis. The wavelet fea-
tures characterized the heterogeneity at multiple spatial scales which
may help quantify the significant radiomics features which were prog-
nostic in OSCC [19,32].
Fig. 5. The constructed radiomic
For OSCC patients enrolled in the present study, endoscopic ultra-
sound (EUS) and CT were both used to for staging. EUS combined
with CT has proven to provide excellent sensitivity and specificity in
the T stage of oesophageal cancer in a series of studies [33,34]. Currently,
the CT-based sub-region radiomics model in this study could apply for
OS prediction in these patients and suggestion for subsequent treat-
ment choices.
s nomogram in this study.
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Additionally, we did whole-exome sequencing for part of the biopsy
specimens during our preliminary experiment and the results indicated
that CNAs were the only significant predictor for OS in the studied co-
hort. In literature, Wang et.al demonstrated that other potential bio-
markers identified by whole-exome and whole-genome sequencing
are also significantly correlated with EC prognosis [35]. For OSCC pa-
tients with high risks identified in the current study, definitive concur-
rent chemoradiotherapy combined with targeted therapy might be a
useful treatment option for these patients. Based on our previous
phase III study, patients in the definitive concurrent chemoradiotherapy
and Erlotinib (EGFR-TKI) group had a median OS time of 24.9 months
compared to 20.9 months in non-erlotinib group (p-value = .05) [36].

There are also some limitations in this study. This is a retrospective
study, and the validation cohort is of small size. We did not include
other imaging types that normally would be used in clinical practice,
i.e. PET. Due to the lack of more biological information of patients, we
did not further assess the correlation of developed radiomics model
with other biological mechanisms for OSCC. In addition, we did not in-
clude superficial oesophageal cancer in our study as it is usually treated
by endoscopic submucosal dissection in routine practice. Our future re-
search is to explore the radio-genomics model and prospectively vali-
date the proposed model. In addition, we will further assess the
tumour change during radiation therapy regarding our developed
radiomics score, thus verify the established model.
5. Conclusion

We developed and validated a sub-regional radiomics survival
prediction model for OSCC patients. The established model showed
high accuracy in improving personalized treatment for OSCC patients.
The sub-regional radiomics analysis showed encouraging potential in
predicting survival of OSCC treated by radiotherapy and needed to be
further confirmed in larger cohorts.
Grants and acknowledgements

The authorswould like to thankDr. Yi Rong for helpful revisement of
this manuscript. This work was supported by the Zhejiang Provincial
Foundation for Natural Sciences (LZ15H220001: S. Wu), National Natu-
ral Science Foundation of China (81672994:S. Wu), Zhejiang Provincial
Natural Science Foundation of China (LR16F010001: T. Niu), Zhejiang
University Education Foundation ZJU-Stanford Collaboration Fund
(T. Niu), National Key Research Plan by the Ministry of Science and
Technology of China (2016YFC0104507: T. Niu), Natural Science Foun-
dation of China (81871351: T. Niu), Hangzhou Agriculture and Social
Developmental Research Program (20172016A04: S.Wu). The founders
had no role in study design, data collection, data analysis, interpretation,
writing of the manuscript.
Conflicts of interest

The authors declare no competing financial interests.
Author contributions

Conception and design: T. Niu, S. Wu.
Development of methodology: P. Yang, L. Xu, T. Niu.
Analysis and interpretation of data: P. Yang, X. Wang, L. Yang.
Writing, review, and/or revision of themanuscript: C. Xie, P. Yang, Y.

Kuang, T. Niu, S. Wu.
Administrative, technical, or material support: C. Xie, P. Yang, X.

Zhang, L. Xu, X. Wang, X. Li, L. Zhang, R. Xie, L. Yang, Z. Jing, H. Zhang,
L. Ding, Y. Kuang, T. Niu, S. Wu.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.05.023.
References

[1] ChenM, Huang J, Zhu Z, Zhang J, Li K. Systematic review and meta-analysis of tumor
biomarkers in predicting prognosis in esophageal cancer. BMC Cancer 2013;13:539.

[2] Li Y, Lin Q, Luo Z, Zhao L, Zhu L, Sun L, et al. Value of sequential 18F-
fluorodeoxyglucose positron emission tomography/computed tomography (FDG
PET/CT) in prediction of the overall survival of esophageal cancer patients treated
with chemoradiotherapy. Int J Clin Exp Med 2015;8(7):10947–55.

[3] Atsumi K, Nakamura K, Abe K, Hirakawa M, Shioyama Y, Sasaki T, et al. Prediction of
outcome with FDG-PET in definitive chemoradiotherapy for esophageal cancer. J
Radiat Res 2013;54(5):890–8.

[4] Lindner K, Palmes D, Senninger N, Hummel R. PET/CT predicts survival in patients
undergoing primary surgery for esophageal cancer. Langenbecks Arch Surg 2015;
400(2):229–35.

