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Abstract

A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control
of gene expression. This program includes searching through DNA sequences to identify ‘‘motifs’’ that serve as the binding
sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several
approaches have been proposed for de novo motif discovery–searching sequences without prior knowledge of binding sites
or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased
validation of discovered motifs: testing the statistical significance of a motif using a DNA ‘‘background’’ sequence model to
represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that
the background models typically used are ‘‘too null,’’ resulting in overly optimistic assessments of significance, and argue
that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as
in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance,
although there is a marked improvement when motifs are statistically significant against real background sequences.
Moreover, on synthetic data where ‘‘ground truth’’ is known, discriminative performance of all algorithms is far below the
theoretical upper bound, with pronounced ‘‘over-fitting’’ in training. A key conclusion from this work is that the failure of de
novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed
size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not
active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but
necessary. An implementation of the LR and ALR algorithms is available at http://code.google.com/p/likelihood-ratio-
motifs/.
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Introduction

A major undertaking in computational biology is to reverse-

engineer the cis-regulatory logic of the transcriptome that

underlies much of gene regulation. Cis-regulatory logic controls

transcription on the same DNA molecule as the regulatory logic.

In contrast, trans-regulatory logic affects transcription of sequences

that may be on a different DNA molecule. Examples of cis-

regulatory logic include transcription factor (TF) binding sites, and

signals that affect nucleosome positioning [1], DNA melting [2]

and DNA methylation [3].

Properties of DNA sequences which are predictive of the

‘‘expression profile’’ of a gene or a related cis-regulatory property

such as TF binding are referred to as ‘‘motifs’’. Here an expression

profile refers to the variation in the expression level of a gene

across a variety of cellular conditions and the entire set of profiles

may be quantized by assigning a gene membership in a cluster

with other co-expressed genes; prediction then refers to identifying

gene clusters from motifs. Canonically, motifs represent transcrip-

tion factor binding sites (TFBS), but could be any predictive

feature. Motifs may be single sequences, sets of sequences or

probability distributions over sequences or over sequence features.

The presence of a motif may be defined categorically (e.g., present

or absent) or quantitatively (e.g., with reference to a probability

distribution). The regulatory role of motifs may be investigated

individually or interactively. Our focus is the discovery of

individual motifs rather than learning combinatorial logic after

initial motif discovery, as addressed for example by Beer et al. [4].

In addition, we only consider de novo motif discovery, meaning the

discovery of motifs from an unbiased search of a set of sequences,

rather than knowledge-based motif discovery, for instance using

previously cataloged TFBS.

Unbiased validation of motifs discovered by computational

methods is not straightforward because neither the locations nor

nucleotide pattern of functional cis-regulatory elements are known

completely. There are two statistical approaches to validation, one

based on discrimination and the other based on hypothesis testing.

The discriminative validation method is to treat motif discovery

as a discrete classification problem. This can be done if DNA

segments near genes are partitioned into disjoint clusters. The goal

is then to find motifs that can discriminate among, and thereby

characterize, the clusters. There are two principal ways of defining

clusters. One is to quantize their expression profiles by applying a

standard clustering algorithm such as K-Means to gene expression

profiles; in this case, the expression profile corresponds to the gene

adjacent to the sequence. The other is to aggregate sequences

based on the presence or absence of a transcription factor binding

to the sequence, as determined by ChIP-chip or ChIP-seq

experiments, forming nearly disjoint clusters. A motif associated

with a given cluster is then validated by measuring its performance
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in distinguishing that cluster from all others, with appropriate

adjustments for overlap in the ChIP case.

Common unbiased methods for measuring performance are

cross-validation and hold-out validation. Both methods avoid the

over-optimism inherent in measuring accuracy by resubstitution,

which is the use of the same data for training and validation. This

over-optimism, known as ‘‘overfitting’’, is caused by the chance

occurrence of patterns which are genuinely discrmininating in the

training data but do not generalize to other data (e.g. held out

samples) which are generated by the same mechanism or at least

have the same statistical properties. We will show that these issues

are pivotal in understanding the limits of de novo discovery. We use

hold-out validation, which is both computationally simpler and

generally more conservative than cross-validation. Data is

partitioned into disjoint subsets and one is used for training and

the other for validation. In our case, this means splitting each

cluster of sequences (genes) into two groups, one used for motif

discovery and the other for measuring classification performance.

Notably, in the case of synthetic DNA sequence data with planted

motifs, one can compute the Bayes error rate, or lowest error rate

possible for a given classification problem, and related theoretical

upper bounds on the performance of de novo methods.

Motifs can also be validated by statistical hypothesis testing.

Properly done, this can improve interpretability by providing

information on whether a motif is stronger than what one would

expect to discover in a random set of DNA sequences. (The precise

definitions of ‘‘stronger’’ and ‘‘random’’ vary depending on the

method used, but the goal is conceptually the same.) Hypothesis

testing is often neglected in the literature, especially when the motif

model is probability-based (e.g., involves a position-weight matrix)

rather than requiring an exact match to a pattern. When

hypothesis testing is done, a generative null model is often used,

which means defining a probability distribution over DNA

sequences which represents ‘‘random’’ DNA not involved in any

regulatory process. We argue (see Results) that the most common

variants of these models are often ‘‘too null’’. They fail to capture

important properties of bulk, presumably non-regulatory, DNA.

