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Abstract: As a key regulatory mechanism of gene expression, DNA methylation patterns
are widely altered in many complex genetic diseases, including cancer. DNA methylation
is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed.
In order to capture such properties, we introduce some non-Gaussian statistical models
to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian
statistical model-based unsupervised clustering strategies are applied to cluster the data.
Comparisons and analysis of different dimension reduction strategies and unsupervised
clustering methods are presented. Experimental results show that the non-Gaussian statistical
model-based methods are superior to the conventional Gaussian distribution-based method.
They are meaningful tools for DNA methylation analysis. Moreover, among several
non-Gaussian methods, the one that captures the bounded nature of DNA methylation data
reveals the best clustering performance.
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1. Introduction

DNA methylation is a covalent modification of DNA, which can regulate the expression of genes [1].
Recently, DNA methylation has attracted considerable interest, due its role in the etiology of complex
diseases, specially cancer [2], but also because it can be easily measured genome-wide from limited
amounts of DNA, allowing measurements in clinical specimens [3].

Relatively little is known about the taxonomy of cancers at the DNA methylation level. Hence, there
is currently a strong interest in performing unsupervised clustering of large-scale DNA methylation
data sets in order to identify novel cancer subtypes. DNA methylation data is quantified naturally in
terms of a beta-distribution. The DNA methylation beta-value, β, at a specific genomic locus provides
an estimate of the fraction of cells that have that locus methylated. Although studies have considered
using the logit-transform y = log2 β/(1− β) instead of β for subsequent statistical inferences [4], it
was shown in Zhuang et al. [5] that the logit-basis can, under certain circumstances, lead to worse
inference, as it can aggravate the effects of outliers (i.e., β values close to zero or one): from a biological
perspective, an outlier at β = 0.999 is not more interesting than one at β = 0.9, yet on the logit scale,
they would be widely separated. Moreover, analyzing DNA methylation data in terms of beta-values
helps interpretability. Thus, there is considerable benefit in performing statistical inferences from the
original beta-valued distributions. As a result of this, normalization, feature selection and clustering
methods designed for beta-valued DNA methylation data have recently been investigated [6–15].

However, there still remains a significant shortage of methods, specially for the dimensional
reduction of large DNA methylation data sets. For instance, blind source separation (BSS) [16,17],
independent/principal component analysis (ICA/PCA) [18,19] and nonnegative matrix factorization
(NMF) [20,21] techniques have been extensively studied in the gene expression field. Due to the bounded
support property of the beta-valued data, the DNA methylation level cannot be efficiently described by
these existing dimension reduction methods, which mainly assume the Gaussian distribution of the data.
Therefore, the analysis results based on such mismatched models are not sufficiently promising.

Gaussian distribution is the ubiquitous probability distribution used in statistics [22–24]. It has an
analytically tractable probability density function (pdf), and analysis based on it can be derived in
an explicit form. In practice, not all of the data we need to model are Gaussian distributed [25,26].
Recent research showed that, when processing the non-Gaussian distributed data, applying suitable
non-Gaussian distribution to model the data can lead to better performance than that obtained by a
conventional Gaussian distribution. The advantages of applying a non-Gaussian distribution have been
demonstrated in various real-life applications, including image processing [27,28], speech coding [29],
document analysis [30], communication and compressive sensing systems [31], complex network
analysis [32], decision-making in expert systems [33,34] and biomedical signal processing [35,36]. In
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particular, non-Gaussian statistical models have also been widely applied in bioinformatics [12,14,15],
especially to the analysis of omics data. Indeed, omics data types are rarely Gaussianly distributed.