[5] Myslivecek M, Neoral C, Vrba R, Vomackova K, Cincibuch J, Formanek R, et al. The
value of (1)(8)F-FDG PET/CT in assessment of metabolic response in esophageal
cancer for prediction of histopathological response and survival after preoperative
chemoradiotherapy. Biomedical papers of the Medical Faculty of the University
Palacky, Olomouc. Czechoslovakia 2012;156(2):171–9.

[6] Yip C, Landau D, Kozarski R, Ganeshan B, Thomas R, Michaelidou A, et al. Primary
esophageal cancer: heterogeneity as potential prognostic biomarker in patients
treated with definitive chemotherapy and radiation therapy. Radiology 2014;270
(1):141–8.

[7] Beukinga RJ, Hulshoff JB, van Dijk LV, Muijs CT, Burgerhof JGM, Kats-Ugurlu G, et al.
Predicting response to neoadjuvant chemoradiotherapy in esophageal cancer with
textural features derived from pretreatment (18)F-FDG PET/CT imaging. J Nucl
Med 2017;58(5):723–9.

[8] Hou Z, Ren W, Li S, Liu J, Sun Y, Yan J, et al. Radiomic analysis in contrast-enhanced
CT: predict treatment response to chemoradiotherapy in esophageal carcinoma.
Oncotarget 2017;8(61):104444–54.

[9] Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA. Texture analysis of non-
small cell lung cancer on unenhanced computed tomography: initial evidence for a
relationship with tumour glucose metabolism and stage. Cancer Imaging 2010;10
(1):137–43.

[10] Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in
oesophageal cancer assessed by CT texture analysis: preliminary evidence of an as-
sociation with tumour metabolism, stage, and survival. Clin Radiol 2012;67(2):
157–64.

[11] Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecol-
ogy. Radiology 2013;269(1):8–15.

[12] Wu J, Cao G, Sun X, Lee J, Rubin DL, Napel S, et al. Intratumoral spatial heterogeneity
at perfusion MR imaging predicts recurrence-free survival in locally advanced breast
cancer treated with neoadjuvant chemotherapy. Radiology 2018;288(1):26–35.

[13] Wu J, Gensheimer MF, Dong X, Rubin DL, Napel S, Diehn M, et al. Robust Intratumor
partitioning to identify high-risk subregions in lung cancer: a pilot study. Int J Radiat
Oncol Biol Phys 2016;95(5):1504–12.

[14] Xia W, Chen Y, Zhang R, Yan Z, Zhou X, Zhang B, et al. Radiogenomics of hepatocel-
lular carcinoma: multiregion analysis-based identification of prognostic imaging
biomarkers by integrating gene data-a preliminary study. Phys Med Biol 2018;63
(3) 035044.

[15] Liu Y, Li Z, Xiong H, Gao X, Wu J, Wu S. Understanding and enhancement of internal
clustering validation measures. IEEE Trans Cybern 2013;43(3):982–94.

[16] Larue R, van Timmeren JE, de Jong EEC, Feliciani G, Leijenaar RTH, Schreurs WMJ,
et al. Influence of gray level discretization on radiomic feature stability for different
CT scanners, tube currents and slice thicknesses: a comprehensive phantom study.
Acta Oncol 2017;56(11):1544–53.

[17] Vallieres M, Freeman CR, Skamene SR. El Naqa I. a radiomics model from joint FDG-
PET and MRI texture features for the prediction of lungmetastases in soft-tissue sar-
comas of the extremities. Phys Med Biol 2015;60(14):5471–96.

[18] Parada SA, Eichinger JK, Dumont GD, Parada CA, Greenhouse AR, Provencher MT,
et al. Accuracy and reliability of a simple calculation for measuring glenoid bone
loss on 3-dimensional computed tomography scans. Arthroscopy 2018;34(1):
84–92.

[19] Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature: a potential bio-
marker for the prediction of disease-free survival in early-stage (I or II) non-small
cell lung cancer. Radiology 2016;281(3):947–57.

[20] Liang W, Xu L, Yang P, Zhang L, Wan D, Huang Q, et al. Novel nomogram for preop-
erative prediction of early recurrence in intrahepatic cholangiocarcinoma. Front
Oncol 2018;8:360.

[21] Park H, Lim Y, Ko ES, Cho H-H, Lee JE, Han B-K, et al. Radiomics signature on mag-
netic resonance imaging: association with disease-free survival in patients with in-
vasive breast cancer. Clin Cancer Res 2018;24(19):4705–14.

[22] Hu T, Wang S, Huang L, Wang J, Shi D, Li Y, et al. A clinical-radiomics nomogram for
the preoperative prediction of lung metastasis in colorectal cancer patients with in-
determinate pulmonary nodules. Eur Radiol 2019;29(1):439–49.

