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MAL62 overexpression and NTH1 
deletion enhance the freezing tolerance 
and fermentation capacity of the baker’s yeast 
in lean dough
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Abstract 

Background:  Trehalose is related to several types of stress responses, especially freezing response in baker’s yeast 
(Saccharomyces cerevisiae). It is desirable to manipulate trehalose-related genes to create yeast strains that better toler‑
ate freezing-thaw stress with improved fermentation capacity, which are in high demand in the baking industry.

Results:  The strain overexpressing MAL62 gene showed increased trehalose content and cell viability after prefer‑
mention-freezing and long-term frozen. Deletion of NTH1 in combination of MAL62 overexpression further strength‑
ens freezing tolerance and improves the leavening ability after freezing-thaw stress.

Conclusions:  The mutants of the industrial baker’s yeast with enhanced freezing tolerance and leavening ability in 
lean dough were developed by genetic engineering. These strains had excellent potential industrial applications.
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Background
Frozen dough technology has been used in bakery indus-
try to provide consumers with high-quality fresh bakery 
and convenience. However, cellular macromolecules, 
including proteins, nucleic acids and lipids of the yeast 
used in frozen dough, could be seriously damaged under 
the freezing and the subsequent thawing treatments, 
leading to inhibition of cell growth, cell viability and the 
leavening ability [1].

A great body of knowledge is already available regard-
ing the molecular responses of the baker’s yeast (Saccha-
romyces cerevisiae) to frozen dough-associated stresses 
[2]. Among other molecules, trehalose has been high-
lighted due to its main function as a protective molecule 
in stress response [3]. This effect is achieved either by 

protecting membrane integrity through the union with 
phospholipids [4], or by preserving the native conforma-
tion of proteins and preventing aggregation of partially 
denatured proteins [5].

When yeast cells suffer from freezing stress, they accu-
mulate large amounts of trehalose [6]. The accumulation 
is mainly induced by the classical the UDPG-dependent 
trehalose synthesis pathway, or referred as system I. It 
contains a trehalose-6-phosphate synthase encoded by 
TPS1 [7], a trehalose-6-phosphate phosphatase encoded 
by TPS2 [8] and a trehalose-synthesis protein complex 
encoded by TSL1 [9]. In addition, an alternative trehalose 
synthesis pathway, called ADPG-dependent trehalose 
synthesis pathway or the system II, has been proposed 
[10, 11]. It is specifically linked to maltose utilization.

Maltose metabolism in yeast depends on at least one 
of the five unlinked MAL loci (MAL1 through MAL4 
and MAL6). A typical MAL locus consists of a MALx1 
(MALxT) gene (where x is the locus), encoding malt-
ose permease, a MALx2 (MALxS) gene, coding for 
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alpha-glucosidase (maltase), and a MALx3 (MALxR) 
gene, encoding a positive regulatory protein [9]. It is 
reported that the expression of any one of the MAL 
loci in MAL-constitutive strains could elicit a malt-
ose-induced trehalose accumulation [11]. Studies have 
shown that maltose and trehalose seem to share a com-
mon regulating mechanism [17, 18]. The maltose per-
mease has been considered the rate-limiting enzyme in 
the MAL genes induction and maltose metabolism [4, 
6, 12]. Hence, attempts to increase the trehalose content 
by system II had been concentrated on the modifica-
tion of maltose permease or the entire MAL gene cluster 
[19–21]. However, recent studies showed that the alpha-
glucosidase (maltase) is more important than maltose 
permease in maltose metabolism and leavening ability of 
baker’s yeast in lean dough [22–24]. In addition, the sys-
tem II might be dependent of the system I, due to the fact 
that the system II is completely prevented when TPS1, a 
key gene in system I, is deleted [12].

Trehalose degradation could also be induced under 
certain stress [13, 14]. The best characterized trehalase is 
the neutral trehalase encoded by the NTH1 gene, which 
is induced by stress, such as heat. Nth1p is involved in 
thermos-tolerance and hydrolyzes intracellular trehalose 
into glucose [15, 16]. Deletion of NTH1 results in accu-
mulation of trehalose, and heat sensitivity.