In this paper, we will introduce and compare some machine learning methods, which are based on
non-Gaussian statistical models, for DNA methylation data analysis. The analysis of DNA methylation
data includes two parts. (1) Dimensional reduction: DNA methylation array data is high-dimensional,
typically involving on the order of 25 k up to 500 k dimensions (and even higher). As with other
omics data, the number of samples is typically on the order of 100. However, typically, most of the
salient variability in the data, e.g., variation distinguishing cancer from normal samples, or distinguishing
different cancer phenotypes, is captured by a much lower-dimensional space. Hence, we need to perform
some forms of dimension reduction; (2) Unsupervised clustering: Cancers especially are known to be
highly heterogeneous [37]. Hence, we expect an effective and accurate unsupervised learning method
to reveal such heterogeneity. Thus, although normal and cancer should be well discriminated, cancer
samples may form multiple distinct clusters.

2. Results and Discussion

2.1. Data Description and Preprocessing

The DNA methylation data is obtained from Gene Expression Omnibus (GEO) website [38]. GEO is
a public functional genomics data repository supporting MIAME-compliant data submissions. Dataset
GSE32393 [39] is used for the evaluation of the above-mentioned dimension reduction and unsupervised
clustering methods. DNA methylation profiles were obtained across approximately 27, 578 CpGs in
breast tissues from women with and without breast cancer. Breast tissue samples were drawn from
113 breast cancers and 23 non-neoplastic breast tissues.

We considered a DNA methylation data matrix over 5000 dimensions (specifically, CpG
dinucleotides). The 5000 CpGs were selected as those with the highest variance across the 136 samples.
A data matrix X with a size of 5000 × 136 was obtained. Figure 1 illustrates the effect of
dimension reduction. The data points in Figure 1b are separated better than those in Figure 1a, which
indicates that dimension reduction can potentially improve the clustering performance. From here
and thereafter, the stochastic neighbor embedding (t-SNE) method [40] (the t-SNE method can only
approximately illustrate the high-dimensional data for visualization convenience; it is not the exact
representation of the relations between data points) is applied to visualize the high-dimensional data
in two-dimensional space.

In each dimension reduction method, we need to specify the number of dimensions for which to
search. The random matrix theory (RMT) [41] was used for determining the underlying number of
dimensions. Although data is distinctly non-Gaussian (even after mean-centering each CpG), RMT
provides a reasonable approximation of the dimensionality, as shown by us previously in [16]. For our
data matrix of 5000 × 136, we estimated a total of 14 dimensions. Hence, we set K = 14 in all of the
following experiments.
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Figure 1. Comparisons of DNA methylation data before and after dimension reduction.
(a) Visualization of the original 27, 578 dimensional data; (b) visualization of the reduced
5000 dimensional data.
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2.2. Unsupervised Clustering

The level of DNA methylation can discriminate normal and cancer samples [42,43]. Cancers
especially are also known to be highly heterogeneous [37], which means that the cancer samples should
be grouped into more than one cluster. The above obtained matrix X still has more features than samples.
Therefore, we need to further reduce the dimension and then apply an advanced clustering method to
group samples appropriately.

2.2.1. PCA (Principal Component Analysis) + VBGMM (Variational Bayesian Gaussian Mixture Model)

When implementing dimension reduction with Gaussian assumptions, PCA [22] is the widely used
method. After taking eigenvalue decomposition on the covariance matrix of the observed data, PCA
keeps K eigenvectors that correspond to the K largest eigenvalues. With PCA, a matrix of size
14× 136 was obtained. For this reduced feature matrix, the variational Bayesian Gaussian mixture
model (VBGMM) [22] was applied to estimate the number of clusters, as well as to cluster the data.
The VBGMM estimated 10 clusters. Figure 2a illustrates the reduced features’ distribution, and the
clustering results are shown in Figure 2b. The PCA + VBGMM misclustered nine samples, out of which
nine cancer samples are clustered as normal ones and no normal sample is recognized as a cancer one.
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Figure 2. Illustration of the clustering result via PCA (principal component analysis) + the
variational Bayesian Gaussian mixture model (VBGMM). The clusters are color coded. The
normal data are marked with dots, and the cancer data are marked with crosses. Samples
in a larger size are those misclustered. (a) Data visualization; (b) clustering result via
PCA + VBGMM.