[23] Wu Y, Xu L, Yang P, Lin N, Huang X, Pan W, et al. Survival prediction in high-grade
osteosarcoma using radiomics of diagnostic computed tomography. EBioMedicine
2018;34:27–34.

https://doi.org/10.1016/j.ebiom.2019.05.023
https://doi.org/10.1016/j.ebiom.2019.05.023
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0005
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0005
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0010
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0010
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0010
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0010
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0015
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0015
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0015
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0020
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0020
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0020
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0025
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0025
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0025
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0025
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0025
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0030
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0030
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0030
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0030
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0035
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0035
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0035
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0035
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0040
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0040
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0040
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0045
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0045
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0045
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0045
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0050
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0050
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0050
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0050
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0055
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0055
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0060
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0060
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0060
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0065
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0065
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0065
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0070
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0070
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0070
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0070
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0075
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0075
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0080
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0080
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0080
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0080
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0085
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0085
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0085
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0090
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0090
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0090
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0090
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0095
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0095
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0095
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0100
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0100
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0100
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0105
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0105
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0105
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0110
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0110
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0110
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0115
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0115
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0115


297C. Xie et al. / EBioMedicine 44 (2019) 289–297
[24] Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler trans-
form. Bioinformatics 2009;25(14):1754–60.

[25] Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U,
et al. cn.MOPS: mixture of Poissons for discovering copy number variations in
next-generation sequencing data with a low false discovery rate. Nucleic Acids Res
2012;40(9):e69.

[26] Wald O, Smaglo B, Mok H, Groth SS. Future directions in esophageal cancer therapy.
Ann Cardiothorac Surg 2017;6(2):159–66.

[27] Abdo J, Agrawal DK, Mittal SK. Targeted” chemotherapy for esophageal cancer. Front
Oncol 2017;7:63.

[28] Bolm L, Kasmann L, Paysen A, Karapetis C, Rades D, Wellner UF, et al. Multimodal
anti-tumor approaches combined with immunotherapy to overcome tumor resis-
tance in esophageal and gastric cancer. Anticancer Res 2018;38(6):3231–42.

[29] Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene ex-
pression programs in liver cancer by noninvasive imaging. Nat Biotechnol 2007;25
(6):675–80.

[30] Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al.
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics
approach. Nat Commun 2014;5:4006.
[31] Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, et al.
Defining the biological basis of radiomic phenotypes in lung cancer. eLife 2017:6.

[32] Wilson R, Devaraj A. Radiomics of pulmonary nodules and lung cancer. Transl Lung
Cancer Res 2017;6(1):86–91.

[33] Puli SR, Reddy JB, Bechtold ML, Antillon D, Ibdah JA, Antillon MR. Staging accuracy of
esophageal cancer by endoscopic ultrasound: a meta-analysis and systematic re-
view. World J Gastroenterol 2008;14(10):1479–90.

[34] Thosani N, Singh H, Kapadia A, Ochi N, Lee JH, Ajani J, et al. Diagnostic accuracy of
EUS in differentiating mucosal versus submucosal invasion of superficial esophageal
cancers: a systematic review and meta-analysis. Gastrointest Endosc 2012;75(2):
242–53.

[35] Wang X, Li X, Cheng Y, Sun X, Sun X, Self S, et al. Copy number alterations detected
by whole-exome and whole-genome sequencing of esophageal adenocarcinoma.
Hum Genomics 2015;9:22.

[36] Wu SX,Wang LH, Luo HL, Xie CY, Zhang XB, HuW, et al. Randomised phase III trial of
concurrent chemoradiotherapy with extended nodal irradiation and erlotinib in pa-
tients with inoperable oesophageal squamous cell cancer. Eur J Cancer 2018;93:
99–107.

http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0120
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0120
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0125
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0125
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0125
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0125
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0130
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0130
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0135
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0135
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0140
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0140
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0140
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0145
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0145
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0145
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0150
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0150
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0150
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0155
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0155
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0160
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0160
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0165
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0165
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0165
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0170
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0170
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0170
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0170
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0175
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0175
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0175
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0180
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0180
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0180
http://refhub.elsevier.com/S2352-3964(19)30324-X/rf0180

	Sub-�region based radiomics analysis for survival prediction in oesophageal tumours treated by definitive concurrent chemor...
	1. Introduction
	2. Methods
	2.1. Study design
	2.2. Patients

	Evidence before this study
	Added value of this study
	Implications of all the available evidence
	2.3. Image acquisition
	2.4. Volume of interest (VOI) delineation and sub-region clustering
	2.5. Feature extraction
	2.6. Feature selection and survival prediction model construction
	2.7. Prognostic performance evaluation
	2.8. Association of sub-regional radiomics features with clinical factors and copy number alteration
	2.9. Comparison with whole-tumour based radiomics model
	2.10. Comparison with the clinical factors
	2.11. Statistical analysis

	3. Results
	3.1. Patient characteristics
	3.2. Sub-region cluster and feature extraction
	3.3. Feature selection result
	3.4. Sub-regional radiomics survival prediction model
	3.5. Clinical and biological association
	3.6. Comparison with whole-tumour based radiomics model
	3.7. Comparison with clinical model

	4. Discussion
	5. Conclusion
	Grants and acknowledgements
	Conflicts of interest
	Author contributions
	Appendix A. Supplementary data
	References