To better understand the role of trehalose in freezing 
tolerance of baker’s yeast in lean dough, and its possible 
mechanism, we investigated the effects of overexpression 
of MAL62, the gene encoding an alpha glucosidase, and 
deletion of NTH1 gene, on trehalose accumulation and 
on the freezing tolerance and leavening ability of baker’s 
yeast in lean dough.

Methods
Strains, plasmids and growth conditions
The genetic properties of all S. cerevisiae strains and 
plasmids used in the present study are summarized 
in Table  1. The BY14a was selected as a high leavening 
capacity haploid from 32 clones derived from the diploid 
BY14 strain, which has been maintained at the Tianjin 
Key Laboratory of Industrial Microbiology, Tianjin Uni-
versity of Science and Technology.

Recombinant DNA was amplified in Escherichia 
coli DH5a. Transformants were grown in Luria–Ber-
tani medium (10  g/L tryptone, 5  g/L yeast extract, and 
10 g/L NaCl) with 100 mg/L ampicillin. The plasmid was 
obtained using Plasmid Mini Kit II (D6945, Omega, USA).

The yeast strain was grown at 30  °C in yeast extract 
peptone dextrose (YEPD) medium (10 g/L yeast extract, 
20  g/L peptone, and 20  g/L dextrose). Approximately 
800  mg/L of G418 was added to the YEPD plates for 
selecting Geneticin (G418)-resistant transformants. After 

cultivation in YEPD for 24  h, 20  mL of the cell culture 
was inoculated into 200  mL of cane molasses medium 
(5  g/L yeast extract, 0.5  g/L (NH4)2SO4, and 12° Brix 
cane molasses) at the initial OD600 = 0.4 and cultivated 
for 24 h at 30 °C with 180 rpm rotary shaking to the final 
OD600 = 1.8. Cells were harvested through centrifugation 
(4 °C, 1500×g, 5 min) and were washed twice with ster-
ile water at 4 °C for the succeeding fermentation experi-
ments. To investigate the degradation of trehalose during 
prefermentation and the freezing tolerance, a modified 
the low sugar model liquid dough (LSMLD) medium 
was used [17]. The modified medium contains 2.5  g/L 
(NH4)2SO4, 5 g/L urea, 16 g/L KH2PO6, 5 g/L Na2HPO4, 
0.6  g/L MgSO4, 22.5  mg/L nicotinic acid, 5  mg/L Ca-
pantothenate, 2.5  mg/L thiamine, 1.25  g/L pyridoxine, 
1  mg/L riboflavin, and 0.5  mg/L folic acid and carbon 
sources (33.25 g/L maltose with 5 g/L glucose).

Plasmid construction and yeast transformation
Genomic yeast DNA was prepared from the industrial 
baker’s yeast BY14a using a yeast DNA kit (D3370-01, 
Omega, Norcross, GA, USA). Table  2 shows the PCR 
primers used in this study.

Plasmid Yep-PMK (Yep-PGK1-MAL62-KanMX), an 
episomal plasmid with MAL62 under the control of the 
constitutive yeast phosphoglycerate Kinase gene (PGK1) 
promoter (PGK1P) and terminator (PGK1T), was con-
structed as follows: a KpnI/BamHIKanMX fragment, 
which was the dominant selection marker during yeast 
conversion, was amplified through PCR using pUG6 
as template with Kan-U and Kan-D primers, and was 
cloned to the Yep352 vector to construct the empty plas-
mid Yep-K (Yep-KanMX). A XhoI fragment of MAL62 
amplified with MAL62-U and MAL62-D primers from 
the genomes of the parental strain BY14a was inserted 
into the PGK1 fragment of pPGK1 vector and resulted in 
plasmid pPGKM. Then, the BamHI fragment of PGKM 
(the entire PGK1 and the inserted MAL62) amplified 
with PGK-U and PGK-D from pPGKM was cloned to 
Yep-K to produce the final plasmid Yep-PMK.