(a) (b)

2.2.2. BG-NMF (Beta-Gamma-Nonnegative Matrix Factorization) + RPBMM (Recursive Partitioning
Beta Mixture Model)

We applied the BG-NMF method (this work was presented in; it is used as the benchmark for
non-Gaussian methods in our paper) to the above mentioned 5000 × 136 matrix. We set the number
of basis vectors equal to 14 when applying the BG-NMF method.

Setting the number of basis vectors equal to 14 and applying BG-NMF to XT resulted in
a 136× 14 pseudo-basis matrix and a 14 × 5000 excitation matrix. The hypothesis is that the
dimensionally-reduced basis matrix, whose element remains bounded, supported and is assumed to be
beta distributed, captures the salient patterns of variation.

The benchmarked RPBMM algorithm was applied to estimate the final clusters of the reduced
136× 14 matrix, which is illustrated in Figure 3a. The clustering is carried out on a 14-dimensional
space. Table 1 lists the final results. RPBMM inferred a total of nine clusters. In summary, five samples
(out of 136 samples) were misclustered. Four cancer samples were identified as normal samples, and
only one normal sample is identified as cancer. This result is the same as the one obtained by applying
RPBMM directly on the original 136 × 5000 data matrix. However, the overall time consumption is
reduced from 1275 s to 139 s. Hence, dimension reduction via BG-NMF cannot only yield a convincing
clustering result, but also facilitate the calculation.
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Figure 3. Illustration of the clustering result via beta-gamma (BG)-nonnegative matrix
factorization (NMF) + VBBMM (variational Bayesian estimation framework for BMM).
The clusters are color coded. The normal data are marked with dots, and the cancer data
are marked with crosses. Samples in the larger size are those misclustered. (a) Data
visualization; (b) clustering result via BG-NMF + VBBMM.

(a) (b)

Table 1. Recursive partitioning beta mixture model (RPBMM) clustering details for all of
the 136 samples over 14 BG-NMF pseudo-basis vectors.

Cluster Normal Cancer

rLLLL 16 4
rLLLR 6 0
rLLR 1 32
rLR 0 31

rRLLL 0 4
rRLLR 0 3
rRLRL 0 10
rRLRR 0 5

rRR 0 34

2.2.3. BG-NMF + VBBMM (Variational Bayesian Estimation Framework for BMM)

One disadvantage of the RPBMM method is that it will estimate the number of mixture components
in a recursive manner. It employs the wtdBIC to decide whether to further split one mixture component
into two or not. The VBBMM can potentially estimate the model complexity automatically. After
convergence, each mixture component corresponds to one cluster. Hence, we applied the VBBMM
method on the 136 × 14 pseudo-basis matrix to cluster the samples. The initial settings of the number
of mixture component is 15. Eventually, the VBBMM method estimated nine clusters (by removing
components whose mixture weights are smaller than 0.01), which is the same as that inferred by
RPBMM. Five samples are misclustered, out of which four cancer samples are classified as normal
ones, and only one normal sample is recognized as a cancer one. The overall computational time in this
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scenario is about 124 seconds, which is faster than BG-NMF + RPBMM. This is the main advantage of
applying the BG-NMF + RPBMM method. The clustering results are illustrated in Figure 3.

