
Published online 25 May 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 1
doi: 10.1093/nargab/lqaa032

Phen2Gene: rapid phenotype-driven gene
prioritization for rare diseases
Mengge Zhao1,†, James M. Havrilla 1,†, Li Fang1,†, Ying Chen1, Jacqueline Peng1,2,
Cong Liu3, Chao Wu4, Mahdi Sarmady4,5, Pablo Botas6, Julián Isla6,7, Gholson J. Lyon8,
Chunhua Weng3,* and Kai Wang 1,5,*

1Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,
2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA, 3Department of
Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA, 4Division of Genomic
Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA, 5Department of Pathology and
Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA,
6Foundation 29, Pozuelo de Alarcon, 28223 Madrid, Spain, 7Dravet Syndrome European Federation, 29200 Brest,
France and 8Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY 10314, USA

Received December 16, 2019; Revised April 10, 2020; Editorial Decision April 23, 2020; Accepted April 28, 2020

ABSTRACT

Human Phenotype Ontology (HPO) terms are in-
creasingly used in diagnostic settings to aid in the
characterization of patient phenotypes. The HPO an-
notation database is updated frequently and can
provide detailed phenotype knowledge on various
human diseases, and many HPO terms are now
mapped to candidate causal genes with binary re-
lationships. To further improve the genetic diagno-
sis of rare diseases, we incorporated these HPO an-
notations, gene–disease databases and gene–gene
databases in a probabilistic model to build a novel
HPO-driven gene prioritization tool, Phen2Gene.
Phen2Gene accesses a database built upon this
information called the HPO2Gene Knowledgebase
(H2GKB), which provides weighted and ranked gene
lists for every HPO term. Phen2Gene is then able
to access the H2GKB for patient-specific lists of
HPO terms or PhenoPacket descriptions supported
by GA4GH (http://phenopackets.org/), calculate a pri-
oritized gene list based on a probabilistic model
and output gene–disease relationships with great ac-
curacy. Phen2Gene outperforms existing gene pri-
oritization tools in speed and acts as a real-time
phenotype-driven gene prioritization tool to aid the
clinical diagnosis of rare undiagnosed diseases. In
addition to a command line tool released under the
MIT license (https://github.com/WGLab/Phen2Gene),
we also developed a web server and web service

(https://phen2gene.wglab.org/) for running the tool
via web interface or RESTful API queries. Finally,
we have curated a large amount of benchmarking
data for phenotype-to-gene tools involving 197 pa-
tients across 76 scientific articles and 85 patients’
de-identified HPO term data from the Children’s Hos-
pital of Philadelphia.

INTRODUCTION

Rapid and accurate genetic diagnosis of Mendelian diseases
is necessary to optimize both treatment and management
strategies and implement precision medicine. Compared to
traditional single-gene tests or gene panels, recent efforts
have utilized next-generation sequencing (NGS) technolo-
gies, such as whole exome sequencing and whole genome
sequencing. The intent of the NGS effort is to improve di-
agnostic rates, enhance time efficiency and decrease over-
all financial burdens (1–5). However, due to the substan-
tially larger pool of candidate genes created by NGS data,
sequence interpretation has become a major hurdle in di-
agnostic settings. Computational approaches that stream-
line the diagnostic workflow and shorten the analytical
turnaround time are needed.

The Human Phenotype Ontology (HPO) database (6)
associates human diseases with phenotypic abnormalities.
These terms possess ever-increasing interoperability with
other ontologies (7–11) and allow for computational deep
phenotyping, making it the prevailing standard terminol-
ogy for human phenotypes. We have developed a few com-
putational tools (12–14) that use phenotype data for gene
prediction and prioritization. Although these methods are
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useful, they cannot provide real-time decision support in
clinical settings; for example, users may need to add or re-
move one phenotype term for a patient and immediately ob-
serve how the candidate gene list changes.

Recent studies have shown the utility of incorporating
phenotype data such as HPO terms in identifying causal
genes from NGS data, which increases time efficiency and
diagnostic yields (15). There are phenotype analysis tools
that use HPO terms to prioritize candidate causal genes,
some of which take genes, variants or both: Phevor (16),
VarElect (17), OVA (18), Phen-Gen (19), Exomiser (20),
AMELIE 2 (21), DeepPVP (22), GADO (23), VarSight (24)
and Xrare (25). These HPO terms can be supplied by diag-
nostic labs, clinical geneticists, doctors or natural language
processing (NLP) algorithms that parse doctors’ notes such
as Doc2HPO (14). The prioritized list of genes can then
be combined with NGS data to identify potential disease
genes. The downside of the gene-based tools, however, is
that they require gene lists (or variant files) beforehand,
some of them take longer to prioritize genes and some of
them can only be used via a web interface with no open
source code. Thus, such tools cannot be implemented on
a large scale and cannot be integrated into existing clinical
diagnostic workflows, which are often protected within in-
stitutional firewalls.

We present a new rapid, accurate, phenotype-based gene
prioritization tool called Phen2Gene. Phen2Gene takes
HPO terms for a patient and generates a patient-specific
ranked list of candidate genes using our precomputed
database, the HPO2Gene Knowledgebase (H2GKB), in a
median time of 0.94 s. The H2GKB is built on Enhanced
Phenolyzer (v0.4.0), and then Phen2Gene defines weights
for each HPO term. Unlike existing binary HPO–gene an-
notations in the HPO annotation database, the H2GKB is
a new database that links each HPO term to its own ranked
list of candidate genes, each with a confidence score. These
scores represent a substantial accuracy improvement over
the previous version of Phenolyzer. We also provide open
source code under the MIT license, together with a web
server for downloading and accessing the H2GKB and a
RESTful API web service for automated queries of pheno-
type terms with JSON output.

METHODS

Acquiring patient-specific gene lists with Phen2Gene

Physicians can manually curate HPO terms for their pa-
tients, which is becoming more common, or feed the pa-
tients’ notes into Doc2HPO to discover the relevant and
negated HPO terms for the patient’s phenotype. Doc2HPO
is a public tool that uses multiple NLP tools and algorithms
to parse patient notes into HPO terms. HPO terms act as
the sole form of input into Phen2Gene, which then searches
the H2GKB, generated by Enhanced Phenolyzer, for each
term’s ranked gene list.

All HPO terms under the root term ‘Phenotypic abnor-
mality’ (HP:0000118) are recognizable by Phen2Gene. By
default, Phen2Gene weights the inputted HPO terms by
skewness of gene scores, as some HPO terms possess greater
information content than others (26). Then, Phen2Gene
searches the H2GKB for each input term’s gene list and

sorts and ranks all the genes based on their ranks in each
term’s list and the weight of each HPO term to produce a
final, ranked candidate gene list (Figure 1).

HPO2Gene Knowledgebase construction

In order to construct the H2GKB, we first extract every
term from the HPO database, underneath the root term
‘Phenotypic abnormality’ (HP:0000118) (Figure 2A). For
each HPO term, we run an enhanced version of Phenolyzer
(ver. 0.4.0), dubbed Enhanced Phenolyzer, which incorpo-
rates HPO–gene annotations from the Jackson Laboratory
(6) and gene–disease annotations from OMIM (27), Clin-
Var (28), Orphanet (29) and GeneReviews (30). It then
adds information from gene–gene databases HPRD (31),
NCBI’s Biosystems Database (32), HGNC Gene Family
(33) and HTRI (34), and prioritizes and outputs the associ-
ated genes.

This generates a ranked list of candidate causal genes
for each HPO term, which are then consolidated into the
H2GKB (Figure 2B). This precomputed H2GKB can then
be rapidly accessed by Phen2Gene and used to rank lists
of genes for individual patients. The H2GKB is also freely
available online and downloadable from the Phen2Gene
web server.

Enhanced Phenolyzer

The original version of Phenolyzer (ver. 0.2.2) processed
free-text terms supplied by users. We updated the databases
inside Phenolyzer, incorporated new HPO–gene annota-
tions from the Jackson Laboratory database, fixed some
bugs and released it as Enhanced Phenolyzer (ver. 0.4.0).
Enhanced Phenolyzer contains a new function to turn HPO
terms into a list of genes, by generating a prioritized gene
list for each HPO term. Unlike the original Phenolyzer, En-
hanced Phenolyzer first generates two seed gene sets. Seed
Gene Set 1 is built on HPO–gene annotation files down-
loaded from the Jackson Laboratory for Genomic Medicine
available at https://hpo.jax.org/app/download/annotation,
while Seed Gene Set 2 construction follows the method out-
lined in the original Phenolyzer paper, which translates phe-
notype terms to disease names and incorporates the five pre-
compiled gene–disease databases to search for seed genes.