Especially in the human genome repetitive elements are prevalent.

For example, repeats of the ALU element constitute approxi-

mately ten percent of the human genome [5]. Repetitive elements

also have been shown to be highly conserved in some cases, with

suggestive evidence of a regulatory role [6]. Therefore, masking

such elements is questionable.

A second complicating factor in formulating a null hypothesis is

the variation in low-order sequence properties such as dimer

frequencies across clusters. Most methods do not consider these

potentially discriminating signals; an exception is work that

accounts for nucleosome positioning [7], which can be predicted

by such low-order properties as the frequency of AA dimers.

Assuming that low-order sequence properties are similar across

clusters is one way that background models are ‘‘too null’’; that is,

they represent significantly less structure that exists in real

biological sequences. Such properties appear (see Results) to be

important predictors of expression profile and TF binding even by

themselves. In addition to improving the biological relevance of

hypothesis testing, using them as features might improve the

performance of motif discovery algorithms.

These factors lead to motifs that are both statistically and

biologically irrelevant being frequently declared significant. These

kinds of discrepancies clearly reflect important differences between

statistical significance (that varies relative to the chosen null

hypothesis) and biological significance. Selecting better null

distributions helps to align biological and statistical significance.

In this article we argue that hypothesis testing based on

discrimination is much more relevant than testing based on

generative models. Here the null hypothesis is that a given motif is

not overrepresented in a set of ‘‘foreground’’ sequences that share

some property such as binding to a given TF or being upstream of

a set of coregulated genes relative to ‘‘background’’ sequences,

such as regulatory regions not adjacent to a coexpressed set of

genes or not bound by the same TF as the foreground sequences.

In this context repetitive elements are not problematic because, if a

given element has no regulatory role, we expect it to occur in as

large a fraction of the background sequences as foreground

sequences.

In this paper, we explore the impact of background sequence

models and variation of low-order sequence properties in

validating existing motif discovery algorithms on both real and

synthetic data, where we can compare the results obtained by de

novo methods to the theoretical upper bound achieved when the

correct motif is known. All methods are benchmarked using

holdout validation, meaning evaluation of a classification rule

using labeled data not used to train the classifier. To assess over-

fitting, we also record the resubstitution (training set) error. We

also introduce a new regression framework based on ‘‘mismatch’’

features (see Methods) designed to mitigate some of problems we

have identified; adjusting for low-order sequence properties and an

empirically-based null hypothesis leads to a small improvement in

performance. However, in absolute terms we report uniformly low

classification rates in predicting cluster membership as a proxy for

expression profile or TF binding on all datasets. For synthetic data

with know motifs, performance is far below the theoretical upper

bounds given real-world sample sizes and sequence lengths.

Our results suggest discovering and validating motifs by

attempting to predict expression patterns or TF binding compu-

tationally and without prior knowledge might be impossible due to

the combination of several factors: the enormous size of the search

space, the complexity of regulation, and the severely limited

number of samples, namely the number of co-regulated genes

identified with each expression profile cluster or the number of

sequences bound by a given transcription factor. However, it must

be emphasized this represents a computational limitation; since the

theoretical upper bound is relatively high with real parameter

settings, individual motifs could indeed be highly predictive were

other biological signals incorporated into the discovery process.

Motif Discovery Strategies
Except for recent work, the previous literature on motif

discovery is well-reviewed [8–10]. In principle, motif discovery

need not be treated as a classification problem. Instead, generative

sequence models can be constructed to represent DNA not

involved in regulation, and one can then search for patterns in real

sequences that are over-represented relative to this model with

respect to some expression or transcription factor binding

property. This is the approach of several methods [11–14] which

seek the most significant ungapped local alignments over a range

of lengths within a set of sequences. A common generative model

for random DNA is a Markov chain. Let X~fX1,X2,:::,XLg be a

DNA sequence of length L, with Xi[fA,C,G,Tg. The m’th order

Markov assumption is

P(Xi DXi{1,Xi{2,:::,X1)~P(Xi DXi{1,Xi{2,:::,Xi{m). However,

Markov models fail to account for large-scale variation in low-

order sequence properties such as AT content, making hypothesis

testing based on such models of dubious value (see Results). They

also fail to account for repetitive and transposable elements, which

constitute a large fraction of certain genomes.

Once a list of candidate sequences, say of length W , is

determined by some motif discovery algorithm (for example,
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aligned portions of each sequence in a local alignment-based

algorithm), the standard way of generalizing to a sequence

distribution P on W -mers is a position-weight matrix or PWM.

The matrix is 4|W : each row is a DNA nucleotide, each column

a position, and the entry is the observed count in the set of

sequences, possibly augmented with a pseudocount. Therefore

each column represents the probability distribution of nucleotides

at one of the W positions. Since the positions are assumed

mutually independent, the log-likelihood of a W -mer is computed

by summing the log-probabilities of the nucleotides observed at

each position, which can be compared with the log-likelihood

under some background model. If the background model also

assumes mutually independent components, the likelihood ratio

test is the Naive Bayes classifier for a fixed W -mer. When

classifying an entire genomic sequence (e.g., the upstream region

of a gene) according to membership in a gene cluster, high-

likelihood W -mers under the PWM serve as features.

