
Congenital cranial dysinnervation disorders include 
congenital fibrosis of the extraocular muscles (CFEOM), 
Duane’s retraction syndrome, Möbius syndrome, congenital 
ptosis, and congenital facial palsy [1,2]. “Classic” autosomal 
dominant CFEOM (CFEOM1) is the most common form of 
this paralytic strabismus syndrome characterized by bilateral 
blepharoptosis and ophthalmoplegia with the eyes fixed in an 
infraducted (downward) primary position [1]. Patients often 
have a compensatory chin-up posture. Residual eye move-
ments are notable for jerky horizontal divergent or convergent 
movements on attempted vertical gaze, suggesting aberrant 
innervation. Neuroimaging typically shows hypoplasia of the 
muscles and the oculomotor nerve. CFEOM1 results from 
heterozygous mutations in the KIF21A (gene ID: 300158; 
OMIM 608283) gene encoding a kinesin motor protein [3]. 
Autosomal recessive CFEOM (CFEOM2) is marked by 
bilateral blepharoptosis and a large-angle exotropia without 
significant vertical deviation caused by loss of function 
splice-site and missense mutations in the ARIX/PHOX2A 

gene (gene ID: 401; OMIM 602753) [4]. ARIX is a homeobox 
gene expressed in the central and peripheral nervous system 
[5]. CFEOM3 is another subset of the disorder that is inherited 
as an autosomal dominant trait with incomplete penetrance 
with unilateral or bilateral ptosis and/or restrictions in ocular 
motility. Heterozygous mutations in the TUBB3 gene (gene 
ID: 22152; OMIM 602661) encoding for the neuron-specific 
beta-tubulin isotype III have been found in CFEOM3 patients 
[6]. A subset of these individuals may also manifest facial 
paralysis, intellectual impairments, and structural cerebral 
abnormalities such as dysgenesis of the corpus callosum, 
basal ganglia, or corticospinal tracts.

Minimal criteria for Möbius syndrome include congen-
ital facial diplegia and abduction deficits, but abnormalities 
of the extremities or mental retardation are present in some 
cases [1,7]. Although Möbius syndrome has been attributed to 
brainstem ischemia in some cases, cytogenetic abnormalities 
have been identified in some individuals. Two loci (one on 
chromosome 3 and another on chromosome 10), as well as 
other chromosomal abnormalities, have been implicated in 
familial cases of the disorder [1].

Total external ophthalmoplegia combined with Möbius 
syndrome has been previously reported in a few patients. 
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In a review of congenital cranial dysinnervation disorders, 
Traboulsi described two patients with the rare combination 
Möbius syndrome and CFEOM reminiscent of CFEOM1, 
but underlying genetic deficits were not reported [8]. Verzijl 
reported that three of 37 patients with Möbius syndrome had 
congenital fibrosis of the extraocular muscles [7]. Further-
more, Chew et al. reported a “TUBB3 E410K phenotype” 
syndrome in which eight unrelated individuals sharing this 
de novo mutation exhibited features of CFEOM, Möbius 
syndrome, Kallmann syndrome (hypogonadotropic hypo-
gonadism and anosmia), characteristic midface hypoplasia, 
intellectual impairment, and cyclic vomiting [9]. The present 
study describes the phenotype and clinical course of a patient 
with congenital fibrosis of the extraocular muscles, Möbius 
syndrome, and developmental delay with a novel, de novo 
mutation in KIF21A.

METHODS

The study was approved by the institutional review board of 
the University of Texas Southwestern Medical Center, Dallas, 
TX. Informed consent was obtained from the parents. The 
study adhered to the Declaration of Helsinki and ARVO state-
ment for human subject research.

The patient, a 10-year-old, right-handed girl, underwent 
ophthalmological examination, physical examination, and 
neurological evaluation in addition to cranial magnetic reso-
nance imaging (MRI) and diffusion tensor imaging (DTI) 
at 3T field strength. The parents and three siblings also 
underwent neurological and ophthalmological examination. 
Additional sources of information included medical records 
and family photographs.