Candidate gene prioritization

In Enhanced Phenolyzer, we generate a seed gene list of
candidate genes for each HPO term in order to create the
H2GKB. For seed genes in Set 1, we gave an equal score to
each gene and HPO term pair,

S1
(
Gene j , HPi

) = 1,

since JAX annotation only lists genes for each individual
HPO term, but without quantitative scores representing the
strength of associations.

In Set 2, we followed the calculation method in the
original Phenolyzer for each seed gene using gene–disease
databases associated with each individual HPO term, and
noted as

S2
(
Gene j , HPi

)
.

https://hpo.jax.org/app/download/annotation


NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 3

Figure 1. How to use Phen2Gene. Physicians or clinical geneticists can curate HPO terms themselves or provide patient notes to Doc2HPO to generate
HPO terms in semi-automated fashion, and these terms will help create a candidate disease gene list using Phen2Gene.

A

B

Figure 2. The construction of the H2GKB. HPO terms are extracted one by one from the HPO database and passed into an enhanced version of Phenolyzer
(dubbed Enhanced Phenolyzer) to create a database of ranked gene lists for all HPO terms. (A) The workflow of Enhanced Phenolyzer. (B) Construction
of the H2GKB.

We sum up the two scores,

Stotal
(
Gene j , HPi

) = 0.1 × S1
(
Gene j , HPi

)

+S2
(
Gene j , HPi

)
,

and normalized it to a range between 0 and 1 as the final
seed gene score,

Sseed
(
Gene j , HPi

) = Stotal
(
Gene j , HPi

)

max{Stotal
(
Gene j , HPi

) | j = 1, . . . , N} .

We created some arbitrary weights for the JAX associ-
ations to test like the original Phenolyzer method did for
OMIM and Orphanet. We came to the conclusion that
downweighting the JAX HPO–gene associations by a factor
of 0.1 was the optimal solution after testing performance on
a variety of different factors from 0.1 to 1.0 (Supplementary

Figures S1 and S2). In the following steps, we used the origi-
nal Phenolyzer’s method for expanding the list of candidate
genes and reprioritizing the seed gene list using gene–gene
databases. Then, we generated the H2GKB with Enhanced
Phenolyzer.

Weighting by skewness

Phen2Gene defines weights to add to each HPO term’s gene
list generated by Enhanced Phenolyzer in the H2GKB. We
calculated the skewness value for the distribution of all gene
scores for each HPO term, and used it multiplicatively to ad-
just the weights of HPO terms individually. The gene score
distributions vary widely from term to term. The gene score
distributions of ‘Seizures’ (HP:0001250) and ‘Cleft palate’
(HP:0000175) demonstrate the difference in the specificity
of HPO terms (Supplementary Figure S3). ‘Cleft palate’
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has a positively skewed gene score distribution compared
to ‘Seizures’. For ‘Cleft palate’, most genes have a near-
zero raw score value, but for ‘Seizures’ the mean and stan-
dard deviation are much larger. In fact, ‘Seizures’ occurs 74
times in the benchmark dataset, and ‘Cleft palate’ occurs
only 5 times in the benchmark set. In the JAX database,
‘Seizures’ has 1465 gene associations and 2265 disease asso-
ciations, while ‘Cleft palate’ has 453 gene associations and
747 disease associations. These numbers demonstrate that
‘Seizures’ is a far less specific HPO term than ‘Cleft palate’.

We assume that the more skewed the gene score distri-
bution, the greater the difference between high- and low-
ranking genes. This discrepancy provides HPO terms with
better information for their associated genes. Thus, we used
Pearson’s moment coefficient of skewness to represent the
skew and weight HPO terms’ gene weights:

W
(
HP j

) = skewness
(
HP j

)

= m3

m3/2
2

, where mi = 1
N

N∑

n=1

(xn − x̄)i

and where skewness(HPj) is the skewness of the gene score
distribution of HPj, which we calculated with Python 3.8
and the SciPy 1.3.1 stats module. We also created alter-
native weighting schemes involving no weight or informa-
tional content, and our choice of skewness was due to its
greater performance over the other methods (Supplemen-
tary Figures S4 and S5).

Gene score computation with weighted HPO terms

In this weighting, Phen2Gene defines weights to add to each
HPO term’s gene list generated by Enhanced Phenolyzer
in the H2GKB. Given a set of HPO terms, TermSet =
{HP1, HP2, . . . , HPn}, each HPO term is assigned a weight
representing the granularity of phenotypic information
given by the HPO term. In each HPj’s candidate gene list,
every candidate gene has a score calculated by Enhanced
Phenolyzer. It is a quantitative representation of how genei
is associated with HPj. Phen2Gene gives a weighted score
to genei, if genei is in HPj’s candidate gene list,

Sweighted (genei ) =
n∑

j=1

W
(
HP j

) × S
(
genei , HP j

)
,

where HP j ∈ {HP1, HP2, . . . , HPn} ,

where W(HPj) is the assigned weight as illustrated in the
previous section, S(genei, HPj) is genei’s score in HPj’s can-
didate gene list. S(genei, HPj) = 0, if genei is not a candi-
date gene of HPj. All of genes are sorted by their scores in
descending order.

RESULTS

General use

Since the H2GKB is precomputed, the results for
Phen2Gene are instant. The weight given to the HPO
terms can be chosen or defined by the end user. The
terms can be unweighted, weighted by ontology-based

information content or the skewness of gene scores for
each HPO term, which is the recommended default. No
prior gene list knowledge is required, and if a physician has
no candidate genes, or if whole exome or whole genome
sequencing cannot be performed for practical reasons (such
as insurance reimbursement issues), it could help select
a targeted sequencing gene panel to find variants causal
for the phenotype. This process can be performed case by
case on the web server or using the Phen2Gene python
script and thus can be scaled up massively to thousands of
patients without prior gene knowledge.

Accuracy evaluation with collected expert-curated phenotype
data

For our benchmark testing of Phen2Gene, we used 281 de-
identified patients who were diagnosed with single-gene dis-
eases as our study subjects. Their study data were from five
different sources but three were manually curated by differ-
ent curators from different institutions. Considering the cu-
ration methods––manual and semi-autonomous––the dif-
ferent curation styles and levels of expertise of the curators,
they were hence divided into four groups. Group 1 only con-
tained one disease gene (TAF1), but the other three groups
contained numerous known and previously validated dis-
ease genes (Table 1). The phenotypes in these three groups
were chosen because the diseases were monogenic and the
causal genes were known, but the phenotypes are not meant
to be related in any way: symptoms, genes or pathophysiol-
ogy.

An effective way to understand how well a phenotype-
based gene prioritization tool performs is to have experts
curate HPO terms and phenotype information for single-
gene diseases. These experts also know the causal genes for
these diseases, thus aiding in assessing whether a tool is able
to properly rank the causal gene highly.

Each patient case in the benchmark dataset has only a
single causal gene that is known beforehand by the physi-
cians who curated the patient data. These data were used
to create the benchmark test between Phen2Gene and the
original version of Phenolyzer (Figure 3).

We attempted to use Phevor, OVA and VarElect for a
more direct comparison but they did not have APIs, and
running each patient case one by one on their websites is
a very unrealistic use case for hundreds or thousands of
patients. Running multiple CLI instances in parallel on a
cluster or the cloud is ubiquitously faster than using a web-
site, and in general a keyboard is faster than using a mouse
when done optimally (112–114). Luckily, we were able to
run GADO and AMELIE 2 via their web server APIs and
obtain speed and accuracy results.

However, AMELIE 2’s web server only accepts a max-
imum of a 1000-gene input list for gene prioritization.
Hence, we randomly created 10 gene sets, each of which
consists of the causal gene and 999 random genes. In
the accuracy evaluation, we first filtered the outputs from
Phen2Gene, original Phenolyzer and GADO down to the
1000 genes in those 10 gene sets, and then took the median
rankings of the causal genes from the four tools.