Another approach [15–18] is to search for motifs defined by an

exact match to a short sequence or regular expression. This may

be done discriminatively [15], i.e. treating motif discovery

explicitly as a classification problem, or using a background model

in a fashion similar to the alignment method described earlier. In

either case statistical hypothesis testing may be performed

[15,17,18] since the relative simplicity of the model makes this

tractable. However, in the discriminative approach to discovery,

there is generally no systematic validation on data not used to train

the classifier, e.g., no mention of estimating performance with

holdout data or cross-validation.

Some attempts [19–21] classify sequences based on kernels. In

particular, the spectrum kernel of depth W of a sequence S records

the number of occurrences of each of the 4W possible W -mers in

S; for instance, in [20], all 1024 DNA 5-mers are considered as

features. These methods are well-grounded in statistical learning

and properly validated. However, it is difficult to perform

hypothesis testing or to interpret the decision-making in biological

terms, such as TF binding, due to the number and diversity of

features.

A few important contributions fall outside these broad

categories. For example, DME [22] formulates a discriminative

model by enumerative perturbation of a PWM; ANN-Spec [23]

learns a neural network; and DEME [24] learns a discriminative

PWM model with a conjugate gradient algorithm. None of these

approaches addresses statistical hypothesis testing or error

estimation by holdout testing or cross-validation. Seeder [25] is

a method that minimizes a suitable distance between a seed and a

larger sequence and bears some resemblance to the LR algorithm

(see Methods) introduced here. Whereas hypothesis testing and

false discovery rates are explicitly addressed, there is no

consideration of holdout-validation or cross-validation.

Methods

Datasets and Preprocessing
We consider three datasets: Yeast expression profile clusters

from Beer et al. [4]; human gene expression data from the

Connectivity Map project [26]; and ChIP-chip transcription factor

binding data from Harbison et al. [27]. Here, an expression profile

is the collection of mRNA concentrations for a set of transcripts (or

a surrogate for this quantity, such as microarray hybridization

intensity) under a predetermined set of conditions and a cluster of

genes corresponds to a coarse quantization of profiles. The

upstream regions of a cluster of coexpressed genes are assumed to

be enriched for active binding sites (those that are accessible and

actually bound in vivo under the relevant cellular conditions) for

the transcription factor(s) responsible for the coexpression. Inactive

TFBS, e.g. those not accessible to transcription factors due to

chromatin structure or those that occur in the wrong context to

modulate expression, are assumed to occur no more frequently in

the upstream sequences of coexpressed genes than in randomly

chosen upstream sequences. For the Beer data, 49 expression

profile-based clusters were already specified based on the K-means

algorithm [28]; we searched for motifs in the first 800 nucleotides

upstream of the coding start site of each gene. For the

Connectivity Map data, we generated 100 expression profile

clusters using the K-means algorithm with Kendall’s Tau [29] as a

distance metric, and examined the first 2000 nucleotides upstream

of the most upstream coding start site of each gene for motifs. For

the Harbison et al. data, only the rich media data (binding

affinities of 175 TFs) were used and the set of sequences binding to

a given TF was treated as a cluster. Genome annotations were

obtained from the UCSC Genome Browser [30]. In all cases

clusters of fewer than ten genes are excluded from the analysis due

to excessively small sample size. Table 1 summarizes the key

properties of each dataset.

Classification Benchmark
Motif discovery algorithms can be validated by first grouping

genes into disjoint clusters based on either similar expression

profiles or common transcription factor binding and then

attempting to assign cluster membership based on the existence

of motifs. To quantify the regulatory predictive value of discovered

motifs, for each cluster k we estimated the accuracy of the motif

learned using k as the foreground cluster in discriminating

between members and non-members of cluster k. This was done

using holdout validation, or validation on labeled data disjoint

from the training data. Each cluster was partitioned into two

disjoint and equally-sized subsets, one for training and one for

validation. When discovering a motif in cluster k, 200 sequences

(100 training, 100 validation) randomly selected from the union of

all clusters except k served as the ‘‘background’’ cluster. For the

Harbison et al. data, since the clusters were not perfectly disjoint,

sequences that appeared in the foreground cluster were excluded

from the background cluster. For foreground clusters larger than

200 sequences, we randomly sampled 200 sequences to represent

the cluster, for computational reasons. We used area under ROC

curve (AUROC), a common performance metric in statistical

learning, to measure the level of discrimination of the motif-based

classifier for each cluster k.

All methods tested return a set of sequences of fixed length W
that represent samples from the motif discovered. (The ALR

method also returns information about differences in the bulk

distribution between foreground and background.) For all methods

a PWM with a pseudocount of 1 was built from the set of

sequences returned. This was used to produce the PWM score for

each sequence x. For simplicity, the PWM score was defined

simply as the maximum likelihood of any subsequence of x or its

reverse complement, RC(x). The PWM score F can be described

as the maximum of the following two quantities:

max
l~1,:::,N{Wz1

P
i~l,:::,lzw{1

PWM(xi,i{lz1),

max
l~1,:::,N{Wz1

P
i~l,:::,lzw{1

PWM(RC(x)i,i{lz1)

For all methods except ALR, the ROC curve and the AUROC

value are generated by thresholding F . For the ALR method, F is

combined with the bulk sequence features in a logistic regression

The Limits of De Novo DNA Motif Discovery
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model and the probability predicted by this model is thresholded

to form the ROC curve. (The details of the ALR model are

included later in this section.).