2.2.4. SC (Spectral Clustering) + VBvMM (Variational Inference Framework-based Bayesian Analysis
of the vMF Mixture Model)

An alternative way for dimension reduction is to apply the SC method. As the RMT estimated
K = 14, we set the target dimension K in the SC method to be 14. With the method described in
Algorithm 1, a feature matrix of a size of 14× 136 was obtained. This matrix is visualized in Figure 4a.
The parameter σ was empirically set as the squared root of the data’s variance in matrix B, where
Bij = ∥xi − xj∥2. This choice is due to the fact that the affinity matrix A in Algorithm 1 takes the
form of a Gaussian kernel function. Therefore, it is natural to consider the variance of data as σ2. The
choice of the optimal σ in the SC method is an open topic for future research. The reduced feature from
SC has a unit length, which means the l2 norm of each feature equals one. To model such property
efficiently, the VBvMM is used to realize the unsupervised clustering. After convergence, VBvMM
determined 14 clusters. Seven normal samples are clustered as cancer ones, while zero cancer samples
are clustered as normal ones. The overall number of misclustered samples is seven. Figure 4b illustrates
the clustering result.

2.2.5. SC + VBWMM (Variational Bayesian Estimation of WMM)

Assuming what we observed from the SC resulting feature is only one of the mirrored pairs (with
respect to the origin), the VBWMM can be applied to model the axially symmetric data. With a similar
approach as the SC + VBvMM, we have six cancer samples clustered as normal ones and none of the
normal samples inferred as the cancer one. The overall misclustered samples are six. The VBWMM
inferred seven clusters in the end. The clustering results are shown in Figure 4c.

Figure 4. Illustration of the clustering result via spectral clustering (SC) + variational
inference framework-based Bayesian analysis of the vMF mixture model (VBvMM) and
SC + VBWMM (Watson mixture model (WMM)). The clusters are color coded. The normal
data are marked with dots, and the cancer data are marked with crosses. Samples in the larger
size are those misclustered. (a) Data visualization; (b) clustering result via SC + VBvMM;
(c) clustering result via SC + VBWMM.

(a) (b) (c)
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2.2.6. Discussion

The comparisons of the above-mentioned four methods are listed in Table 2. All of the
above-mentioned algorithms can yield appropriate unsupervised clustering results. In general,
the non-Gaussian distribution-based methods are superior to the Gaussian distribution-based
method. This is due to the fact that the Gaussian distribution cannot describe the bounded/unit
length property of the features properly. Among all four non-Gaussian distribution-based methods,
the BG-NMF + RPBMM/BG-NMF + VBBMM methods outperform the SC + VBvMM/SC + VBWMM
methods. This is mainly due to the fact that bounded support is an important property of DNA
methylation data [5]. The BG-NMF methods yield reduced features that retain the bounded property
of the data, while the SC-related methods produced a feature (which has a unit length) that does not
directly reflect the bounded support property. The BG-NMF + VBBMM performs the best among all
three proposed methods. It also outperforms the benchmarked BG-NMF + RPBMM method in terms
of computational cost, which is because of the advantage that the variational Bayesian method can
automatically determine the complexity.

Table 2. Comparisons of the clustering performance of different methods.

Method Error Rate Cancer→Normal Normal→Cancer

PCA + VBGMM 6.62% 9 0

BGNMF + RPBMM 3.68% 4 1

BGNMF + VBBMM 3.68% 4 1

SC + VBvMM 5.15% 7 0

SC + VBWMM 4.41% 6 0

When looking at the misclustered samples, all of the BG-NMF related clustering methods miscluster
four or five cancer samples to normal and miscluster one normal sample to cancer, while the SC-related
method estimated six or seven cancer samples to normal, but no normal sample to cancer. Misclustering
happens since the data are highly-dimensionally correlated. Although we have reduced the dimensions to
remove redundant features, it is still difficult to separate one type of data from the other. The SC-related
methods, however, do not miscluster any normal sample to cancer. We speculate that this is because the
SC method embedded the data in a tight manner, so that a relatively “clearer” positive/negative boundary
can be obtained than the BG-NMF method. On the one hand, BGNMF-related methods have overall
better clustering performance than the SC-related methods, but misclustered data in both ways. On
the other hand, SC-related methods do not cluster any normal data to cancer, but have relatively worse
overall accuracy. These observations motivate us to improve the unsupervised clustering method so that
better clustering results can be obtained.
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In summary, for DNA methylation analysis, the bounded nature of the data plays an important role.
Thus, such a property should be retained in both the dimension reduction and clustering methods.
Furthermore, an appropriate unsupervised learning method is required for revealing the heterogeneity
more accurately.