Baker’s yeast transformation was achieved through 
lithium acetate/PEG method [18]. The deletion cas-
sette of NA-loxP-KanMX-loxP-NB was amplified with 
N-S and N-X and transformed into the industrial bak-
er’s yeast BY14a. The fragment was integrated into the 
chromosome at the NTH1 locus of BY14a by homolo-
gous recombination to construct the NTH1 deletion 
strain. The selection of NTH1 deletion strain was per-
formed using the YEPD medium supplemented with 
800 mg/L geneticin (G418). After selection, recombinant 
strains were verified with the primers N-S, K-S and N-X, 
K-X. Cre recombinase was expressed and KanMX was 
excised after introducing the plasmid pSH-Zeocin into 
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the NTH1 deletion strain, thus resulting in B-NTH1. 
The respective transformation plasmids Yep-K, Yep-
PMK were then transformed to select the G418-resist-
ant strains BY14a + K, B-NTH1 + K, B + MAL62 and 
B-NTH1 + MAL62. BY14a + K and B-NTH1 + K were 
BY14a and B-NTH1 carrying the vector Yep-K, respec-
tively, used as a blank control to demonstrate any possible 
effect of the empty vector. The transformants were then 
verified by PCR using the primers Kan-U and Kan-D.

Assay of the intracellular trehalose content
Fresh yeast cells were dried overnight at 85  °C to calcu-
late the cell dry weight (CDW). Trehalose was extracted 
from 0.1  g of fresh yeast cells (previously washed with 
distilled water twice) with 4 mL of 0.5 mol/L cold trichlo-
roacetic acid and the extract was employed for measur-
ing the trehalose content as described previously [19, 20]. 
Experiments were conducted three times.

Determination of neutral trehalase activity
The activities of neutral trehalase in crude extracts were 
measured as described previously [21]. The liberated 
glucose was analyzed by HPLC employing an Aminex 
HPX-87H column with 5  mmol/L H2SO4 as the mobile 
phase at a flow rate of 0.6 mL/min at 65 °C. One unit of 
trehalase activity was defined as the amount of trehalase 
producing 1.0  μm glucose per min under assay condi-
tions. The specific trehalase activity was expressed as the 
units per gram CDW. Experiments were conducted three 
times.

Determination of Tps1 (trehalose‑6‑phosphate synthase) 
activity
Tps1 activity was measured as described previously [22]. 
The trehalose-6-phosphate formed during the reaction 

Table 1  Characteristics of strains and plasmids used in the present study

a  BY14a was selected as high leavening capacity haploid from 32 clones derived from BY14 strain (data not shown)

Strains or plasmids Relevant characteristic Reference or source

Strains

 Escherichia coli
DH5α

Φ80 lacZΔM15 ΔlacU169 recA1 endA1 hsdR17 supE44 thi-1  
gyrA relA1

Yeast Collection Center of the Tianjin Key Laboratory  
of Industrial Microbiology

 BY14 MATa/a Industrial baker’s yeast Yeast Collection Center of the Tianjin Key Laboratory  
of Industrial Microbiology

 BY14aa MATa, haploid derived from BY14 strain This study

 B-NTH1 MATa, ΔNTH1:: loxP This study

 B-NTH1 + K MATa, ΔNTH1:: loxP, Yep-K This study

 BY14a + K MATa, Yep-K This study

 B + MAL62 MATa, Yep-PMK This study

 B-NTH1 + MAL62 MATa, ΔNTH1:: loxP, Yep-PMK This study

Plasmids

 pUG6 E. coli/S. cerevisiae shuttle vector, containing Amp+,  
loxP-kanMX-loxP disruption cassette

[41]

 Yep352 URA3+, AmpRori control vector Invitrogen, Carlsbad, Ca, USA

 Yep-K KanMX ARS URA3+, AmpRori control vector This study

 pPGK1 bla LEU2 PGK1P-PGK1T [42]

 pPGKM bla LEU2 PGK1P-MAL62-PGK1T This study

 pUC-ABK NA-loxp-KanMX-loxp-NB Yeast Collection Center of the Tianjin Key Laboratory  
of Industrial Microbiology

 Yep-PMK bla LEU2 PGK1P-MAL62-PGK1T, KanMX This study

 pSH-Zeocin Zeor, Cre expression vector Yeast Collection Center of the Tianjin Key Laboratory  
of Industrial Microbiology