Comparative genomic hybridization microarray studies 
were performed in the patient via genomic DNA labeling 
with 9 Cy5-dCTP. Purification of labeling products, array 
hybridization, washing, scanning, and data analysis were 
conducted by Signature Genomics Laboratories (Spokane, 
WA) using commercial methods. Interpretation of 

cytogenomic microarray was performed using the Signa-
ture Genomics Genoglyphix software. Blood samples were 
obtained from the patient and unaffected parents for DNA 
sequencing. Genomic DNA was directly isolated from leuko-
cytes following standard methods. Paternity was examined 
by Promega PowerPlex 1.2 System genotyping (Madison, 
WI) with the ABI PRISM 310 Genetic Analyzer (Carlsbad, 
CA). PCR amplification and direct sequencing of exons 2, 
8, 20, and 21 of the KIF21A gene (in which all mutations in 
CFEOM1/CFEOM3 individuals have been detected to date) 
[3,10-15], as well as all of the exons of PHOX2A and TUBB3 
genes, was performed. All splice sites flanking the exons of 
interest were also sequenced. PCR primers for PHOX2A and 
KIF21A are shown in Table 1. The primers for TUBB3 were 
published previously [6]. The targeted exons were ampli-
fied with Taq DNA polymerase from 5Prime (Gaithersburg, 
MD) and/or AccuPrime GC-Rich DNA Polymerase from 
Invitrogen (Carlsbad, CA). Products were analyzed using 
an Applied Biosystems 3730×l DNA Analyzer (Life Tech-
nologies, Carlsbad, CA). Genomic DNA from 288 Hispanic 
controls from the Dallas Heart Study, a population-based 
sample, were screened for the KIF21A mutation (c.1056C>G) 
using real-time allelic discrimination assay (TaqMan SNP 
Genoptyping Assay; Life Technologies) [16].

RESULTS

Clinical manifestations and therapeutic course: The patient 
presented for medical attention at 5 months of age with bilat-
erally restricted ocular movements, an inability to blink, and 
lower facial weakness more pronounced on the right side. 
Ethnicity was Hispanic and there was no family history of 
consanguinity or eye movement abnormalities. The patient 
was born at term in March 2001 via spontaneous vaginal 
delivery following an unremarkable pregnancy. Karyotype 
analysis performed in August 2001 was normal. Her medical 
history was significant for developmental delay: Ambula-
tion was accomplished at 1.5 years (typical ambulation was 
achieved at 10 months of age in the family) and expressive 

Table 1. Sequencing primers

Gene Exon Forward primer 5’-3’ Reverse primer 5’-3’
PHOX2A 1 GTCCTGCGCGTTAAAAGG ATTCACTTGGCGAGCGG

2 GATCTCCCTCCGCCTTTATC CATTAAGCTCCCACACCTCC
3 TTTCCGAACCAGGATCTCAC GGAGGAGGTCCCGGTATAAA

KIF21A 2 TCATGATTTTGGGGGATTGT CAGCTCGAGAAATAATACCCAGTT
8 TTCCCCAAAGTAAACAAAAGC GTTAAAGACTGTCCACAAGGAAAA

20 TAGATACGCTCCCCCTTAGC GAAAAGCAAGCAGGAAGTGG
21 AATATGTGAAACAATAGGCTGTTG TTTCTTACTCTTCCTGACTCTAAAGAA
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language developed at 3 years of age. Head circumference 
had remained between the 10th and 50th percentiles throughout 
her life. The patient exhibited facial nerve palsy, which was 
first noticed on examination at 5 months and was a persistent 
feature of her syndrome. Ophthalmic examination in 2002 
revealed both eyes fixed in infraduction and severe restriction 
of ocular movements (under positive forced duction testing).