3. Experimental Section

3.1. Non-Gaussian Statistical Distributions

The Gaussian distribution (both univariate and multivariate) has a symmetrical “bell” shape, and
the variable’s definition is on the interval (−∞,∞). Non-Gaussian statistical distributions refer to a
set of distributions that have special properties that the Gaussian distribution cannot characterize. For
example, the beta distribution is defined on the interval [0, 1] (in a general form, the beta distribution
could have definition on any interval [a,b]; after linear scaling, it can be represented with the standard
beta distribution [44]) and can have a symmetric or asymmetric shape [27]. The Dirichlet distribution,
which is a multivariate generalization of the beta distribution, has a pdf with respect to the Lebesgue
measure on the Euclidean space [45]. The gamma distribution is defined on the interval (0,∞), and
the shape cannot be symmetric [46]. To model data whose l2 norm equals one, the von Mises–Fisher
(vMF) distribution [47] and the Watson distribution [48] are usually applied. These distributions show
characteristics that are significantly different from a Gaussian distribution.

In the remaining part of this section, we will introduce some typical non-Gaussian distributions that
can be applied in DNA methylation analysis.

3.1.1. Beta Distribution

The beta distribution is characterized by two positive shape parameters u and v. The pdf of the beta
distribution is:

Beta(x;u, v) =
Γ(u+ v)

Γ(u)Γ(v)
xu−1(1− x)v−1 (1)

where Γ(·) is the gamma function. The beta distribution has a flexible shape, which is shown in Figure 5.
In real applications, the beta distribution can be applied to model the distribution of a gray image
pixel [49], to describe the probability of human immunodeficiency virus (HIV) transmission [50] and
to capture the bounded property of the DNA methylation level [8,15].
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Figure 5. Beta distributions for different pairs of parameters. (a) u = 5, v = 5; (b) u = 2,
v = 5; (c) u = 0.1, v = 2; (d) u = 0.2, v = 0.8.
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3.1.2. vMF (von Mises-Fisher) Distribution

The vMF distribution is considered a popular distribution in the family of directional
distributions [47,51]. The data following a vMF distribution are located on a unit hypersphere. Hence,
the vMF variable’s l2 norm equals one, i.e., ∥x∥2 = 1. The vMF distribution contains two parameters,
namely the mean direction µ and the concentration parameter λ. The pdf of a K-dimensional vMF
distribution can be expressed as:

F(x | µ, λ) = cK(λ) e
λµTx (2)

where ∥µ∥2 = 1, λ ≥ 0 and K ≥ 2 [51]. The normalizing constant cK(λ) is given by:

cK(λ) =
λ

K−2
2

(2π)
K
2 IK−2

2
(λ)

(3)

where Iν(·) represents the modified Bessel function of the first kind of order ν [52]. The pdf of the vMF
distribution is illustrated in Figure 6. In information retrieval applications, the vMF distribution can be
applied to model the cosine similarity for the clustering of text documents [53,54]. It can also be applied
in modeling the gene expression data, which has been shown to have directional characteristics [55].
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Figure 6. Scatter plot of samples from a single von Mises–Fisher (vMF) distribution on the
sphere for different concentration parameters, λ = {4, 40, 400}, and around the same mean
direction µ = [0, 0, 1]T . Samples generated from F(µ, 400) (shown by green colors) are
highly concentrated around the mean direction, while for samples generated from F(µ, 4)

(shown by blue colors), the distribution of samples on the sphere is more uniform around the
mean direction.