Planted Motif Simulations
The objective is to measure the performance of de novo methods,

as well as the theoretical upper bound, when the true motif is

generated from a realistic PWM and the complexities of the

background model are removed. We used Saccharomyces cerevisiae

PWMs obtained from JASPAR CORE [31] with width W of at

least eight nucleotides. These motifs were randomly planted in

background DNA with sequence lengths and cluster sizes identical

to the Beer et al. data, but generated from a zero-order Markov

(or independent nucleotide) model with GC fraction equal to 0.4.

For each cluster, a different motif was randomly chosen from

among the available JASPAR motifs, and then inserted at a

randomly chosen position in each member sequence by sampling

independently from the distribution represented by each column

of the PWM.

The theoretical upper bound on the AUROC performance of de

novo methods was computed by assuming the true PWM was

discovered and applying the classification benchmark described

above. We used the same sets of foreground and background

sequences for this benchmark as for the de novo benchmarks and

reported the results on the sequences used for holdout in the de novo

benchmarks so that the results would be directly comparable.

We also computed the accuracy of the Bayes rule for the full

multiclass problem, i.e., for predicting which of the 49 clusters

each sequence belonged to. We did this under the assumption of

equal prior probabilities for all clusters. Since the cluster sizes vary

significantly, using the true proportions would be overly optimistic.

Since the positions of the motif were generated independently and

every nucleotide of the background DNA was generated

independently, the conditional independence assumption made

by the naive Bayes classifier is in force, and hence the accuracy of

naive Bayes is in fact the best possible (Bayes optimal).

Specifically, assume a sequence x of length N is scored for

membership in cluster k. If x is a member of cluster k then a motif

of length m represented by PWMk has been planted starting at a

random position L in x. The rest of x was generated

independently with each nucleotide having probability P0(:). Let

Y[f1,:::,49g denote the true cluster. The probability that x is a

member of k is proportional to the sum over all positions in x of

the probability of observing x given that the motif represented by

PWMk was planted at positions RL~fL,Lz1,:::,Lzm{1g:

P(Y~kDx)!
X

j~1,:::,N{m

P(xDY~k,L~j)

~
X

j~1,:::,N{m

P
i[Rj

PWMk(xi,i{jz1)=NPWMk
P

i=[Rj

P0(xi)

Here, NPWMk
is a normalizing constant representing the

number of sequences PWMk was built from, plus the pseudo-

count. This can be computed exactly for any cluster k and

sequence x and the Bayes classifier is simply

fB(x)~ arg maxk P(Y~kDx), whose accuracy on the simulated

dataset can also be easily computed.

Logistic Regression
We introduce a new method for motif discovery based on

logistic regression (the LR algorithm), which allows rigorous

hypothesis testing, including multiple testing correction, but only

utilizes real sequences, not generative background models.

Given two clusters i,j, the goal is to find a PWM motif of some

pre-specified width W that discriminates members of

Si~fSi,1,Si,2,:::,Si,Ni
g (the foreground cluster) from members of

Sj~fSj,1,Sj,2,:::,Sj,Nj
g (the background cluster). (This method can

be generalized to the case where the exact width of the motif is

unknown by running it for multiple values of W and choosing the

most significant result.) Let s be some fixed sequence of length W
representing a candidate ‘‘core’’ motif and let RC(s) denote its

reverse complement. The distance H(u,s) between s and any other

sequence u of length W , is taken to be the minimum of the

Hamming distances from u to s and from u to RC(s). For any

larger sequence S containing s, define

m(S,s)~minu5S,DuD~W H(u,s) ð1Þ

which is minimum distance to s within S. Consider the set of

distances to the sequences in Si:

mSi ,s
~fm(Si,1,s),m(Si,2,s),:::,m(Si,Ni

,s)g ð2Þ

and similarly for mSj ,s. We refer to these as ‘‘mismatch’’ statistics.

These are the features we regress upon.

Now consider a logistic regression model designed to

discriminate between members of Si and Sj based on the

mismatch features mSi ,s|mSj ,s. Let Z~1 for sequences in Si

and Z~0 for sequences in Sj . For each fixed sequence

(candidate core motif) s, we regress log
P(Z~1Ds)

P(Z~0Ds)
on the

mismatch for s. The parameters are learned by maximum

likelihood. Let Ms denote the model, which includes an

intercept coefficient a and a mismatch coefficient bs, and let

Ls denote the log likelihood of the data under the model. We

Table 1. The properties and sizes of the datasets used.

Dataset N Clusters N Seqs Clustering Method Sequences

Beer et al. 49 48 K-means, Pearson Correlation 800 BP upstream of coding start

Harbison et al. 175 128 ChIP-Chip TF Binding Binding seqs provided by Harbison
et al.

Human CMap 100 100 K-Means, Kendall’s Tau 2000 BP upstream of coding start

N Seqs is the number of clusters that contained at least ten sequences.
Clusters with fewer than ten sequences were excluded from the analysis due to excessively small sample size.
doi:10.1371/journal.pone.0047836.t001
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also learn a null model M0 that includes only the intercept

coefficient; let the likelihood of the data under this model be

L0.