The patient underwent bilateral inferior rectus recessions 
in May 2002. In October 2003, she underwent bilateral lower 
lid horizontal tightening with lateral tarsal strips and bilateral 
lower lid retraction repair using Alloderm grafts (Lifecell, 
Branchburg, NJ). However, because of her inability to blink, 
she remained at risk for exposure keratopathy and devel-
oped a descemetocele in the right eye (oculus dexter [OD]), 
requiring emergent penetrating keratoplasty in October 2006 
and bilateral medial and lateral tarsal pillar tarsorrhaphies in 
November 2006. The patient’s postkeratoplasty course was 
additionally complicated by recurrent epithelial defects and 
episodes of bacterial keratitis despite intact tarsal pillars and 
aggressive topical lubrication.

Her most recent exam had revealed bilateral facial 
nerve territory weakness, more pronounced on the right side 
(Figure 1A,B), with mask facies, inability to fully close her 
eyelids spontaneously, severe impairment of partial closure of 
her eyelids against minimal manual resistance, and inability 
to smile or elevate the angle of the mouth bilaterally or to 
puff her cheeks and blow. Hearing in the office setting was 
normal, as illustrated by her capacity to carry out a conversa-
tion. Auditory function as assessed by the Weber and Rinne 
maneuvers was also normal. Her visual acuity was 20/400 
in the OD and 20/200 in the left eye (oculus sinister [OS]). 
Pupils were 2.5 mm OD and 1.5 mm OS and were mini-
mally reactive bilaterally, without afferent pupillary defect. 

Alignment testing performed using the modified Krimsky 
method revealed 20–30 prism diopters of exotropia at near 
and distance with OS fixing. Extraocular motility remained 
severely restricted in all directions of gaze (−4) with minimal 
rotary nystagmus with bilateral incyclotorsion, suggestive of 
partial superior oblique function (Figure 2). Stereopsis was 
absent.

The Worth four-dot test showed suppression of OD. Slit-
lamp examination of the OD revealed normal tarsal pillars, 
an inferiorly decentered penetrating keratoplasty graft with 
stromal scarring, and a posterior chamber intraocular lens 
with posterior capsular opacification (Figure 3). The left eye 
exhibited mild anterior stromal scarring and thinning of the 
inferior cornea without an epithelial defect (Figure 3). MRI 
with DTI tractigraphy obtained at 3T field strength in June 
2010 illustrated thinning of all extraocular muscles bilater-
ally with an unremarkable configuration of the axial central 
nervous system (CNS) and preservation of the intracranial 
portion of cranial nerves I, II, III, V, VI, VII, and VIII, 
although it was not possible to estimate oculomotor nerve 
thickness accurately by MRI (Figure 4). Ophthalmological 
and neurological examinations of the parents and siblings 
were normal.

Molecular analysis: Paternity was confirmed. Genotyping 
identified a novel heterozygous 1056 C→G mutation at the 
third nucleotide position of codon 352 (D352E) on exon 8 
of KIF21A, resulting in an aspartic acid to glutamic acid 
substitution. The unaffected parents and three siblings did 
not harbor the mutation (Figure 5). The missense variant 
occurred in a highly conserved region of the protein (Figure 
6). Additionally, the variant was not found in public data-
bases of dbSNP, 1000 Genomes, or the Exome Variant Server 
(EVS) [17-19]. The EVS alone had data from 6,503 exomes 

Figure 1. Subject with CFEOM 
combined with Möbius syndrome. 
A: External photograph. Ptosis is 
present due to poor levator func-
tion; lower facial nerve weakness is 
present bilaterally, and is greater on 
the right. B: Photograph of subject 
attempting to smile. Note the weak 
contraction of the risorius muscle 
with subtle creasing and dimpling 
of skin on her lower face (arrow). 
The angles of the mouth are mini-
mally elevated under the maximal 
forced smile.
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at the time of the query. The KIF21A mutation (c.1056C>G) 
was found to be absent in all 288 Hispanic controls using the 
allelic discrimination assay. DNA sequencing of the exons 
of PHOX2A and TUBB3 was normal. The E410K missense 
mutation was not present in TUBB3. Comparative genomic 
hybridization microarray results revealed no significant copy 
gains or losses at the KIF21A, PHOX2A, and TUBB3 loci or 
throughout the genome at any disease-associated loci, despite 
several copy number changes of unknown significance that 

included gains at 2q24.3, 14q32.33, 16p12.1, and losses at 
Xp22.33 ranging from 89.2 kb to 230.9 kb.