The performance of the four tools varies from set to
set. Overall, Phen2Gene is more accurate than Phenolyzer.
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Table 1. Curation of benchmark dataset

Set Data curation Where HPO terms are derived

1 14 cases, with 1 unique causal gene (TAF1), from 1
American Journal of Human Genetics article (35)

Doctor-curated HPO terms

2 27 cases from Columbia University Medical Center, with
24 unique causal genes, from 1 article (13)

Manually curated HPO terms from doctor-defined
phenotypes

3 85 cases from the Department of Genomic Diagnostics at
the Children’s Hospital of Philadelphia, with 75 unique
causal genes (36)

Doctor-curated HPO terms

4 72 cases, with 59 unique causal genes, from 61 Cold Spring
Harbor Molecular Case Studies articles (37–97), and 83
cases from with 13 unique genes, from 13 American Journal
of Human Genetics articles (98–111)

Aho–Corasick algorithm embedded in Doc2HPO with
manual review removing negated and duplicated terms

Each dataset comes from different literature sources, except the third set, which comes directly from the Children’s Hospital of Philadelphia. Some HPO
term sets have been curated by the Aho–Corasick algorithm embedded in Doc2HPO and others were manually curated by expert physicians.

Figure 3. Accuracy test for Phen2Gene and the original version of Phenolyzer, AMELIE 2 and GADO. The accuracy of the tool is determined by the
proportion of patient cases where the causal gene was successfully identified in the top 10, 50, 100 and 250 genes for the respective tool. (A) Set 1 of patient
cases for TAF1 syndrome as described in Table 1. (B) Set 2 of patient cases from Columbia University as described in Table 1. (C) Set 3 of patient cases
from the Division of Genomic Diagnostics at the Children’s Hospital of Philadelphia as described in Table 1. (D) Set 4 of patient cases from 61 Cold Spring
Harbor Molecular Case Studies articles and patient cases from 13 American Journal of Human Genetics articles as described in Table 1.
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There is a trade-off in accuracy from set to set between
AMELIE 2 and Phen2Gene, and Phen2Gene is more ac-
curate than GADO. The test for accuracy constitutes each
tool’s ability to rank the known causal gene in the top 10,
50, 100 and 250 genes, respectively, for each patient case, for
each benchmark set. Phen2Gene represents a step forward
in accuracy compared to Phenolyzer and GADO, and fu-
ture improvements to Phenolyzer will improve the H2GKB
and thus the performance of Phen2Gene even further.

We performed two-tailed sign tests for each tool com-
pared with Phen2Gene for each set for the performance
comparisons in Figure 3. Using a P-value cutoff of 0.5,
the difference in performance between Phen2Gene and Phe-
nolyzer (ver. 0.2.0) was statistically significant for all sets;
however, for AMELIE 2 and GADO, it was only signifi-
cantly better for Set 4 (AJHG + CSH) (Supplementary Ta-
ble S4).

Since Phen2Gene leverages the precomputed H2GKB,
the speedup in using Phen2Gene over Phenolyzer is sub-
stantial (Table 2). Of course, if a H2GKB were computed
with the original Phenolyzer, the speedup would be the
same. The Phen2Gene API is the fastest on average as the
scripts are saved in the cache––which explains the speedup
for the GADO API over its CLI as well. AMELIE 2’s API is
extremely slow on average compared to the other tools and
would be pretty impractical to scale up to thousands of pa-
tients at a time. The speed with which Phen2Gene can both
access and rank gene information from the H2GKB com-
pared to competitive tools speaks to its scalability in future
large-scale phenotype analysis studies.

Interestingly, noise terms do not affect performance sig-
nificantly. Some phenotypic descriptions may have a few
noisy terms in the four benchmark datasets due to different
curation criteria, methods, styles or background experience.
To test how noise affects Phen2Gene performances, we per-
formed two noise tests by adding a single HPO term to all
benchmark cases. In the first test, ‘Seizure’ (HP:0001250)
was the noise term added, and it has a low skewness value
(1.97) in the H2GKB. In the second test, ‘Macrodontia’
(HP:0001572) was the noise term added, possessing a high
skewness value (33.56) in the H2GKB. Based on our results,
it appears that one noisy HPO term, no matter how specific
and skewed, will not adversely affect Phen2Gene’s perfor-
mance (Supplementary Figure S6).

General use case: narrowing down candidate genes for undi-
agnosed diseases

To demonstrate the real-world usage of phenotype-driven
gene prioritization in clinical diagnostic settings, we per-
formed a retrospective analysis on a previously published
case (Figure 4). We were previously presented with a
proband possessing a suspected Mendelian disease, and we
performed whole exome sequencing on the proband and
the parents. In a previous study, we identified a de novo,
single-nucleotide insertion in ankyrin repeat domain 11
(ANKRD11) as the disease causal variant, and reached a
genetic diagnosis of KBG syndrome, an extremely rare dis-
ease. In the current study, we evaluated whether Phen2Gene
and Phenolyzer can facilitate automated gene finding from

the exome data, by analyzing the proband only (i.e. without
parental information).

We used the proband’s HPO terms as input for
Phen2Gene and the proband’s disease and symptom terms
as input for Phenolyzer. The causal gene, ANKRD11, was
initially ranked second and fifth by Phen2Gene and Phe-
nolyzer, respectively, among all the genes in the genome. We
intersected these gene lists with the list of candidate genes
derived from genes that harbor at least one rare, protein-
altering variant in the patient. ANKRD11 was ranked first
by both Phen2Gene and Phenolyzer. This example shows
how Phen2Gene, Phenolyzer, Exomiser and DeepPVP can
be used in practice to rank a causal gene in the top 10 genes
based on disease and symptom information and the list of
candidate genes extracted from exome sequencing. It is cru-
cial to note this is but one example and both speed and per-
formance will vary greatly from case to case.

However, one item worthy of note is that the speed of
Phen2Gene is much greater than DeepPVP. It took over a
day to download the database necessary to run DeepPVP
and unzip the files necessary to run it. It seems pretty im-
practical to deploy such a software on the cloud as it would
require a large amount of space to deploy (1 TB+) and a
large amount of memory to run (60 GB+), which would be
an expensive computation across multiple machines.

We were unable to find other freely accessible data con-
taining both HPO terms/patient notes and corresponding
VCF files. Nonetheless, the expectation is that human re-
viewers, such as clinical geneticists or genetic counselors,
can review the top 10 or 50 genes and reach a genetic di-
agnosis with great expedition, perform targeted sequencing
on top candidate genes or combine the top 1000 genes with
variant information to shorten their lists of candidate genes.

DISCUSSION

Phen2Gene represents a look at the cloud-based future of
phenotype-to-gene software. Currently, to the best of our
knowledge, very few tools allow for scalability to thou-
sands of patients. Tools that have APIs are quite slow as
we have shown, and the website-based tools require manual
copy-and-paste input, for one patient at a time. In addition,
while some tools like DeepPVP and Exomiser have open
source licenses, many tools that rank genes based on HPO
terms have no open source code available––which means
their work cannot be easily checked or improved upon by
the community. Some tools have license restrictions, do not
work as advertised or scaling to thousands of patients is
not realistic. In comparison, Phen2Gene is extremely fast
and open source, does not require prior gene or variant
knowledge and does not need to be run on a web server,
though we do provide a server for those with less compu-
tational backgrounds. We further provide the H2GKB and
the benchmark data as freely downloadable files. Compared
to the annotation file that documents ∼20 binary relation-
ships between HPO terms and genes on average from Jack-
son Laboratory’s HPO website, the H2GKB we provide
here contains weighted relationships between each HPO
term and hundreds or even thousands of genes. Phen2Gene
shows marked improvement over the original version of
Phenolyzer, and in our future work we plan to greatly im-
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Table 2. Speed benchmark test for Phen2Gene and Phenolyzer

Tool Phen2Gene (API) Phen2Gene (CLI)
Phenolyzer (ver. 0.2.0,
CLI)

AMELIE 2
(API)

GADO
(API)

GADO
(CLI)

Median time (s) 0.94 0.96 504.54 519.97 1.52 5.89
Minimum time
(s)

0.17 0.51 187.97 198.35 0.74 3.43

Maximum time
(s)

2.96 1.92 1021.54 852.70 4.15 10.3

These represent the average, minimum and maximum run-times of these tools in seconds and were taken from all 281 patient case runs.

Figure 4. General use case. Proband has a condition with unknown genetic cause but several candidate variants annotated and filtered using ANNOVAR
(115). Clinical notes on the proband’s condition are used by Doc2HPO to generate a list of HPO terms, which act as input for Phen2Gene or Phenolyzer.
These tools rank several thousand genes, and by intersecting them with the candidate list of genes overlapping the variants, we obtain a list of likely
candidate genes for KGB syndrome, which is known to be caused by variants in ANKRD11, shown here.

prove Phenolyzer and expand upon the H2GKB, increasing
performance.