Since M0 is nested in Ms (the two models become equivalent if

bs~0), we use Wilks’ Theorem [32] to test M0 vs Ms for each s of

width W . The test statistic is Ts~2(Ls{L0) which is asymptot-

ically x2
1-distributed under M0 since constraining bs~0 removes

one degree of freedom. This procedure can be repeated either for

every length W sequence or (for computational reasons) some

subset thereof. In this paper every length W subsequence in Si is

used and the element of Si that the current s was obtained from is

excluded from the hypothesis testing stage to avoid bias. This

procedure results in a well-defined number of hypothesis tests,

each assigned a p-value ps. (In fact, a false discovery rate [33] can

be computed for any set of discovered motifs.) We only keep the

most significant motif W -mer s�, and learn a PWM from all length

W subsequences s in any member of Si such that

H(s�,s)vmedian(mSj ,s� ). In other words, the idea is to create a

PWM from all foreground subsequences that match s� better than

any subsequence in the majority of sequences in the background

set as assessed by median Hamming distance to s�.
Computing m(S,s) can be accelerated by preprocessing each S

into a trie (also known as a prefix tree). The trie can be built in

O(DSDDsD) time but needs to be built only once for each S with the

cost being amortized over multiple values of s. If m(S,s)~H, the

worst-case time complexity of computing m(S,s) after the trie is

built, for a four-letter DNA alphabet, is O(min(DSDDsD,DsDHz14H )).
In practice this is extremely efficient because H is usually small,

and for large H the worst case time complexity is equivalent to the

naive algorithm of directly computing the Hamming distance

between s and every length s subsequence of S.

The above model can be generalized to account for systematic

variation in low-order sequence properties across clusters. We

refer to this as the adjusted LR or ALR method since we attempt

to find the most significant s conditioned on these low-order

properties. Start with a set of some pre-determined size Nspec of

features chosen from the feature space of low-order (W = 1 and

W = 2) spectrum kernels. The set of features used is the Nspec

features that are individually most predictive, with a sequence and

its reverse complement treated as identical. More precisely, define

Xall as the feature space of the union of spectrum kernels of W~1
and W~2, and let Xi represent the ith feature. For each i regress

Z (as defined above) on only Xi and an intercept term and choose

the Nspec features that produce the largest likelihoods in such

models. Biologically, these are intended to represent bulk

properties of the relevant DNA sequence, such as nucleosome

affinity, melting ability and flexibility. Such low-order properties

are individually significantly correlated with cluster membership.

(See Results).

Finally, we redefine the null model M0 to include both the

intercept coefficient and b coefficients for Nspec low-order

spectrum kernel features. The model Ms contains all of these

features and additionally bs for some length W sequence s. The idea

is to test whether anything additional is learned by adding information about s

after accounting for low-order sequence properties. M0 is still nested in Ms

and Wilks’ Theorem can be used in the same way as above. A

PWM is built from the highest scoring s as described above, and a

final decision rule is learned that combines the spectrum kernel

features with the PWM score. This is done by creating a logistic

regression model with an intercept coeffient, one b coefficient for

each of the Nspec low-order features and one b coefficient for the

PWM score of the PWM built from s�.

A/T Fraction Test
We performed a Monte Carlo test to assess whether Markov

models are ‘‘too null’’ by testing whether A plus T fraction varies

more across different contiguous genomic sequences than could be

explained by sampling variance under a single global Markov

model of non-coding DNA. Let Ureal~fS1,real ,S2,real ,:::,Sn,realg be

a set of real DNA sequences used to train an m’th order Markov

model, assumed to accurately capture the low-order properties of

all sequences in Ureal .

Now, define U j for j[f1,2,::::,Kg to be a set of synthetic

sequences fS1,j ,S2,j ,:::,Sn,jg sampled from this Markov model,

where DSi,j D~DSi,real D. Define AT(:) as the fraction of A plus T

nucleotides in a given DNA sequence. For a sequence sampled

from a Markov model with biologically realistic parameters, the

A/T fraction will be approximately normally distributed. Let mi

and si be the mean and standard deviation, respectively, of

fAT(Si,1),AT(Si,2),:::,AT(Si,K )g. If a single Markov model

provides an adequate description of the low-order properties of

real non-coding sequences, Zi~
Si,real{mi

si

should be distributed

approximately N(0,1).

Results

Even High-Order Markov Generative Models are Too Null
Monte Carlo simulations were performed to quantify the extent

to which high-order Markov background models capture the

structure of randomly selected sets of DNA sequences. MEME

[11] was run approximately 15,000 times. We set the parameters

to search for motifs of width 6ƒWƒ12 and to not search for

multiple occurrences of a motif, but rather to only consider two

possibilities: the existence of one motif or none. MEME was

applied to random gene sets from the union of the Beer et al. [4]

clusters. The size of each gene set was chosen as half the size of a

randomly chosen cluster from [4]. (The other half of the data was

used to verify that the motif discovered does not predict cluster

membership on held-out data, or in other words that our ‘‘null’’

model is actually null.) This protocol allows for a null model where

random sets of input sequences were used, but the individual

sequences and the cluster sizes were real. For this analysis, the

sequences are the upstream region of each gene from the coding

start site to the next upstream transcript on the same chromosome.