3.1.3. Watson Distribution

Observations on the sphere might have an additional structure, such that the unit vectors x and −x

are equivalent. In other words, that is ±x that are observed. Here, we need probability density functions
for x on Sp−1 which are axially symmetric, that is f(−x) = f(x). In such cases, the p-dimensional
observation ±x can be regarded as being on the projective space Pp−1, which is obtained by identifying
opposite points on the sphere Sp−1.

One of the simplest distributions for axial data, with a rotational symmetry property, is
the (Dimroth–Scheidegger–) Watson distribution. The Watson distribution is a special case of the
Bingham distribution [56], which is developed for axial data with no rotational symmetry property.

A random vector x ∈ Pp−1, or equivalently ±x ∈ Sp−1, has the (p − 1)-dimensional Watson
distribution Wp(µ, κ), with the mean direction µ and the concentration parameter κ, if its probability
density function is:

Wp(x | µ, κ) = Γ(p)

(2π)p1F1(r, p, κ)
(κ)eκ∥µ

†x∥2 (4)

where κ ∈ R, ∥µ∥2 = 1, and 1F1 is Kummer’s (confluent hypergeometric) function (e.g., [57] (Formula
(2.1.2)), or [58] (Chapter 13)), defined as:

1F1(r, p, κ) =
∑
j≥0

r(j)

p(j)
κj

j!
(5)

where r(j) ≡ Γ(r+j)
Γ(r)

is the raising factorial. Similar to the case of vMF distributions, for κ > 0, as κ → 0,
Wp(µ, κ) reduces to the uniform density, and as κ → ∞, Wp(µ, κ) tends to a point density. For κ < 0,
as κ → −∞, the density concentrates around the great circle orthogonal to the mean direction ([59]
(Chapter 9.4)). The samples generated from Watson distribution are shown in Figure 7.
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Figure 7. Scatter plot of samples from a single distribution, Wp(µ, κ), on the sphere
for positive and negative concentration parameters κ, around the same mean direction,
µ = [0, 1]T [60]. For larger concentration parameters, i.e., κ = 40 or κ = −40, samples
are more concentrated around the mean direction (shown by the red color). For smaller
concentration parameters, i.e., κ = 4 or κ = −4, samples are more uniformly distributed
around the mean direction (shown by the blue color). (a) κ > 0, κ ∈ {+4,+40}; (b) κ < 0,
κ ∈ {−4,−40}.
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3.2. Non-Gaussian Dimension Reduction Methods

When analyzing DNA methylation data, the high-dimensional property presents mathematical
challenges, as well as opportunities. The main purpose of applying dimension reduction methods
on microarray data is to extract the core features driving interesting biological variability [61].
Such methods include principal component analysis (PCA) [22,62], nonnegative matrix factorization
(NMF) [5,63] and singular value decomposition (SVD) [64].

3.3. Nonnegative Matrix Factorization for Bounded Support Data

Unlike PCA or ICA, NMF reveals the data’s nonnegativity during dimension reduction. Traditional
NMF decomposes the data matrix into a product of two nonnegative matrices as:

XP×T ≈ WP×KVK×T (6)

where XP×T , WP×K and VK×T contain nonnegative values Xpt, Wpk and Vkt, respectively, and
p = 1, . . . , P , t = 1, . . . , T , k = 1, . . . , K, K << T .

The DNA methylation data are naturally bounded on interval [0, 1]. Conventional NMF strategies do
not take such a nature into account. In order to capture such a bounded feature explicitly, we proposed
an NMF for bounded support data [65]. Each bounded support element Xpt is assumed to be generated
from a beta distribution with parameters apt and bpt. With an observation matrix XP×T , two parameter
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matrices a and b of size P × T are obtained, respectively. Each parameter matrix, rather than the
observation matrix, is decomposed into a product of a basis matrix and an excitation matrix as:

aP×T ≈ AP×KHK×T

bP×T ≈ BP×KHK×T

(7)

With the above description, we assume that the matrix X (with element Xpt ∈ [0, 1]) is drawn
according to the following generative model:

Apk ∼ Gamma(Apk;µ0, α0)