Another benefit of Phen2Gene is that it is variant agnos-
tic. Structural variants (SVs) and repeat expansions in in-
tronic regions are known to cause disease (116,117), and
on average, there are >20 000 SVs in the human genome
(118). Based on our calculation using the gold standard SV
call set from HG002 (119) and the gene annotation file from
GENCODE (v25), more than half of the SVs overlap with
genes and most overlap intronic regions. The list of tools
that can score SVs (120) or repeat expansions (121) is ex-
tremely small, but Phen2Gene and tools like it (AMELIE,
GADO, etc.) could be used to narrow down a candidate
variant list containing repeat expansions or SVs.

In the future, there are several concepts that we hope to
address, not the least of which is a double-counting bias
ubiquitous to all such HPO-to-gene tools. Some doctors’

notes may contain terms like myoclonic seizures, epilepsy
and absence seizures, all of which represent three different
HPO terms (HP:0002123, HP:0001250 and HP:0002121, re-
spectively) for what is essentially the same combined condi-
tion. As a result, it may be biased toward terms mentioned
more often in doctors’ notes. This redundancy can be elim-
inated through manual HPO term input by human experts,
but is still a common issue that needs to be addressed, per-
haps by downweighting similar HPO terms.

Another issue we need to handle is the issue of negated
terms such as ‘no seizures’. Obviously, if experts input HPO
terms manually, this is not a difficult issue to address, but for
NLP algorithms that extract terms from doctors’ notes, we
could be adding false-positive HPO terms if negation is not
properly detected. Conversely, using negated HPO terms to
lower the ranking of negated-term-associated genes is an-
other useful incorporation of negated term data. Integrat-
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ing algorithms like DEEPEN (122) and NegEx (123) into
tools such as Doc2HPO may help us solve this problem.

We could improve the granularity of the scoring algo-
rithm by incorporating corpus-based information content.
Phen2Gene could still be improved further, and one method
for more properly assessing information content is to use
HPO terms in tandem with a large body of clinical litera-
ture. This could enable us to give the proper weight to HPO
terms or perhaps incorporate other terminology not cov-
ered by HPO, like UMLS, or NLP-derived classifications
or clusters. There is a need for a more widely applicable ter-
minology in the medical field, especially for diseases requir-
ing deeper phenotyping, and this would become a useful re-
source for researchers doing similar work.

Finally, we can combine Phen2Gene with variant prior-
itization software or disease gene discovery tools such as
CADD (124), REVEL (125) or CCR (126), to further nar-
row down potential disease gene candidates. If a diagnos-
tician has a list of genetic variants, they are more likely to
use one of these tools first. Some tools like VarSight or Ex-
omiser already combine some of these elements of variant
prioritization, but we would like to incorporate them into
our tool, while maintaining its current fast speed. In the fu-
ture, we hope to create a hybrid score that combines com-
putationally derived variant scores with phenotype-derived
gene prioritization, much like DeepPVP or AMELIE 2, but
faster.

In summary, the H2GKB provides a better alternative
for linking standardized phenotype terms to genes with
weighted scores with expeditiousness, and our hope is that it
may facilitate or inspire the development of more accurate,
faster, novel computational tools that link HPO terms to
genetic information, especially where whole exome/genome
sequencing data are available. The Phen2Gene tool pro-
vided in this paper can rapidly access and rank this infor-
mation. It has been implemented in Dx29 (www.dx29.ai)
and Doc2HPO’s pipeline so far, and we hope to deploy it
in other similar web services. Through command line tools,
web servers and RESTful API web services, we believe that
Phen2Gene will facilitate and expedite phenotype-driven
gene prioritization for rare diseases.

DATA AVAILABILITY

The current version of Phen2Gene is 1.1.0. The source code
and scripts for figures are available at https://github.com/
WGLab/Phen2Gene. Additionally, we built a Phen2Gene
web server available at https://phen2gene.wglab.org, to fa-
cilitate users who prefer to use web interface for gene
prioritization. The current version of H2GKB is also
downloadable at https://github.com/WGLab/Phen2Gene/
releases/download/1.1.0/H2GKBs.zip. All the benchmark
datasets and code to run the other tools are available in the
Supplementary Data.
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Schubach,M., Siragusa,E., Zemojtel,T., Buske,O.J.,
Washington,N.L. et al. (2015) Next-generation diagnostics and
disease-gene discovery with the Exomiser. Nat. Protoc., 10,
2004–2015.

21. Birgmeier,J., Haeussler,M., Deisseroth,C.A., Steinberg,E.H.,
Jagadeesh,K.A., Ratner,A.J., Guturu,H., Wenger,A.M.,
Diekhans,M.E., Stenson,P.D. et al. (2019) AMELIE 2 speeds up
Mendelian diagnosis by matching patient phenotype & genotype to
primary literature. bioRxiv doi: https://doi.org/10.1101/839878, 14
November 2019, preprint: not peer reviewed.

22. Boudellioua,I., Kulmanov,M., Schofield,P.N., Gkoutos,G.V. and
Hoehndorf,R. (2019) DeepPVP: phenotype-based prioritization of
causative variants using deep learning. BMC Bioinformatics, 20, 65.

23. Deelen,P., van Dam,S., Herkert,J.C., Karjalainen,J.M., Brugge,H.,
Abbott,K.M., van Diemen,C.C., van der Zwaag,P.A., Gerkes,E.H.,
Zonneveld-Huijssoon,E. et al. (2019) Improving the diagnostic yield
of exome-sequencing by predicting gene–phenotype associations
using large-scale gene expression analysis. Nat. Commun., 10, 1–13.

24. Holt,J.M., Wilk,B., Birch,C.L., Brown,D.M., Gajapathy,M.,
Moss,A.C., Sosonkina,N., Wilk,M.A., Anderson,J.A., Harris,J.M.
et al. (2019) VarSight: prioritizing clinically reported variants with
binary classification algorithms. BMC Bioinformatics, 20, 496.

25. Li,Q., Zhao,K., Bustamante,C.D., Ma,X. and Wong,W.H. (2019)
Xrare: a machine learning method jointly modeling phenotypes and
genetic evidence for rare disease diagnosis. Genet. Med., 21,
2126–2134.

26. Sánchez,D., Batet,M. and Isern,D. (2011) Ontology-based
information content computation. Knowl. Based Syst., 24, 297–303.

27. McKusick,V.A. (2007) Mendelian inheritance in man and its online
version, OMIM. Am. J. Hum. Genet., 80, 588–604.

28. Landrum,M.J., Lee,J.M., Riley,G.R., Jang,W., Rubinstein,W.S.,
Church,D.M. and Maglott,D.R. (2014) ClinVar: public archive of
relationships among sequence variation and human phenotype.
Nucleic Acids Res., 42, D980–D985.

29. Rath,A., Olry,A., Dhombres,F., Brandt,M.M., Urbero,B. and
Ayme,S. (2012) Representation of rare diseases in health
information systems: the Orphanet approach to serve a wide range
of end users. Hum. Mutat., 33, 803–808.

30. Adam,M.P. (ed).1993 GeneReviews. University of Washington,
Seattle.

31. Peri,S., Navarro,J.D., Kristiansen,T.Z., Amanchy,R.,
Surendranath,V., Muthusamy,B., Gandhi,T.K., Chandrika,K.N.,
Deshpande,N., Suresh,S. et al. (2004) Human protein reference
database as a discovery resource for proteomics. Nucleic Acids Res.,
32, D497–D501.

32. Geer,L.Y., Marchler-Bauer,A., Geer,R.C., Han,L., He,J., He,S.,
Liu,C., Shi,W. and Bryant,S.H. (2010) The NCBI BioSystems
database. Nucleic Acids Res., 38, D492–D496.

33. Seal,R.L., Gordon,S.M., Lush,M.J., Wright,M.W. and Bruford,E.A.
(2011) genenames.org: the HGNC resources in 2011. Nucleic Acids
Res., 39, D514–D519.

34. Bovolenta,L.A., Acencio,M.L. and Lemke,N. (2012) HTRIdb: an
open-access database for experimentally verified human
transcriptional regulation interactions. BMC Genomics, 13, 405.

35. O’Rawe,J.A., Wu,Y., Dorfel,M.J., Rope,A.F., Au,P.Y.,
Parboosingh,J.S., Moon,S., Kousi,M., Kosma,K., Smith,C.S. et al.
(2015) TAF1 variants are associated with dysmorphic features,
intellectual disability, and neurological manifestations. Am. J. Hum.
Genet., 97, 922–932.