The background model used was the 69th order Markov model

of yeast intergenic regions, which is included with MEME. MEME

reports an E-value, which is the expected number of motifs at least

as strong as the one observed under the null model, and which

always exceeds the corresponding p-value. In this case the null

(respectively, alternative) hypothesis is that no (resp., at least one)

over-represented motif exists in the gene set. Under the null, p-

values should be uniformly distributed over ½0,1�. A similar test

was performed using the LR algorithm with the same data set, as

well as the 2,000 nucleotides upstream of the coding start site for

genes in the Human Cmap dataset. Disjoint random gene sets

were used for Si and Sj . The FDR as computed by the LR

algorithm also controls the family-wise error rate (the probability

of making at least one Type I error) if all null hypotheses are true

[33], as is the case in this Monte Carlo simulation. Therefore, an

estimated false discovery rate Q� for the most significant motif

should occur with probability no greater than Q�. Under our null

model of random sequence clusters, the E-values reported by

MEME are anti-conservative even if interpreted as p-values

(Figure 1a). Figures 1b and 1c demonstrate that false discovery

rates produced by the LR algorithm are approximately accurate

when all null hypotheses are true.

The Limits of De Novo DNA Motif Discovery
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As described in Methods, a test for overdispersion of A/T

fraction relative to the variance expected under a high-order

Markov model was also performed. We used the first 2,000
nucleotides upstream of the transcription start site for each gene in

the human Connectivity Map [26] gene set and the full upstream

intergenic regions of all yeast genes in the Beer et al. [4] dataset,

ignoring regions with fewer than 100 nucleotides. A 69th order

Markov model was applied to all yeast sequences and another one

for all human sequences. If all upstream sequences in each dataset

were well-approximated by a single Markov model, the distribu-

tion of Z-scores would be expected to be approximately

Normal(0,1). However, this is not the case (Figure 1d). There

are at least two possible explanations: either even a 69th order

Markov model does not capture low-order properties of intergenic

sequences, or such a model would not have homogeneous

parameters across genomic regions.

Finally, low-order sequence properties differ significantly across

clusters, as illustrated in Table 2, further supporting the hypothesis

that commonly used generative background models fail to capture

important structure. The fraction of each dimer in each sequence

was regressed on cluster membership, with each dimer and its

reverse complement being treated as identical. The value of R2 is

the fraction of total variance in the frequency distribution of each

dimer that is explained by cluster membership. The p-value tests

the null hypothesis that the mean frequency of the dimer in each

sequence is identical across clusters.

The overall conclusion of these experiments is that common

generative approaches may produce overly optimistic conclusions

about the significance of motifs discovered because the null models

are ‘‘too null’’, or assume that bulk non-coding DNA is more

random than it really is.

Classification Rates of all Tested Methods are Poor
We evaluated the performance of five motif discovery

algorithms in predicting gene cluster membership on three real

datasets and one synthetic dataset. The methods are MEME [11],

6ƒWƒ12, zero or one motif instance per sequence model;

AlignAce [12], numcols = 12; DEME [24], W~12; and the LR

and ALR algorithms, with 6ƒWƒ12 and Nspec~3 for ALR.

Recall that the ALR algorithm accounts for the discriminating

power of bulk DNA features, whereas the LR algorithm ignores

low-order features and hence can be compared directly with the

other three methods. The datasets are Human Cmap, yeast Beer

et al., and yeast Harbison et al., and the simulated yeast dataset

mentioned previously. In all cases both the forward and reverse

complement strand were analyzed. For MEME, the background

model was second-order Markov and estimated from the

background sequences. For AlignAce, the background GC content

was set to that the background sequences. Whenever a method

output a list of sequences, these were converted to a PWM by

calculating the empirical distribution over the four nucleotides at

each position, except a unit pseudocount was incorporated to

Figure 1. Generative models are too null. Panel (a): Quantile plot of Meme E-values for approximately 15,000 random runs, with E-values w1
excluded. The X-axis represents the log10 E-value as reported by MEME. The Y-axis represents the log10 quantile. For example, under our null model E-
values below 10{10 are reported with probability slightly more than 10{2 . Panels (b) and (c): Quantile plots of LR false discovery rates, similar to the
Meme E-value quantile plots, for the Beer et al. and Human Cmap datasets respectively. Panel (d): Z-score plots of A/T fraction of yeast and human
intergenic sequences relative to the distribution expected under a 6th order Markov model, with the standard normal distribution (red) shown for
reference.
doi:10.1371/journal.pone.0047836.g001

The Limits of De Novo DNA Motif Discovery

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e47836



avoid zero probabilities. Table 3 displays the estimated mean

holdout AUROC values across clusters for all datasets and

algorithms. Table 4 displays the resubstitution AUROC.

There is a wide range of classification rates from method to

method and from dataset to dataset. The best performance in all

real datasets is obtained by the ALR algorithm. This may be due

to the regression framework, which accommodates hypothesis

testing without a synthetic background model and learns bulk

sequence properties in addition to PWMs. DEME, which also

takes an explicitly discriminative approach to motif discovery, also

fares relatively well compared with AlignAce and MEME, which

use artificial background null models. However, the most striking

trend is that all mean AUROCs are disappointing, reaching at

most around 0.62 on real data and 0.72 on synthetic data.

To determine the theoretical upper bound classification

accuracy we computed the mean AUROC on the synthetic

dataset as in Table 3 but used the PWM motifs that we planted

instead of discovered PWMs as classifiers. The mean AUROC

here was 0.865. Furthermore, the multi-class Bayes accuracy for

determining the correct cluster membership for each sequence

from all 49 available clusters was 0.344. These results demonstrate

the substantial discriminative ability of single motifs in this context

and the theoretical possibility of achieving much higher one-

versus-all discriminative power than any method achieved on any

dataset.