DISCUSSION

The subject exhibited an extremely rare clinical presenta-
tion of CFEOM combined with Möbius syndrome. The 
patient’s phenotype is most consistent with CFEOM1 given 
her bilateral blepharoptosis and ophthalmoplegia with the 
eyes fixed in an infraducted position. Her amblyopia and 

Figure 2. Subject in different fields 
of gaze. Motility examination 
demonstrates severe restriction in 
all fields of gaze. The only muscle 
movement was minimal rotary 
nystagmus with bilateral incyclo-
torsion suggestive of partial supe-
rior oblique muscle function.

Figure 3. Slit lamp biomicroscopy. 
A: Right eye slit lamp photo. Note 
the medial and lateral tarsal pillars, 
inferiorly decentered corneal graft, 
and posterior chamber intraocular 
lens with posterior capsular opaci-
fication. B: Left eye slit-lamp photo.

Figure 4. Magnetic resonance 
imaging. A: T1-weighted axial 
magnetic resonance imaging 
(MRI) shows diffuse thinning of 
the extraocular muscles. B: Sagittal 

diffusion tension imaging (DTI) demonstrates a normal corpus callosum configuration. C: T2-weighted coronal MRI illustrates a normal 
optic chiasm.
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loss of stereopsis are typical for her severe paralytic stra-
bismus disorder. Although her developmental delay would be 
unusual for CFEOM in the absence of TUBB3 mutations, it 
is certainly compatible with her Möbius syndrome [6,7]. Her 
severe exposure keratopathy would be unusual in any type 
of CFEOM in the absence of ptosis surgery [20]. However, 
significant facial nerve weakness that results in disruption of 
the tear film and exposure keratopathy are more commonly 
reported with Möbius syndrome [21]. The patient’s inability 
to blink has resulted in a very challenging clinical course, 
despite surgical intervention with corneal transplantation 
followed by conjunctival pillar tarsorrhaphies and aggres-
sive topical lubrication. The CNS, as well as the intracranial 
portions of the cranial nerves that are usually detectable by 
high-field 3T MRI and DTI, were unremarkable (in the case 
of her intraaxial CNS) or at least present (intracranial cranial 
nerves), although it is difficult to estimate nerve thickness 
by this method.

Using a candidate gene screening approach, we identi-
fied a novel, de novo 1056 C→G mutation in exon 8 of the 
KIF21A gene, which has not been previously identified via 
analysis of genomic databases (dbSNP, 1000 Genomes, and 
EVS) [17-19]. Additionally, this variant was absent in 288 
Hispanic controls. The mutation occurs in a highly conserved 
region of the protein (Figure 6). Recent estimates place the 
per generation mutation rate at approximately one in 100 
million positions in the haploid genome that corresponds 
to 0.86 de novo amino acid altering mutations per newborn 
[22,23]. This low de novo missense mutation rate and the fact 

that this reported mutation is in KIF21A, a previously mapped 
locus for CFEOM, are further evidence of its pathogenicity.

The KIF21A gene consists of 38 exons encoding a protein 
part of the kinesin superfamily, involved in the anterograde 
transportation of vesicles and organelles [24]. To date, 13 
KIF21A mutations resulting in CFEOM have been reported 
(84C→G, 1,067T→C, 2,830G→C, 2,839A→G, 2,840T→G, 
2,840T→C, 2,841G→A, 2,860C→T, 2,861G→A, 2,861G→T, 
3,022G→C, 3,029T→C, 3000_3002delTGA; Figure 7) [3,10-
15]. Of these, 11 have been found in families with CFEOM1; 
one was found in a patient with CFEOM3 (2841 G→A); and 
one has been associated with both CFEOM1 and CFEOM3 
(2860 C→T).