36. Wu,C., Devkota,B., Evans,P., Zhao,X., Baker,S.W., Niazi,R.,
Cao,K., Gonzalez,M.A., Jayaraman,P., Conlin,L.K. et al. (2019)
Rapid and accurate interpretation of clinical exomes using
Phenoxome: a computational phenotype-driven approach. Eur. J.
Hum. Genet., 27, 612–620.

37. Swaminathan,M., Bannon,S.A., Routbort,M., Naqvi,K.,
Kadia,T.M., Takahashi,K., Alvarado,Y., Ravandi-Kashani,F.,
Patel,K.P., Champlin,R. et al. (2019) Hematologic malignancies and
Li–Fraumeni syndrome. Cold Spring Harb. Mol. Case Stud., 5,
a003210.

38. Tanaka,A.J., Bai,R., Cho,M.T., Anyane-Yeboa,K., Ahimaz,P.,
Wilson,A.L., Kendall,F., Hay,B., Moss,T., Nardini,M. et al. (2015)
De novo mutations in PURA are associated with hypotonia and
developmental delay. Cold Spring Harb. Mol. Case Stud., 1,
a000356.

39. Yang,H., Douglas,G., Monaghan,K.G., Retterer,K., Cho,M.T.,
Escobar,L.F., Tucker,M.E., Stoler,J., Rodan,L.H., Stein,D. et al.
(2015) De novo truncating variants in the AHDC1 gene encoding the
AT-hook DNA-binding motif-containing protein 1 are associated
with intellectual disability and developmental delay. Cold Spring
Harb. Mol. Case Stud., 1, a000562.

40. Zimmerman,E. and Maron,J.L. (2016) FOXP2 gene deletion and
infant feeding difficulties: a case report. Cold Spring Harb. Mol.
Case Stud., 2, a000547.

41. Tanaka,A.J., Cho,M.T., Retterer,K., Jones,J.R., Nowak,C.,
Douglas,J., Jiang,Y.H., McConkie-Rosell,A., Schaefer,G.B.,
Kaylor,J. et al. (2016) De novo pathogenic variants in CHAMP1 are
associated with global developmental delay, intellectual disability,
and dysmorphic facial features. Cold Spring Harb. Mol. Case Stud.,
2, a000661.

42. Joshi,M., Anselm,I., Shi,J., Bale,T.A., Towne,M., Schmitz-Abe,K.,
Crowley,L., Giani,F.C., Kazerounian,S., Markianos,K. et al. (2016)
Mutations in the substrate binding glycine-rich loop of the
mitochondrial processing peptidase-alpha protein (PMPCA) cause a
severe mitochondrial disease. Cold Spring Harb. Mol. Case Stud., 2,
a000786.

43. Yu,H.C., Coughlin,C.R., Geiger,E.A., Salvador,B.J., Elias,E.R.,
Cavanaugh,J.L., Chatfield,K.C., Miyamoto,S.D. and Shaikh,T.H.
(2016) Discovery of a potentially deleterious variant in TMEM87B
in a patient with a hemizygous 2q13 microdeletion suggests a
recessive condition characterized by congenital heart disease and
restrictive cardiomyopathy. Cold Spring Harb. Mol. Case Stud., 2,
a000844.

44. Leinoe,E., Nielsen,O.J., Jonson,L. and Rossing,M. (2016)
Whole-exome sequencing of a patient with severe and complex
hemostatic abnormalities reveals a possible contributing frameshift
mutation in C3AR1. Cold Spring Harb. Mol. Case Stud., 2, a000828.

45. Griffin,L.B., Farley,F.A., Antonellis,A. and Keegan,C.E. (2016) A
novel FGD1 mutation in a family with Aarskog–Scott syndrome
and predominant features of congenital joint contractures. Cold
Spring Harb. Mol. Case Stud., 2, a000943.

46. Pierce,S.B., Gulsuner,S., Stapleton,G.A., Walsh,T., Lee,M.K.,
Mandell,J.B., Morales,A., Klevit,R.E., King,M.C. and Rogers,R.C.
(2016) Infantile onset spinocerebellar ataxia caused by compound
heterozygosity for Twinkle mutations and modeling of Twinkle

https://www.doi.org/10.1101/839878


10 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

mutations causing recessive disease. Cold Spring Harb. Mol. Case
Stud., 2, a001107.

47. Moskowitz,A.M., Belnap,N., Siniard,A.L., Szelinger,S.,
Claasen,A.M., Richholt,R.F., De Both,M., Corneveaux,J.J.,
Balak,C., Piras,I.S. et al. (2016) A de novo missense mutation in
ZMYND11 is associated with global developmental delay, seizures,
and hypotonia. Cold Spring Harb. Mol. Case Stud., 2, a000851.

48. Smedemark-Margulies,N., Brownstein,C.A., Vargas,S.,
Tembulkar,S.K., Towne,M.C., Shi,J., Gonzalez-Cuevas,E.,
Liu,K.X., Bilguvar,K., Kleiman,R.J. et al. (2016) A novel de novo
mutation in ATP1A3 and childhood-onset schizophrenia. Cold
Spring Harb. Mol. Case Stud., 2, a001008.

49. Malcolmson,J., Kleyner,R., Tegay,D., Adams,W., Ward,K.,
Coppinger,J., Nelson,L., Meisler,M.H., Wang,K., Robison,R. et al.
(2016) SCN8A mutation in a child presenting with seizures and
developmental delays. Cold Spring Harb. Mol. Case Stud., 2,
a001073.

50. Kleyner,R., Malcolmson,J., Tegay,D., Ward,K., Maughan,A.,
Maughan,G., Nelson,L., Wang,K., Robison,R. and Lyon,G.J.
(2016) KBG syndrome involving a single-nucleotide duplication in
ANKRD11. Cold Spring Harb. Mol. Case Stud., 2, a001131.

51. Webster,E., Cho,M.T., Alexander,N., Desai,S., Naidu,S.,
Bekheirnia,M.R., Lewis,A., Retterer,K., Juusola,J. and Chung,W.K.
(2016) De novo PHIP-predicted deleterious variants are associated
with developmental delay, intellectual disability, obesity, and
dysmorphic features. Cold Spring Harb. Mol. Case Stud., 2, a001172.

52. Colby,S., Yehia,L., Niazi,F., Chen,J., Ni,Y., Mester,J.L. and Eng,C.
(2016) Exome sequencing reveals germline gain-of-function EGFR
mutation in an adult with Lhermitte–Duclos disease. Cold Spring
Harb. Mol. Case Stud., 2, a001230.

53. Yu,A.C., Chan,A.Y., Au,W.C., Shen,Y., Chan,T.F. and Chan,H.E.
(2016) Whole-genome sequencing of two probands with hereditary
spastic paraplegia reveals novel splice-donor region variant and
known pathogenic variant in SPG11. Cold Spring Harb. Mol. Case
Stud., 2, a001248.

54. Polfus,L.M., Boerwinkle,E., Gibbs,R.A., Metcalf,G., Muzny,D.,
Veeraraghavan,N., Grove,M., Shete,S., Wallace,S., Milewicz,D. et al.
(2016) Whole-exome sequencing reveals an inherited R566X
mutation of the epithelial sodium channel beta-subunit in a case of
early-onset phenotype of Liddle syndrome. Cold Spring Harb. Mol.
Case Stud., 2, a001255.

55. Delpire,E., Wolfe,L., Flores,B., Koumangoye,R., Schornak,C.C.,
Omer,S., Pusey,B., Lau,C., Markello,T. and Adams,D.R. (2016) A
patient with multisystem dysfunction carries a truncation mutation
in human SLC12A2, the gene encoding the Na-K-2Cl cotransporter,
NKCC1. Cold Spring Harb. Mol. Case Stud., 2, a001289.

56. Bourne,S.C., Townsend,K.N., Shyr,C., Matthews,A., Lear,S.A.,
Attariwala,R., Lehman,A., Wasserman,W.W., van Karnebeek,C.,
Sinclair,G. et al. (2017) Optic atrophy, cataracts,
lipodystrophy/lipoatrophy, and peripheral neuropathy caused by a
de novo OPA3 mutation. Cold Spring Harb. Mol. Case Stud., 3,
a001156.

57. Patel,R.M., Liu,D., Gonzaga-Jauregui,C., Jhangiani,S., Lu,J.T.,
Sutton,V.R., Fernbach,S.D., Azamian,M., White,L., Edmond,J.C.
et al. (2017) An exome sequencing study of Moebius syndrome
including atypical cases reveals an individual with CFEOM3A and a
TUBB3 mutation. Cold Spring Harb. Mol. Case Stud., 3, a000984.