Proper Hypothesis Testing Predicts Generalization
The purpose of hypothesis testing is to determine which motifs

may be biologically relevant signals and which are more likely

statistical noise. We compared the mean AUROC for significant

(FDRƒ0.05) vs. non-significant (FDRw0.05) motifs using our LR

and ALR methods and all datasets. Table 5 shows that statistical

significance does predict generalization of a motif’s discriminative

ability from the training set to the validation set. Note that ALR

retains substantial discriminative ability in the absence of a

significant motif because the bulk features also contribute to

discrimination. LR, on the other hand, performs barely better

than the 0.5 AUROC expected under random guessing.

Discussion

This study has identified the following key findings: First, we

have shown that even high-order generative models of random

DNA are ‘‘too null’’ resulting in overly optimistic estimates of

motif discovery in DNA sequences. Motif discovery methods

should therefore be evaluated in a classification framework using

only real DNA sequences. Second, we have shown that rigorous

hypothesis testing can still be incorporated by providing a well-

defined null hypothesis, namely that a motif is over-represented in

a well-defined foreground cluster relative to a well-defined

background cluster, where again both consist of real sequences.

Given that this approach is discriminative, standard methods of

Table 2. The fraction of variance in dimer frequency across sequences explained by expression profile or transcription factor
binding sequence set and associated F statistic P-value.

Dimer Beer et al. Harbison et al. Human Cmap (Upstream) Human Cmap (Introns)

AA/TT 0.076 (8.94e-21) 0.083 (4.47e-77) 0.110 (8.39e-208) 0.267 (0)

AC/GT 0.053 (7.38e-11) 0.057 (1.27e-32) 0.030 (6.09e-29) 0.068 (2.02e-102)

AG/CT 0.033 (0.000485) 0.056 (1.94e-30) 0.076 (2.24e-127) 0.210 (0)

AT 0.070 (6.34e-18) 0.148 (1.33e-222) 0.088 (1.84e-155) 0.231 (0)

CA/TG 0.037 (3.12e-05) 0.056 (5.35e-30) 0.078 (5.43e-131) 0.141 (2.01e-277)

CC/GG 0.115 (2.73e-40) 0.156 (7.28e-245) 0.101 (1.28e-186) 0.228 (0)

CG 0.093 (4.85e-29) 0.158 (2.15e-249) 0.081 (1.85e-139) 0.095 (4.04e-166)

GA/TC 0.047 (1.44e-08) 0.051 (1.25e-22) 0.041 (2.92e-49) 0.164 (0)

GC 0.078 (1.36e-21) 0.149 (1.56e-227) 0.081 (3.88e-139) 0.207 (0)

TA 0.051 (5.05e-10) 0.131 (5.53e-183) 0.098 (1.37e-180) 0.265 (0)

For the Human Cmap data, this was assessed both for the 2,000 nucleotides upstream of the coding start site and for the intron sequences.
doi:10.1371/journal.pone.0047836.t002

Table 3. The mean AUROC of all algorithms on all datasets
using independent holdout data.

Mean AUROC (Holdout)

Beer et al.
Harbison
et al.

Human
CMap Synthetic

LR 0.591 0.600 0.530 0.677

ALR 0.620 0.629 0.569 0.683

MEME 0.598 0.536 0.521 0.718

AlignAce 0.561 0.524 0.524 0.660

DEME 0.613 0.557 0.541 0.677

This validation is unbiased.
doi:10.1371/journal.pone.0047836.t003

Table 4. The mean AUROC of all algorithms on all datasets
based on training and testing on the same data.

Mean AUROC (Resubstitution)

Beer et al.
Harbison
et al.

Human
CMap Synthetic

LR 0.776 0.771 0.731 0.814

ALR 0.836 0.857 0.799 0.858

MEME 0.753 0.784 0.637 0.809

AlignAce 0.657 0.693 0.584 0.831

DEME 0.835 0.848 0.799 0.894

The optimistic bias reveals massive overfitting.
doi:10.1371/journal.pone.0047836.t004
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validating a classifier (namely holdout or cross-validation) can and

should be used. Applying this stringent benchmark, all methods

perform poorly regardless of whether sequences are clustered by

ChIP-chip TF binding or by mRNA expression. Explicitly

discriminative methods and those that account for differences in

bulk DNA properties have marginally improved discriminative

ability. Thus, there is clearly much need for improvement in

computational discovery of motifs. Given the statistical difficulties,

it is clear that biological knowledge and the integration of high-

throughput and heterogeneous data will not only be useful, but

essential to ultimately achieving high accuracy. For example,

accounting for chromatin modification [34] might aid in

distinguishing between TFBS that are accessible and therefore

potentially bound and those that are inaccessible to the relevant

TFs under a given cellular condition.