Table 2  Primers used in the present study (restriction sites 
are underlined)

Primer name Sequence 5′-3′

Kan-U CGGGGTACCCAGCTGAAGCTTCGTACGC

Kan-D CGCGGATCCGCATAGGCCACTAGTGGATCTG

MAL62-U CCGCTCGAGATGACTATTTCTGATCATCC

MAL62-D CCGCTCGAGTTATTTGACGAGGTAGATT

PGK-U CGCGGATCCAAGCTTTCTAACTGATCTATCCAAAACTGA

PGK-D CGCGGATCCAAGCTTTAACGAACGCAGAATTTTC

N-S ATCATCATCTGTAATCGCTTCACC

K-S CCTTTTATATTTCTCTACAGGGGCG

N-X TACAGCGGTAAAGTTTCTATGAGCA

K-X TAGGTTGTATTGATGTTGGACGAGT
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was quantitatively determined using the Anthrone 
method [19]. One unit of Tps1 activity was defined as the 
amount of Tps1 producing 1.0 μm 6-phosphate-trehalose 
per min under assay conditions. The specific Tps1 activity 
was expressed as the units per gram CDW. Experiments 
were conducted three times.

Determination of alpha‑glucosidase activity
Crude extracts were prepared using the Salema-Oom 
method to determine enzyme activities [23]. Alpha-
glucosidase were determined following the Houghton-
Larsen method [24]. Standard errors were less than 
10 %.

Determination of the cell viability of baker’s yeast 
after freezing and thaw
For the freeze–thaw stress, yeast cells were harvested 
from the cane molasses medium and inoculated into the 
LSMLD medium at 30  °C for 25  min. One milliliter of 
cell culture was shifted to −20 °C and at 5 min intervals 
for different prefermentation time periods. After freez-
ing for 1–3 week, the frozen suspensions were thawed at 
30 °C for 30 min then diluted and plated on YEPD plates 
for 2 days. Cell viability was determined by the percent-
age of the number of colonies after stressing relative to 
the number of colonies before stress. Three independent 
experiments were performed.

Determination of leavening ability
The leavening ability of yeast cells was assayed by measur-
ing the CO2 production in lean dough. Lean dough was 
composed of 280 g of standard flour, 150 mL of water, 4 g 
of salt, and 9 g of fresh yeast. The dough was evenly and 
rapidly stirred for 5 min at 30 ± 0.2 °C then divided into 
pieces (50 g each) and placed in a fermentograph box 171 
(Type JM451, Sweden). CO2 production was recorded 
at 30 °C for 120 min. Experiments were conducted three 
times.

To assay the leavening ability after freeze–thaw, the 
mixed dough was stored at −20  °C. After freezing for 
1 week, the frozen dough was thawed at 30 °C for 30 min, 
and the CO2 production was assayed for 120  min at 
30 °C. Experiments were conducted at least thrice.

Statistical analysis
Data were expressed as mean ± SD and were accompa-
nied by the number of experiments independently per-
formed. Differences among all the strains were analyzed 
using ANOVA. P  <  0.05 were considered statistically 
significant. The differences between the transformants 
and the parental strain were confirmed by Student’s t 
test. Differences at P < 0.05 were considered statistically 
significant.

Results
Overexpression of MAL62 enhances the Tps1 activity 
and intracellular trehalose content of baker’s yeast
Previous studies have reported that the MAL gene has 
a positive effect on the activity of Tps1, a trehalose-
6-phosphate synthase that synthesizes trehalose under 
stress conditions [12]. We first tested if the Tps1 activ-
ity is affected by MAL62 overexpression. As shown in 
Table 3, overexpression of MAL62 (in both B + MAL62 
and B-NTH1  +  MAL62) significantly increased the 
Tps1 activity (P  <  0.05). The alpha-glucosidase activi-
ties of these two strains were also increased significantly 
(Table  3). These results suggest that overexpression of 
MAL62 induces trehalose production.