58. Morton,S.U., Prabhu,S.P., Lidov,H.G.W., Shi,J., Anselm,I.,
Brownstein,C.A., Bainbridge,M.N., Beggs,A.H., Vargas,S.O. and
Agrawal,P.B. (2017) AIFM1 mutation presenting with fatal
encephalomyopathy and mitochondrial disease in an infant. Cold
Spring Harb. Mol. Case Stud., 3, a001560.

59. Caglayan,A.O., Sezer,R.G., Kaymakcalan,H., Ulgen,E., Yavuz,T.,
Baranoski,J.F., Bozaykut,A., Harmanci,A.S., Yalcin,Y.,
Youngblood,M.W. et al. (2017) ALPK3 gene mutation in a patient
with congenital cardiomyopathy and dysmorphic features. Cold
Spring Harb. Mol. Case Stud., 3, a001859.

60. Inlora,J., Sailani,M.R., Khodadadi,H., Teymurinezhad,A.,
Takahashi,S., Bernstein,J.A., Garshasbi,M. and Snyder,M.P. (2017)
Identification of a novel mutation in the APTX gene associated with
ataxia-oculomotor apraxia. Cold Spring Harb. Mol. Case Stud., 3,
a002014.

61. Johnston,J.J., Lee,C., Wentzensen,I.M., Parisi,M.A.,
Crenshaw,M.M., Sapp,J.C., Gross,J.M., Wallingford,J.B. and

Biesecker,L.G. (2017) Compound heterozygous alterations in
intraflagellar transport protein CLUAP1 in a child with a novel
Joubert and oral-facial-digital overlap syndrome. Cold Spring Harb.
Mol. Case Stud., 3, a001321.

62. Dardour,L., Roelens,F., Race,V., Souche,E., Holvoet,M. and
Devriendt,K. (2017) SPG20 mutation in three siblings with familial
hereditary spastic paraplegia. Cold Spring Harb. Mol. Case Stud., 3,
a001537.

63. Whitford,W., Hawkins,I., Glamuzina,E., Wilson,F., Marshall,A.,
Ashton,F., Love,D.R., Taylor,J., Hill,R., Lehnert,K. et al. (2017)
Compound heterozygous SLC19A3 mutations further refine the
critical promoter region for biotin-thiamine-responsive basal ganglia
disease. Cold Spring Harb. Mol. Case Stud., 3, a001909.

64. Rohanizadegan,M., Abdo,S.M., O’Donnell-Luria,A., Mihalek,I.,
Chen,P., Sanders,M., Leeman,K., Cho,M., Hung,C. and
Bodamer,O. (2017) Utility of rapid whole-exome sequencing in the
diagnosis of Niemann–Pick disease type C presenting with fetal
hydrops and acute liver failure. Cold Spring Harb. Mol. Case Stud.,
3, a002147.

65. Kaiwar,C., Zimmermann,M.T., Ferber,M.J., Niu,Z., Urrutia,R.A.,
Klee,E.W. and Babovic-Vuksanovic,D. (2017) Novel NR2F1
variants likely disrupt DNA binding: molecular modeling in two
cases, review of published cases, genotype–phenotype correlation,
and phenotypic expansion of the Bosch–Boonstra–Schaaf optic
atrophy syndrome. Cold Spring Harb. Mol. Case Stud., 3, a002162.

66. Sailani,M.R., Chappell,J., Jingga,I., Narasimha,A., Zia,A.,
Lynch,J.L., Mazrouei,S., Bernstein,J.A., Aryani,O. and Snyder,M.P.
(2018) WISP3 mutation associated with pseudorheumatoid
dysplasia. Cold Spring Harb. Mol. Case Stud., 4, a001990.

67. Tanaka,A.J., Cho,M.T., Willaert,R., Retterer,K., Zarate,Y.A.,
Bosanko,K., Stefans,V., Oishi,K., Williamson,A., Wilson,G.N. et al.
(2017) De novo variants in EBF3 are associated with hypotonia,
developmental delay, intellectual disability, and autism. Cold Spring
Harb. Mol. Case Stud., 3, a002097.

68. Lu,J.G., Bishop,J., Cheyette,S., Zhulin,I.B., Guo,S., Sobreira,N. and
Brenner,S.E. (2018) A novel PRRT2 pathogenic variant in a family
with paroxysmal kinesigenic dyskinesia and benign familial infantile
seizures. Cold Spring Harb. Mol. Case Stud., 4, 1621–1630.

69. Koboldt,D.C., Mihalic Mosher,T., Kelly,B.J., Sites,E.,
Bartholomew,D., Hickey,S.E., McBride,K., Wilson,R.K. and
White,P. (2018) A de novo nonsense mutation in ASXL3 shared by
siblings with Bainbridge–Ropers syndrome. Cold Spring Harb. Mol.
Case Stud., 4, a002410.

70. Miller,K.E., Kelly,B., Fitch,J., Ross,N., Avenarius,M.R., Varga,E.,
Koboldt,D.C., Boue,D.R., Magrini,V., Coven,S.L. et al. (2018)
Genome sequencing identifies somatic BRAF duplication
c.1794 1796dupTAC;p.Thr599dup in pediatric patient with
low-grade ganglioglioma. Cold Spring Harb. Mol. Case Stud., 4,
a002618.

71. Sanford,E., Watkins,K., Nahas,S., Gottschalk,M., Coufal,N.G.,
Farnaes,L., Dimmock,D., Kingsmore,S.F. and RCIGM
Investigators. (2018) Rapid whole-genome sequencing identifies a
novel AIRE variant associated with autoimmune polyendocrine
syndrome type 1. Cold Spring Harb. Mol. Case Stud., 4, a002485.

72. Berland,S., Toft-Bertelsen,T.L., Aukrust,I., Byska,J., Vaudel,M.,
Bindoff,L.A., MacAulay,N. and Houge,G. (2018) A de novo
Ser111Thr variant in aquaporin-4 in a patient with intellectual
disability, transient signs of brain ischemia, transient cardiac
hypertrophy, and progressive gait disturbance. Cold Spring Harb.
Mol. Case Stud., 4, a002303.

73. Miller,C.A., Dahiya,S., Li,T., Fulton,R.S., Smyth,M.D., Dunn,G.P.,
Rubin,J.B. and Mardis,E.R. (2018) Resistance-promoting effects of
ependymoma treatment revealed through genomic analysis of
multiple recurrences in a single patient. Cold Spring Harb. Mol. Case
Stud., 4, a002444.

74. Bodian,D.L., Schreiber,J.M., Vilboux,T., Khromykh,A. and
Hauser,N.S. (2018) Mutation in an alternative transcript of CDKL5
in a boy with early-onset seizures. Cold Spring Harb. Mol. Case
Stud., 4, a002360.

75. Velez,G., Bassuk,A.G., Schaefer,K.A., Brooks,B., Gakhar,L.,
Mahajan,M., Kahn,P., Tsang,S.H., Ferguson,P.J. and Mahajan,V.B.
(2018) A novel de novo CAPN5 mutation in a patient with
inflammatory vitreoretinopathy, hearing loss, and developmental
delay. Cold Spring Harb. Mol. Case Stud., 4, a002519.



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 11

76. Sweeney,N.M., Nahas,S.A., Chowdhury,S., Campo,M.D.,
Jones,M.C., Dimmock,D.P., Kingsmore,S.F. and RCIGM
Investigators. (2018) The case for early use of rapid whole-genome
sequencing in management of critically ill infants: late diagnosis of
Coffin–Siris syndrome in an infant with left congenital
diaphragmatic hernia, congenital heart disease, and recurrent
infections. Cold Spring Harb. Mol. Case Stud., 4, a002469.

77. Cotter,J.A., Szymanski,L., Karimov,C., Boghossian,L., Margol,A.,
Dhall,G., Tamrazi,B., Varaprasathan,G.I., Parham,D.M.,
Judkins,A.R. et al. (2018) Transmission of a TP53 germline
mutation from unaffected male carrier associated with pediatric
glioblastoma in his child and gestational choriocarcinoma in his
female partner. Cold Spring Harb. Mol. Case Stud., 4, a002576.

78. Antwi,P., Hong,C.S., Duran,D., Jin,S.C., Dong,W., DiLuna,M. and
Kahle,K.T. (2018) A novel association of campomelic dysplasia and
hydrocephalus with an unbalanced chromosomal translocation
upstream of SOX9. Cold Spring Harb. Mol. Case Stud., 4, a002766.