The relatively high theoretical upper performance bound on the

synthetic data suggests that the poor performance of de novo

methods cannot be attributed primarily to low predictive value of

individual motifs. Thus, the relatively poor performance on real

data of methods that focus on finding individual motifs may not

be, of itself, strong evidence that individual motifs are not

biologically prevalent and meaningful in vivo. The gap between

this upper bound and the performance of de novo discovery

algorithms on the synthetic dataset is also much larger than the

performance gap between de novo discovery on the real Beer et al.

vs. synthetic datasets. The synthetic dataset has sequence lengths

and cluster sizes identical to the Beer et al. data but conforms to

our simplified biological model that exactly one motif exists in

each cluster and that the motif is reasonably long and can be

statistically modeled accurately by a PWM. These results suggest

that statistical tractability is a more severe problem than

deficiencies in the biological models used by discovery algorithms,

such as ignoring combinatorial regulation or using PWMs instead

of more complex models of motifs. Using more complex,

biologically realistic models such as attempting to simultaneously

discover motifs involved in combinatorial regulation or removing

the assumption of conditional independence between positions

that the PWM model implies would likely exacerbate these

statistical issues. This is especially true since the sample size

available for discovery is limited by the number of occurrences of a

given cis-regulatory element in the genome. This limit can be

effectively increased by using phylogenetic methods such as

PhyloGibbs [35]. However, this assumes that cis-regulatory

elements are mostly conserved across species and only increases

sample size incrementally.

It might be argued that clusters based on expression of

downstream genes or ChIP-chip TF binding are noisy represen-

tations of the set of sequences regulated by a given cis-regulatory

mechanism, e.g. the binding of a specific TF. For example, TF

binding has been shown to be context specific with regard to

developmental stage [36] and ChIP data does not always

accurately predict transcription factor binding events catalogued

in the literature [37]. However, poor performance is observed

regardless of whether clusters are defined by ChIP-chip transcrip-

tion factor binding or expression clustering. Furthermore, results

on the synthetic data, which uses planted motifs and thus

guarantees that every member of a given cluster contains an

example of the same TFBS, are only incrementally stronger than

those on the Beer et al. data. Taken together, our results suggest

that inaccuracies in clustering caused by imperfections in

expression or ChIP-chip data cannot fully explain the poor

performance. Furthermore, we argue that imperfect clusters

represent a more realistic use case for de novo discovery methods

than the ideal case where each cluster perfectly represents the set

of sequences regulated by a given cis-regulatory mechanism,

making our discriminative benchmark highly relevant.

The strong resubstitution performance (i.e. when the model is

trained and tested on the same data), especially on the synthetic

data, suggests that statistical tractability is also a more severe

problem than optimization of the objective functions of the

discovery algorithms. Such discrepancies between resubstitution

error and error in a test set are clear indicators of overfitting

issues.We have established an upper performance bound of

approximately 0.865 on the synthetic dataset. All algorithms

achieve an average resubstitution AUROC of at least 0.8 on this

dataset, even though all use heuristics to optimize their objective

functions. In other words, all algorithms on average find solutions

with discriminative power comparable to the correct solution on

the training data even though these often don’t generalize – as

seen by greatly reduced AUROC in holdout validation.

The difficulty of developing adequate generative models of

background DNA sequences may be partly due to the variation in

low-order sequence properties across expression and transcription

factor binding profiles. This phenomenon has previously been

observed specifically with respect to GC content in human

promoter regions [38]. Our results suggest that the phenomenon

of low-order, large scale sequence properties being correlated with

expression and TF binding is more broadly applicable, both to

yeast and to the frequencies of a variety of dimers. They also

suggest that the statistical significance of longer (e.g. 12-mer) motifs

may sometimes result from of variation in the low-order properties

of sequences across expression or TF binding profiles, and these

would not be significant given the low order properties of the

sequences in which they were found. Such motifs are not likely to

be biologically meaningful.

Nucleosome positioning can be predicted by low-order

sequence properties such as 1- through 4-mer frequences [1].

Nucleosomes appear to be depleted in active regulatory regions

[39]. This observation and a study in the PH05 promoter [40]

suggest that high nucleosome occupancy may interfere with

transcription factor binding in at least some cases. If the main link

between low-order sequence properties and gene expression were

that low-order sequence properties affect nucleosome occupancy,

which affects TF binding and in turn affects expression, then low-

order sequence properties in small, specific regions would be

expected to predict expression and TF binding, but not low-order

properties across large (several hundred nucleotides or more)

regions. Similarly, such properties would not be expected to be

frequently predictive in regions such as introns, where TFBS occur

less frequently than near the transcription start site (TSS).

Conclusion
De novo DNA motif discovery remains a challenging problem

with computational methods. The fact that common generative

Table 5. The mean holdout AUROC of the LR and ALR
algorithms for motifs for non-significant (FDRw0.05) and
significant (FDRƒ0.05) motifs respectively.

Mean AUROC (Non-Significant/Significant)

Beer et al.
Harbison
et al.

Human
CMap Synthetic

LR 0.531/0.722 0.562/0.656 0.510/0.569 0.536/0.796

ALR 0.571/0.727 0.580/0.697 0.562/0.587 0.521/0.790

doi:10.1371/journal.pone.0047836.t005
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models, or explicit models of the probability distribution of

‘‘random’’ DNA, cannot represent ‘‘random’’ DNA with reason-

able accuracy motivates a discriminative approach where real

background sequences are used. However, applying traditional

validation protocols for classification algorithms reveals universally

disappointing rates in predicting expression profile or TF binding

from sequence. The largest obstacle may be over-fitting, which will

be difficult to overcome since the samples size is effectively the

number of genes in strongly co-regulated clusters or bound by a

given TF, and thus cannot be expanded arbitrarily to provide the

necessary statistical power.
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