To further confirm this, we measured and com-
pared the trehalose levels in different strains. We found 
that all six strains (BY14a, B-NTH1, B  +  MAL62, 
B-NTH1  +  MAL62, BY14a  +  K and B-NTH1  +  K) 
had similar growth curves. Cells entered exponential 
phase 3  h after inoculation, and stationary phase 10  h 
after inoculation (data not shown). Our results showed 
in strains overexpressing MAL62 (B  +  MAL62 and 

Table 3  Alpha-glucosidase activities, Tps1 activities and the neutral trehalase activities of strains

Values shown represent at least three independent experiments (data are mean ± SD). Significant difference of the transformants (BY14a + K, B-NTH1,B-NTH1 + K, 
B + MAL62, B-NTH1 + MAL62) from the parental strain was confirmed by Student’s t-test (**P < 0.01,*P < 0.05, n = 3)
a  Alpha-glucosidase activities and Tps1 activities were calculated from the cells grown in cane molasses medium
b  Neutral trehalase activities were calculated from the cells prefermentation in LSMLD medium

Alpha-glucosidase  
activitya (μmol/mg/min)

Tps1 activitya (U/g CDW) Neutral trehalase 
activityb (U/g CDW)

BY14a 2.46 ± 0.25 0.80 ± 0.07 12.28 ± 0.88

BY14a + K 2.45 ± 0.22 0.83 ± 0.10 12.26 ± 0.81

B-NTH1 2.45 ± 0.21 0.82 ± 0.07 8.68 ± 0.74*

B-NTH1 + K 2.45 ± 0.23 0.81 ± 0.09 8.39 ± 0.53*

B + MAL62 4.43 ± 0.37** 1.06 ± 0.10* 12.36 ± 0.93

B-NTH1 + MAL62 3.66 ± 0.32** 1.01 ± 0.11* 8.31 ± 0.61*
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B-NTH1  +  MAL62), trehalose started to accumulate 
in late exponential stage at a rate of 21.9 mg/h/g CDW. 
In contrast, in strains having no MAL62 overexpression 
(BY14a, B-NTH1, BY14a + K and B-NTH1 + K), treha-
lose accumulation started only in stationary phase and at 
a lower rate (19.1 mg/h/g CDW) (Fig. 1).

MAL62 overexpression does not affect the rate of trehalose 
degradation
To examine if MAL62 overexpression or NTH1 is 
involved in trehalose degradation, we compared the neu-
tral trehalase activity and the degradation rate of intracel-
lular trehalose among the six strains. As shown in Table 3, 
the B  +  MAL62 strain had a similar neutral trehalase 
activity compared to its control (BY14a and BY14a + K), 
suggesting that overexpression of MAL62 did not affect 
the trehalose degradation. This is further confirmed by 
direct measurement of the intracellular trehalose content 
(Fig. 2), which showed a similar degradation rate among 
B + MAL62, BY14a and BY14a + K. In addition, both the 
neutral trehalase activity and the rate of trehalose deg-
radation were significantly lower in all NTH1 deletion 
strains (B-NTH1, B-NTH1 + K and B-NTH1 + MAL62) 
(Table 3, Fig. 2), regardless whether MAL62 was overex-
pressed or not. These results suggest that NTH1, but not 
MAL62, is important for trehalose degradation.

High trehalose content increases viability of yeast cells 
after freezing
Although a number of reports have shown that the deg-
radation of trehalose during prefermentation is necessary 

[25], the residual intracellular trehalose is still considered 
to be important to freezing tolerance of yeast [26, 27]. 
Hereby, we assessed the cell viability of the six strains to 
investigate the effect of MAL62 overexpression and/or 
NTH1 deletion on the freezing tolerance of yeasts after 
prefermentation and 7 d freezing.