79. Murry,J.B., Machini,K., Ceyhan-Birsoy,O., Kritzer,A., Krier,J.B.,
Lebo,M.S., Fayer,S., Genetti,C.A., VanNoy,G.E., Yu,T.W. et al.
(2018) Reconciling newborn screening and a novel splice variant in
BTD associated with partial biotinidase deficiency: a BabySeq
Project case report. Cold Spring Harb. Mol. Case Stud., 4, a002873.

80. Schwartz,J.R., Walsh,M.P., Ma,J., Lamprecht,T., Wang,S., Wu,G.,
Raimondi,S., Triplett,B.M. and Klco,J.M. (2018) Clonal dynamics
of donor-derived myelodysplastic syndrome after unrelated
hematopoietic cell transplantation for high-risk pediatric
B-lymphoblastic leukemia. Cold Spring Harb. Mol. Case Stud., 4,
a002980.

81. Fomchenko,E.I., Duran,D., Jin,S.C., Dong,W., Erson-Omay,E.Z.,
Antwi,P., Allocco,A., Gaillard,J.R., Huttner,A., Gunel,M. et al.
(2018) De novo MYH9 mutation in congenital scalp hemangioma.
Cold Spring Harb. Mol. Case Stud., 4, a002998.

82. Grant,A.R., Hemphill,S.E., Vincent,L.M. and Rehm,H.L. (2018)
Reclassification of the BRAF p.Ile208Val variant by case-level data
sharing. Cold Spring Harb. Mol. Case Stud., 4, a002675.

83. Tan,Q.K., Cope,H., Spillmann,R.C., Stong,N., Jiang,Y.H.,
McDonald,M.T., Rothman,J.A., Butler,M.W., Frush,D.P.,
Lachman,R.S. et al. (2018) Further evidence for the involvement of
EFL1 in a Shwachman–Diamond-like syndrome and expansion of
the phenotypic features. Cold Spring Harb. Mol. Case Stud., 4,
a003046.

84. Koboldt,D.C., Kastury,R.D., Waldrop,M.A., Kelly,B.J.,
Mosher,T.M., McLaughlin,H., Corsmeier,D., Slaughter,J.L.,
Flanigan,K.M., McBride,K.L. et al. (2018) In-frame de novo
mutation in BICD2 in two patients with muscular atrophy and
arthrogryposis. Cold Spring Harb. Mol. Case Stud., 4, a003160.

85. Dubard Gault,M., Mandelker,D., DeLair,D., Stewart,C.R.,
Kemel,Y., Sheehan,M.R., Siegel,B., Kennedy,J., Marcell,V.,
Arnold,A. et al. (2018) Germline SDHA mutations in children and
adults with cancer. Cold Spring Harb. Mol. Case Stud., 4, a002584.

86. Erdrich,J., Schaberg,K.B., Khodadoust,M.S., Zhou,L.,
Shelton,A.A., Visser,B.C., Ford,J.M., Alizadeh,A.A., Quake,S.R.,
Kunz,P.L. et al. (2018) Surgical and molecular characterization of
primary and metastatic disease in a neuroendocrine tumor arising in
a tailgut cyst. Cold Spring Harb. Mol. Case Stud., 4, a003004.

87. Zech,M., Lam,D.D., Weber,S., Berutti,R., Polakova,K.,
Havrankova,P., Fecikova,A., Strom,T.M., Ruzicka,E., Jech,R. et al.
(2018) A unique de novo gain-of-function variant in CAMK4
associated with intellectual disability and hyperkinetic movement
disorder. Cold Spring Harb. Mol. Case Stud., 4, a003293.

88. Haskell,G.T., Mori,M., Powell,C., Amrhein,T.J., Rice,G.I.,
Bailey,L., Strande,N., Weck,K.E., Evans,J.P., Berg,J.S. et al. (2018)
Combination of exome sequencing and immune testing confirms
Aicardi–Goutieres syndrome type 5 in a challenging pediatric
neurology case. Cold Spring Harb. Mol. Case Stud., 4, a002758.

89. David,M.P., Venkatramani,R., Lopez-Terrada,D.H., Roy,A.,
Patil,N. and Fisher,K.E. (2018) Multimodal molecular analysis of
an atypical small cell carcinoma of the ovary, hypercalcemic type.
Cold Spring Harb. Mol. Case Stud., 4, a002956.

90. Khurana,M., Edwards,D., Rescorla,F., Miller,C., He,Y., Sierra
Potchanant,E. and Nalepa,G. (2018) Whole-exome sequencing
enables correct diagnosis and surgical management of rare inherited
childhood anemia. Cold Spring Harb. Mol. Case Stud., 4, a003152.

91. Okur,V., Ganapathi,M., Wilson,A. and Chung,W.K. (2018) Biallelic
variants in VARS in a family with two siblings with intellectual
disability and microcephaly: case report and review of the literature.
Cold Spring Harb. Mol. Case Stud., 4, a003301.

92. Martignetti,J.A., Pandya,D., Nagarsheth,N., Chen,Y., Camacho,O.,
Tomita,S., Brodman,M., Ascher-Walsh,C., Kolev,V., Cohen,S. et al.
(2018) Detection of endometrial precancer by a targeted gynecologic
cancer liquid biopsy. Cold Spring Harb. Mol. Case Stud., 4, a003269.

93. Briggs,B., James,K.N., Chowdhury,S., Thornburg,C., Farnaes,L.,
Dimmock,D., Kingsmore,S.F. and RCIGM Investigators. (2018)
Novel factor XIII variant identified through whole-genome
sequencing in a child with intracranial hemorrhage. Cold Spring
Harb. Mol. Case Stud., 4, a003525.

94. Tanaka,A.J., Okumoto,K., Tamura,S., Abe,Y., Hirsch,Y., Deng,L.,
Ekstein,J., Chung,W.K. and Fujiki,Y. (2019) A newly identified
mutation in the PEX26 gene is associated with a milder form of
Zellweger spectrum disorder. Cold Spring Harb. Mol. Case Stud., 5,
a003483.

95. Qian,Y., Wu,B., Lu,Y., Dong,X., Qin,Q., Zhou,W. and Wang,H.
(2018) Early-onset infant epileptic encephalopathy associated with a
de novo PPP3CA gene mutation. Cold Spring Harb. Mol. Case Stud.,
4, a002949.

96. Sanford,E., Farnaes,L., Batalov,S., Bainbridge,M., Laubach,S.,
Worthen,H.M., Tokita,M., Kingsmore,S.F. and Bradley,J. (2018)
Concomitant diagnosis of immune deficiency and Pseudomonas
sepsis in a 19 month old with ecthyma gangrenosum by host
whole-genome sequencing. Cold Spring Harb. Mol. Case Stud., 4,
a003244.

97. Claassen,D., Boals,M., Bowling,K.M., Cooper,G.M., Cox,J.,
Hershfield,M., Lewis,S., Wlodarski,M., Weiss,M.J. and Estepp,J.H.
(2018) Complexities of genetic diagnosis illustrated by an atypical
case of congenital hypoplastic anemia. Cold Spring Harb. Mol. Case
Stud., 4, a003384.

98. Windpassinger,C., Piard,J., Bonnard,C., Alfadhel,M., Lim,S.,
Bisteau,X., Blouin,S., Ali,N.B., Ng,A.Y.J., Lu,H. et al. (2017)
CDK10 mutations in humans and mice cause severe growth
retardation, spine malformations, and developmental delays. Am. J.
Hum. Genet., 101, 391–403.

99. Lessel,D., Schob,C., Kury,S., Reijnders,M.R.F., Harel,T.,
Eldomery,M.K., Coban-Akdemir,Z., Denecke,J., Edvardson,S.,
Colin,E. et al. (2017) De novo missense mutations in DHX30 impair
global translation and cause a neurodevelopmental disorder. Am. J.
Hum. Genet., 101, 716–724.

100. Paul,A., Drecourt,A., Petit,F., Deguine,D.D., Vasnier,C.,
Oufadem,M., Masson,C., Bonnet,C., Masmoudi,S., Mosnier,I. et al.
(2017) FDXR mutations cause sensorial neuropathies and expand
the spectrum of mitochondrial Fe–S-synthesis diseases. Am. J. Hum.
Genet., 101, 630–637.