Kinesin, a molecular motor, contains an N-terminal 
motor domain that interacts with a microtubule track, a 
central coiled-coil stalk, and a C-terminus that interacts with 
transported cargo (Figure 7) [24]. Mutations in KIF21A may 
result in an inability to transfer cargo that is essential to the 
development of ocular motor axons, neuromuscular junc-
tions, or extraocular muscles. It is noteworthy that 10 of the 
mutations identified to date result in the alteration of five 
amino acid residues clustered at the coiled-coil region of the 

Figure 5. DNA sequencing. 
Sequence chromatographs of the 
family. The healthy parents harbor 
normal DNA sequences (top), 
whereas the patient with congenital 
fibrosis of the extraocular muscles 
(CFEOM) exhibits a de novo 1056 
C 1 → G mutation at the third 
nucleotide position of codon 352 
(D352E) on exon 8 of the KIF21A 
gene locus.

Figure 6. Conservation of amino acid sequence. Aspartic acid 
residue at the position of the reported mutation is highly conserved 
across species; this region of the protein domain is highly conserved. 
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protein. The previously described 1067 C→T mutation, and 
the novel mutation 1056 C→G described here, potentially 
disrupt the N-terminal kinesin motor domain, a region of high 
structural conservation [13]. It is noteworthy that the mutation 
identified here is conservative: The aspartate to glutamate 
substitution preserves the negative charge of the amino acid 
side chain but distorts the size of the residue by virtue of the 
elongated side chain of glutamate. This suggests that a rela-
tively small volume change is not tolerated at this location, 
perhaps leading to abnormal interactions with microtubules 
or disrupting other close-range protein-protein interactions at 
a functionally critical region of the protein.

Typically, charge-preserving substitutions are of little 
import when amino acid residues are exposed in the bulk 
aqueous phase surrounding a protein by virtue of mainte-
nance of the electrostatic field. In contrast, functionally rele-
vant side chain size dependence indicates close interaction 
with neighboring residues during protein folding or catalysis 
[25,26]. Therefore, the simplest interpretation of the func-
tional effect of the D352E mutation is that D352 potentially 
lies in an area critical for protein function.

Based on the functional impact of other KIF21A muta-
tions, two pathogenic mechanisms have been hypothesized. 
The motor domain of the kinesin molecule interacts with the 
microtubule tracks and kinesin molecules typically work in 
pairs to move along microtubules efficiently. The coiled-
coil region of the kinesin protein may interact with another 
kinesin protein, resulting in homo- or heterodimerization to 
facilitate movement in pair form. Mutation in either of these 
regions may thus result in the inability of dimer formation 
or the inability to interact effectively with microtubules, and 
thus the inability to deliver cargo [3]. A second mechanistic 
hypothesis involves the inability of mutated KIF21A to move 
in and out of an active state, resulting in the inability to 
deliver cargo [3,27]. It is noteworthy that in consanguineous 
families, there is evidence of CFEOM1 phenotype without 
mutations in KIF21A, PHOX2A, or TUBB3, giving rise to the 

possibility of a recessive form of the disease that may involve 
another locus or another mechanism [28].

We hypothesize that KIF21A D352E may result in 
abnormal kinesin/microtubule binding, perhaps in a domi-
nant negative fashion, which can lead to a phenocopy state 
that exhibits the manifestations considered typical of TUBB3 
mutation to date [6]. The precise identification of interacting 
proteins, kinesin/microtubule binding sites, and cargo will 
lead to further insights into the pathogenesis of CFEOM and 
the specific role of the kinesin in ocular development. The 
reported KIF21A D352E mutation helps to further expand the 
mutational spectrum of CFEOM and Möbius syndrome.
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