As shown in Fig.  3, the cell viability of strains 
with MAL62 overexpression (B  +  MAL62 and 
B-NTH1  +  MAL62) was significantly higher than the 
other strains before prepermentation (time  =  0  min). 
Cell viability of all strains decreased as prefermentation 
time increased. 25  min after prefermentation, the cell 
viability of the strain with both MAL62 overexpression 

Fig. 1  Trehalose accumulation during growth of the six S. cerevisiae 
strains in cane molasses medium. BY14a + K and B-NTH1 + K were 
BY14a and B-NTH1 carrying the vector Yep-K, respectively, used as a 
blank control to demonstrate any possible effect of the empty vector. 
Data are average of three independent experiments, and error bars 
represent ± SD

Fig. 2  Content of intracellular trehalose during cultivation in LSMLD 
(prefermentation). Data are averages of three independent experi‑
ments, and error bars represent ± SD

Fig. 3  Cell viability of strains after prefermentation for different time 
periods in LSMLD and frozen for 7 d at −20 °C. Data are average of 
three independent experiments, and error bars represent ± SD
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and NTH1 deletion (B-NTH1  +  MAL62) was signifi-
cantly higher than other strains (ANOVA, P < 0.05). The 
cell viability of strains with either MAL62 overexpres-
sion or NTH1 deletion remained in the middle, while the 
control strains (BY14a and BY14a +  K) had the lowest 
viability, dropping from about 80  % to about 40  %. The 
cell viability is in agreement with the trehalose content 
(Fig.  2), which showed that 25  min after prefermenta-
tion, the B-NTH1 +  MAL62 had the highest trehalose 
content (95  mg/g CDW) and the controls (BY14a and 
BY14a + K) had the lowest (about 55 mg/g CDW). These 
results suggest that the residual trehalose content has a 
positive correlation with the viability of yeast cells after 
prefermentation and freezing [28].

Overexpression of MAL62 or deletion of NTH1 confers 
long‑term freezing tolerance of baker’s yeast
In order to access the long-term freezing tolerance of the 
NTH1-deletion and/or the MAL62-overexpression strains, 
we examined the trehalose content before freezing and the 
cell viability 21d after freezing (Fig. 4). As shown in Fig. 4, 
both the trehalose content and the cell viability were sig-
nificantly higher in strains with MAL62 overexpression 
(B + MAL62 and B-NTH1 + MAL62) (ANOVA, P < 0.05). 
Compared with the control (BY14a and BY14a + K), dele-
tion of NTH1 alone (B-NTH1 and B-NTH1  +  K) also 
induced a higher trehalose content and higher cell viability, 
which is in agreement with previous studies [26, 29].

Overexpression of MAL62 and deletion of NTH1 enhance 
the fermentation characteristics of baker’s yeast exposed 
to freezing‑thaw stress
Leavening ability is an important fermentation char-
acteristic of baker’s yeast used in frozen dough. We 

next explored the possible effects of MAL62 overex-
pression and NTH1 deletion on the leavening ability 
after freezing and thaw by measuring the CO2 produc-
tion. Our results showed that freezing-thaw caused a 
reduction of CO2 production in all strains (comparing 
Fig.  5a with 5b). However, either before or after freez-
ing-thaw, overexpression of MAL62 (B  +  MAL62 and 
B-NTH1 + MAL62) significantly enhanced the CO2 pro-
duction (ANOVA, P < 0.05). NTH1 deletion alone had no 
effect on CO2 production before freezing-thaw (Fig. 5a) 
but enhanced the CO2 production after freezing-thaw 
(Fig. 5b). Interesting, MAL62 overexpression and NTH1 
deletion (B-NTH1 + MAL62) had a lower CO2 produc-
tion than MAL62 overexpression alone (B  +  MAL62) 
before freezing-thaw, but the CO2 production was higher 
after the freezing-thaw, suggesting that MAL62 overex-
pression and NTH1 deletion provide the best enhance-
ment on leavening ability upon freezing-thaw stress.