101. Watson,L.M., Bamber,E., Schnekenberg,R.P., Williams,J.,
Bettencourt,C., Lickiss,J., Jayawant,S., Fawcett,K., Clokie,S.,
Wallis,Y. et al. (2017) Dominant mutations in GRM1 cause
spinocerebellar ataxia type 44. Am. J. Hum. Genet., 101, 451–458.

102. Habarou,F., Hamel,Y., Haack,T.B., Feichtinger,R.G., Lebigot,E.,
Marquardt,I., Busiah,K., Laroche,C., Madrange,M., Grisel,C. et al.
(2017) Biallelic mutations in LIPT2 cause a mitochondrial
lipoylation defect associated with severe neonatal encephalopathy.
Am. J. Hum. Genet., 101, 283–290.

103. Lake,N.J., Webb,B.D., Stroud,D.A., Richman,T.R., Ruzzenente,B.,
Compton,A.G., Mountford,H.S., Pulman,J., Zangarelli,C., Rio,M.
et al. (2017) Biallelic mutations in MRPS34 lead to instability of the
small mitoribosomal subunit and leigh syndrome. Am. J. Hum.
Genet., 101, 239–254.

104. Boudin,E., de Jong,T.R., Prickett,T.C.R., Lapauw,B., Toye,K., Van
Hoof,V., Luyckx,I., Verstraeten,A., Heymans,H.S.A., Dulfer,E.
et al. (2018) Bi-allelic loss-of-function mutations in the NPR-C
receptor result in enhanced growth and connective tissue
abnormalities. Am. J. Hum. Genet., 103, 288–295.

105. Lamers,I.J.C., Reijnders,M.R.F., Venselaar,H., Kraus,A. and DDD
StudyDDD Study, Jansen,S., de Vries,B.B.A., Houge,G.,
Gradek,G.A., Seo,J. et al. (2017) Recurrent de novo mutations
disturbing the GTP/GDP binding pocket of RAB11B cause
intellectual disability and a distinctive brain phenotype. Am. J. Hum.
Genet., 101, 824–832.



12 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

106. Reijnders,M.R.F., Ansor,N.M., Kousi,M., Yue,W.W., Tan,P.L.,
Clarkson,K., Clayton-Smith,J., Corning,K., Jones,J.R.,
Lam,W.W.K. et al. (2017) RAC1 missense mutations in
developmental disorders with diverse phenotypes. Am. J. Hum.
Genet., 101, 466–477.

107. Bayram,Y., White,J.J., Elcioglu,N., Cho,M.T., Zadeh,N.,
Gedikbasi,A., Palanduz,S., Ozturk,S., Cefle,K., Kasapcopur,O.
et al. (2017) REST final-exon-truncating mutations cause hereditary
gingival fibromatosis. Am. J. Hum. Genet., 101, 149–156.

108. De Mori,R., Romani,M., D’Arrigo,S., Zaki,M.S., Lorefice,E.,
Tardivo,S., Biagini,T., Stanley,V., Musaev,D., Fluss,J. et al. (2017)
Hypomorphic recessive variants in SUFU impair the sonic
hedgehog pathway and cause Joubert syndrome with cranio-facial
and skeletal defects. Am. J. Hum. Genet., 101, 552–563.

109. Ivanova,E.L., Mau-Them,F.T., Riazuddin,S., Kahrizi,K., Laugel,V.,
Schaefer,E., de Saint Martin,A., Runge,K., Iqbal,Z., Spitz,M.A.
et al. (2017) Homozygous truncating variants in TBC1D23 cause
pontocerebellar hypoplasia and alter cortical development. Am. J.
Hum. Genet., 101, 428–440.

110. Skraban,C.M., Wells,C.F., Markose,P., Cho,M.T., Nesbitt,A.I.,
Au,P.Y.B., Begtrup,A., Bernat,J.A., Bird,L.M., Cao,K. et al. (2017)
WDR26 haploinsufficiency causes a recognizable syndrome of
intellectual disability, seizures, abnormal gait, and distinctive facial
features. Am. J. Hum. Genet., 101, 139–148.

111. Guella,I., McKenzie,M.B., Evans,D.M., Buerki,S.E., Toyota,E.B.,
Van Allen,M.I., Epilepsy Genomics,S., Suri,M., Elmslie,F.,
Deciphering Developmental Disorders Study et al. (2017) De novo
mutations in YWHAG cause early-onset epilepsy. Am. J. Hum.
Genet., 101, 300–310.

112. Miller,C.S., Denkov,S. and Omanson,R.C. (2011) Categorization
costs for hierarchical keyboard commands. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI’11. Association for Computing Machinery, Vancouver, pp.
2765–2768.

113. Lane,D.M., Napier,H.A., Peres,S.C. and Sandor,A. (2005) Hidden
costs of graphical user interfaces: failure to make the transition from
menus and icon toolbars to keyboard shortcuts. Int. J. Hum.
Comput. Interact., 18, 133–144.

114. Omanson,R.C., Miller,C.S., Young,E. and Schwantes,D. (2010)
Comparison of mouse and keyboard efficiency. Proc. Hum. Factors
Ergon. Soc. Annu. Meet., 6, 600–604.

115. Wang,K., Li,M. and Hakonarson,H. (2010) ANNOVAR: functional
annotation of genetic variants from high-throughput sequencing
data. Nucleic Acids Res., 38, e164.

116. Zeng,S., Zhang,M., Wang,X., Hu,Z., Li,J., Li,N., Wang,J., Liang,F.,
Yang,Q., Liu,Q. et al. (2019) Long-read sequencing identified

intronic repeat expansions in SAMD12 from Chinese pedigrees
affected with familial cortical myoclonic tremor with epilepsy. J.
Med. Genet., 56, 265–270.

117. Ishiura,H., Doi,K., Mitsui,J., Yoshimura,J., Matsukawa,M.K.,
Fujiyama,A., Toyoshima,Y., Kakita,A., Takahashi,H., Suzuki,Y.
et al. (2018) Expansions of intronic TTTCA and TTTTA repeats in
benign adult familial myoclonic epilepsy. Nat. Genet., 50, 581–590.

118. Chaisson,M.J.P., Sanders,A.D., Zhao,X., Malhotra,A.,
Porubsky,D., Rausch,T., Gardner,E.J., Rodriguez,O.L., Guo,L.,
Collins,R.L. et al. (2019) Multi-platform discovery of
haplotype-resolved structural variation in human genomes. Nat.
Commun., 10, 1–16.

119. Zook,J.M., Hansen,N.F., Olson,N.D., Chapman,L.M.,
Mullikin,J.C., Xiao,C., Sherry,S., Koren,S., Phillippy,A.M.,
Boutros,P.C. et al. (2019) A robust benchmark for germline
structural variant detection. bioRxiv doi:
https://doi.org/10.1101/664623, 9 June 2019, preprint: not peer
reviewed.

120. Ganel,L., Abel,H.J. and Hall,I.M. (2017) SVScore: an impact
prediction tool for structural variation. Bioinformatics, 33,
1083–1085.

121. Costa,I.P.D., Almeida,B.C., Sequeiros,J., Amorim,A. and Martins,S.
(2019) A pipeline to assess disease-associated haplotypes in repeat
expansion disorders: the example of MJD/SCA3 locus. Front.
Genet., 10, 38.

122. Mehrabi,S., Krishnan,A., Sohn,S., Roch,A.M., Schmidt,H.,
Kesterson,J., Beesley,C., Dexter,P., Schmidt,C.M., Liu,H. et al.
(2015) DEEPEN: a negation detection system for clinical text
incorporating dependency relation into NegEx. J. Biomed. Inform.,
54, 213–219.

123. Chapman,W.W., Bridewell,W., Hanbury,P., Cooper,G.F. and
Buchanan,B.G. (2001) A simple algorithm for identifying negated
findings and diseases in discharge summaries. J. Biomed. Inform., 34,
301–310.

124. Kircher,M., Witten,D.M., Jain,P., O’Roak,B.J., Cooper,G.M. and
Shendure,J. (2014) A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet., 46, 310–315.

125. Ioannidis,N.M., Rothstein,J.H., Pejaver,V., Middha,S.,
McDonnell,S.K., Baheti,S., Musolf,A., Li,Q., Holzinger,E.,
Karyadi,D. et al. (2016) REVEL: an ensemble method for predicting
the pathogenicity of rare missense variants. Am. J. Hum. Genet., 99,
877–885.

126. Havrilla,J.M., Pedersen,B.S., Layer,R.M. and Quinlan,A.R. (2019)
A map of constrained coding regions in the human genome. Nat.
Genet., 51, 88–95.

https://www.doi.org/10.1101/664623