Bpk ∼ Gamma(Bpk; ν0, β0)

Hkt ∼ Gamma(Hkt; ρ0, ζ0)

Xpt ∼ Beta(Xpt;
∑
k

ApkHkt,
∑
k

BpkHkt)

(8)

where Gamma(x; k, θ) is the gamma density with parameters k, θ defined as:

Gamma(x; k, θ) =
θk

Γ(k)
xk−1e−θx, k, θ > 0 (9)

As the data is assumed to be beta distributed and the parameters of the beta distribution are assumed
to be gamma distributed, this model is named BG-NMF.

For BG-NMF, the variational inference (VI) method [66] is applied to estimate the posterior
distributions. The expected value of Xpt is Xpt = apt

apt+bpt
. If we take the point estimate to Apk, Bpk

and Hkt, then the expected value of Xpt can be approximated as:

Xpt ≈
∑

k ApkHkt∑
k ApkHkt +

∑
k BpkHkt

(10)

which can be expressed in matrix form as:

X ≈ (A H)⊘ (A H+BH) (11)

where ⊘ means element-wise division. When placing sparsity constraints on the columns in H, the
reconstruction in Equation (11) could be approximated as:

X ≈
[
A⊘ (A+B)

]
H = W H (12)

Hence, the resulting pseudo-basis matrix W is low-dimensional while retaining the bounded
support constraint.

3.3.1. Spectral Clustering for Non-Gaussian Reduced Features

Recently, spectral clustering (SC) has become one of the most popular clustering algorithms [67]. It is
an alternative method for the K-means algorithm. When the natural clusters in RL are not corresponding
to the convex region, the K-means algorithm cannot provide satisfactory clustering results. However,
when mapping the data points to RK space via SC, they may form tight clusters [68]. SC analyzes
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the affinity matrix of data. Assuming that the data are likely to be clustered in K-dimensional space,
the reduced features, each of which is K-dimensional, are extracted by taking eigenvalue analysis of an
intermediate matrix M. The reduced features will then be used for clustering, with conventional methods
like K-means. The feature extraction procedure via the SC method [68] is summarized in Algorithm 1.
With the above extracted features, the task of data clustering can be carried out in the reduced RK space.

Algorithm 1 Spectral clustering.

Input: Original data matrix X = {x1,x2, . . . ,xN}, each column is a L-dimensional vector.

1. Create the affinity matrix AN×N , where Aij =

{
e

−∥xi−xj∥
2

2σ2 i ̸= j

0 i = j
;

2. Construct the intermediate matrix M = D− 1
2AD− 1

2 , where D is a diagonal matrix whose (i, i)th
element is the summation of the i-th row of A;
3. Apply eigenvalue analysis on M and create a matrix YK×N , which contains K eigenvectors

corresponding to the largest K eigenvalues;
4. Form a matrix Z from Y by normalizing each column of Y. Each column of Z has a unit length.

Output: Reduced K-dimensional feature zn for each data point xn.

3.4. Non-Gaussian Statistical Models for Unsupervised Clustering

The ultimate goal of dimension reduction is to benefit the clustering of DNA methylation data. The
dimension reduction methods introduced above yield features with special properties. The BG-NMF
method provides a basis matrix (see Equation (12)), every element of which is on the interval [0, 1]. The
SC method constructs feature vectors with a unit length in the reduced K-dimensional space. These data
are obviously non-Gaussian distributed. It has been shown in several studies that applying a suitable
non-Gaussian distribution to model the non-Gaussian distributed data can improve the corresponding
performance [25,26,31]. To this end, we apply the non-Gaussian distribution that can nicely describe the
data distribution to realize the clustering task in the reduced feature space.