Discussion
Biological macromolecules and membranes are liable to 
denaturation under freezing conditions [30], Freezing also 
causes the formation of intracellular ice crystals, which 
are harmful to cells. It has been suggested that trehalose 
could act as a stabilizer of cellular membranes and pro-
teins under freezing stress [28]. Previous studies have 
reported that the modification of the whole MAL gene 
cluster is necessary to elicit trehalose synthesis [31, 32]. In 
this study, we demonstrated that the single-gene-overex-
pression of MAL62 in industrial baker’s yeast is capable of 
increasing trehalose accumulation and cell viability under 
freezing stress. Trehalose formation in MAL62 overex-
pressing strains (B +  MAL62 and B-NTH1 +  MAL62) 
was earlier and faster than the controls (Fig. 1), suggesting 
the positive effects on the intracellular trehalose content 
and freezing tolerance (Figs.  2, 4). Moreover, although 
MAL62 overexpression had little effect on protecting tre-
halose against degradation during prefermentation, the 
cell viability assay showed that the MAL62 overexpression 
could protect cells against freezing stress after prefermen-
tation. This is in line with a previous report [33], showing 
that the trehalose accumulation before the induction of 
stress was more important for stress tolerance.

One explanation is that MAL62 overexpression 
enhances the activity of Tps1. This hypothesis relies 
on the fact that maltose constitutive genes could par-
tially relieve Tps1 from the catabolite repression [34], 
and the alpha-glucosidase (coded by gene MAL62) is 
the rate-limiting factor in maltose metabolism [35]. 
Our result is consistent with this hypothesis, since 
Tps1 activity could increase when the alpha-glucosi-
dase activity was enhanced by MAL62 overexpression 
(Table  3). Another explanation is that the existence of 

Fig. 4  Intracellular trehalose content (before frozen) and cell viability 
(after frozen) of strains before or after 21d frozen. Data are average of 
three independent experiments, and error bars represent ± SD
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adenosine-diphosphoglucose (ADPG)-dependent treha-
lose synthase, which requires ADPG instead of UDPG 
as donor of glucose units for trehalose synthesis [36]. 
Since the expression of ADPG-pyrophosphorylase gene 
and MAL genes shared the common regulation, any of 
the MAL gene products either by means of control at the 
transcription level, or by acting directly on enzyme activ-
ity could regulate the activity of the ADPG-pyrophos-
phorylase activity [11]. Hence, overexpression of MAL62 
alone could increase intracellular trehalose content and 
bring about further enhancements in freezing tolerance.

The fermentation characteristics of baker’s yeast as a 
strong correlation with the tolerance in stress conditions 
[37]. After exposure to freeze–thaw stress, response to the 
environmental change involved in rapid accumulation of rel-
evant protectants and rapid production of enzymes related 
to stress-protective effect [7, 19]. In this work, we found that 
the freezing tolerance and the fermentation characteristics 
of the double mutant (B-NTH1  +  MAL62) were signifi-
cantly enhanced than that of either single mutant (B-NTH1 
or B + MAL62) after the freezing-thaw stress (Figs.  4, 5b).  
In addition, we found that NHT1 deletion (B-NTH1, 
B-NTH1 + K and B-NTH1 + MAL62) induced a low neutral 
trehalase (Table  3), which caused a lower level of trehalose 
degradation. High activity of trehalose synthase (+MAL62) 
[38] and low activity of neutral trehalase (−NTH1) increase 
the intracellular trehalose level [26], which explains why the 
double mutant (B-NTH1 + MAL62) provides the best freez-
ing tolerance and fermentation characteristics [39].

In summary, our study showed that MAL62 overex-
pression and NTH1 deletion in baker’s yeast significantly 
enhanced the freezing tolerance and fermentation char-
acteristics, which is in high demand in the frozen dough 
baking industry [40]. On the basis of our findings, it is 
also possible to lengthen the storage period of frozen 
dough through overexpression of the MAL62 with NTH1 

deletion. It provides valuable insights for breeding novel 
stress-tolerant and fast-fermented baker’s yeast strains 
that are useful for baking industry.

Conclusion
The results of this study show that overexpression of 
MAL62 was an effective way of increasing trehalose con-
tent and cell viability after prefermention-freezing and 
long-term frozen. Deletion of NTH1 in combination of 
MAL62 overexpression could further strengthen freezing 
tolerance and improve the leavening ability after freezing-
thaw stress. Furthermore, the single-gene-overexpression 
of MAL62 in industrial baker’s yeast is capable of increas-
ing trehalose accumulation, therefore, promoting cell 
viability and the leavening ability of baker’s yeast in lean 
dough under freezing stress. Hence, such baker’s yeast 
has excellent commercial and industrial applications.
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