3.4.1. Recursive Partitioning Beta Mixture Model

For the beta-valued DNA methylation data, it is natural to consider the beta distribution as a
candidate to model the underlying distribution. Since the DNA methylation data that show an obvious
normal/cancer status are multi-modal, a beta mixture model (BMM) can be applied for modeling. One
mixture component represents one cluster. In unsupervised clustering, selecting the optimal number of
clusters is a big challenge. One popular method designed for such purpose is the recursive partitioning
beta mixture model (RPBMM) [12]. The RPBMM navigates clusters in a BMM. It treats each mixture
component as a node and takes the weighted version of Bayesian information criterion (wtdBIC) to
decide whether to stop further recursive partitioning of the current node. In the end, the optimal number
of clusters is determined. This is a recursive unsupervised learning method. In this paper, the clustering
results based on the RPBMM method are taken as the benchmark.
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3.4.2. Variational Beta Mixture Model

Another way of carrying out model selection is to employ the variational Bayesian estimation
framework for BMM (VBBMM). Under this circumstance, the joint posterior distribution of the
weighting factors is modeled by a sparse Dirichlet distribution, so that the component with a very small
weight will be pruned from the mixture model. In [27], the extended variational inference strategy is
applied to derive an analytically tractable solution for estimating the parameters in a BMM. The proposed
algorithm can remove the redundant component. This closed-form solution avoids the cross-validation
in the methods using BIC as the criterion (e.g., [12,44]). Hence, it is computationally efficient, and the
unsupervised clustering is facilitated.

3.4.3. Variational von Mises-Fisher Mixture Model

The data with its l2 norm equaling one has a directional property. The von Mises-Fisher (vMF)
distribution is suitable for such a type of data [47,69]. In order to decide the model complexity
(in terms of free parameters) automatically based on the data, we proposed a variational inference
framework-based Bayesian analysis of the vMF mixture model (VBvMM) in [47]. This method
can potentially determine the model complexity and avoid the over-fitting problem associated with
conventional approaches based on the expectation maximization. This variational vMM is a suitable
model for the unsupervised clustering of directional data.

3.4.4. Variational Watson Mixture Model

The Watson distribution is a simple distribution for modeling axially symmetric data on the unit
hypersphere ([59] (Chapter 9.4)). By assuming that any data point has its axial mirror, it is natural to
model the distribution of the data with the unit length (i.e., l2 norm equals one) and its axial mirror
by the Watson distribution. Similarly, when such data are multi-modally distributed, a Watson mixture
model (WMM) can be applied. With a variational inference framework, Taghia et al. [60] proposed the
variational Bayesian estimation of WMM (VBWMM), where the model complexity can be determined
by pruning the irrelevant components. This variational WMM can also be applied for the purpose of
unsupervised clustering.

4. Conclusions

Cancer is characterized by alterations at the DNA methylation level. A Gaussian distribution,
in general, cannot describe the DNA methylation data appropriately. Hence, the Gaussian
distribution-based unsupervised clustering does not provide convincing performance.

For the purpose of efficiently clustering DNA methylation data, we proposed several dimension
reduction methods and consequent unsupervised learning methods, which are all based on non-Gaussian
distributions. They all perform better than the Gaussian distribution-based method. In the dimension
reduction step, both the BG-NMF and the SC methods can remove the redundant dimensions efficiently.
In unsupervised clustering, the VBBMM method, the VBvMM method and the VBWMM method
can all reveal the heterogeneity of the DNA methylation data appropriately. Clustering performance
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demonstrates that the proposed non-Gaussian distribution-based methods are meaningful tools for
analyzing DNA methylation data. Experimental results also show that the BG-NMF + VBBMM
method performs the best among all of the proposed methods and is faster than the benchmarked
BG-NMF + RPBMM method. Furthermore, for the reduced features inferred from both the BG-NMF
method and the SC method, the consequent unsupervised clustering method needs to be improved, so
that better clustering accuracy can be obtained.

Moreover, the methodology introduced in this paper can be easily extended to analyze other DNA
methylation data sets. Some other non-Gaussian statistical models can also be applied for such purposes.
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