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Abstract

The fast-growing quantity of information hinders the process of machine learning, making it

computationally costly and with substandard results. Feature selection is a pre-processing

method for obtaining the optimal subset of features in a data set. Optimization algorithms

struggle to decrease the dimensionality while retaining accuracy in high-dimensional data

set. This article proposes a novel chaotic opposition fruit fly optimization algorithm, an

improved variation of the original fruit fly algorithm, advanced and adapted for binary optimi-

zation problems. The proposed algorithm is tested on ten unconstrained benchmark func-

tions and evaluated on twenty-one standard datasets taken from the Univesity of California,

Irvine repository and Arizona State University. Further, the presented algorithm is assessed

on a coronavirus disease dataset, as well. The proposed method is then compared with sev-

eral well-known feature selection algorithms on the same datasets. The results prove that

the presented algorithm predominantly outperform other algorithms in selecting the most rel-

evant features by decreasing the number of utilized features and improving classification

accuracy.

1 Introduction

Information and data are at the core of technological evolution. With the progress of technol-

ogy, extensive datasets have improved the machine learning models in numerous domains but

made the analysis of said datasets remarkably strenuous, considering that surplus, noisy and

irrelevant data is abundant within the sets. That abundance of inconsequential data hinders
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the machine learning process, making it computationally expensive, frequently resulting in

substandard performance and accuracy of the model.

Metaheuristic algorithms are exceptionally effective optimization methods, particulary

in tackling demanding, high-dimensional issues. Imputable to their superb performance,

researchers utilize metaheuristic algorithms to resolve feature selection problems. Eminent

nature-inspired metaheuristic algorithms include evolutionary algorithms (EA), inspired by

biological evolution (reproduction, mutation, recombination, and selection), and swarm intel-

ligence (SI), which mimic the behavioural patterns of animals in a herd since they show sub-

stantial collective intelligence compared to the one of each individual.

1.1 Machine learning and feature selection

The focal objective of machine learning is successful output prediction of the algorithm for

each input through experience [1]. Machine learning differentiates two types of scenarios:

supervised and unsupervised. The one used in this manuscript—supervised learning [2], uti-

lizes labelled datasets to train algorithms for accurate predictions of outcomes or data classifi-

cation. A copious amount of data within datasets is what compels the machine learning model.

Simultaneously, these large datasets, packed with redundant and inessential data, influence the

machine learning process in regard to accuracy and computational complexity. Frequently,

the said datasets are high-dimensional, which impedes the performance of the machine learn-

ing model, as well. This occurrence refers to the curse of dimensionality [3].

Hence, identifying essential information is crucial to tackling this issue. For this reason, the

technique of dimensionality reduction [4], an action of reducing classification variables, is a

main pre-processing task for machine learning. There are two approaches to dimension reduc-

tion: feature extraction and feature selection (FS). While feature extraction [5] generates new

variables derived from the primary set of data, FS selects a subset of relevant informative vari-

ables for desired objective.

The purpose of FS is to determine the relevant subset from high-dimensional data sets elim-

inating the insignificant features, thus enhancing the classification accuracy for machine learn-

ing. There are three feature selection methods: filter, wrapper and the embedded methods, as

per G. Chandrashekar et al. [6].

Wrapper methods utilize learning algorithms, like classifiers, to evaluate feature subsets to

find relevant features. Wrapper methods yield the best-performing feature subsets (smaller

subsets and higher classification accuracy) but are computationally demanding.

Filter methods do not use a training process and instead designate a score to feature subsets

using a measure. Due to that, this method is not as computationally demanding as the wrapper

and creates a universal set (unadjusted to a specific prediction model).

The embedded method employs FS as a segment of the model-creating process, i.e. meth-

ods perform FS during the model training. These methods are more accurate than filters, with

the same execution speed. With computational complexity in mind, embedded methods are in

between the methods mentioned above.

1.2 Paper goal and structure

One might wonder whether a new optimization method is needed, considering that there are

numerous optimization algorithms in studies that carry out the task rather well.

The No Free Lunch (NFL) theorem [7] demonstrates that none of the algorithms can

resolve all optimization issues. Meaning, present-day algorithms for feature selection are not

capable of solving all feature selection issues. This inspires researchers to enhance and adapt

existing algorithms or present new algorithms, to cope with a wide range of problems.
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Optimization algorithms are coping with providing optimal informative subsets within

high-dimensional data sets. Therefore, a new metaheuristic algorithm is demanded to enhance

resolving feature selection problems.

This manuscript proposes a well-known swarm intelligence metaheuristic, fruit fly optimi-

zation algorithm (FFO), improved and adapted for solving FS problems in a wrapper-based

approach. The goal of the presented research in this paper is to enhance solving feature selec-

tion problems with a proposed chaotic oppositional fruit fly optimization (COFFO) algorithm

by obtaining high classification accuracy on different datasets. COFFO is tested on ten uncon-

strained benchmark functions (CEC2019), then on 21 standard datasets taken from the Unive-

sity of California, Irvine (UCI) repository and Arizona State University (ASU), along with the

coronavirus disease (COVID-19) dataset. Additionally, the proposed method is compared

with several well-known feature selection algorithms on the same datasets. The results prove

that the presented COFFO predominantly outperform other algorithms in selecting the most

relevant features.

This following research questions inspire this work:

• Is it achievable to further improve the original FFO algorithm for high-dimensional feature

selection problems?

• Is it attainable to further improve the solving of FS problems with the proposed COFFO by

enhancing the accuracy and selecting features with a higher impact on the target variable?

The contributions of this research are summarized as follows:

• The proposal of COFFO, an upgraded variant of the original FFO, is suitable for solving

even high-dimensional FS problems.

• This robust method is implementing chaotic behaviour and opposition-based learning to

improve population diversity and exploratory capacity of FFO.

• After extensive testing of the proposed method and comparing it with other well-known

feature selection algorithms, the conclusion is that solving of FS problems is furthermore

improved.

• Implementing FFO and COFFO algorithms in COVID-19 patient health prediction is a ben-

eficial contribution to medicine.

The structuring of this paper is as follows. Section 2 provides a brief overview of swarm

intelligence algorithms and their applications in various fields.Section 3 presents the basic fruit

fly optimization algorithm, summarizes its downsides before proposing an improved variation

of this promising algorithm. Sections 4 and 5 present results of the presented aproach, as well

as a comparison with other well-known methods for standard CEC2019 benchmarks and then

for twenty-one standard datasets taken from the UCI and ASU. Section 6 displays the applica-

tion of COFFO on COVID-19 datasets. Section 7 discusses advantages and disadvantages of

COFFO. Lastly, Section 8 draws conclusions and future directions.

2 Related works

Nature-inspired metaheuristic algorithms have shown high efficiency in solving numerous

optimization problems and, as such, are in the lead as of recent apropos solving complex real-

world problems. Metaheuristic algorithms enable attaining suboptimal solutions in a reason-

able time frame.

The literature proposes numerous methods to mimic the behavioural patterns of animals

in a herd since they show substantial collective intelligence compared to the one of each
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individual. Ant colony optimization (ACO) [8], the whale optimization algorithm (WOA) [9],

grey wolf optimizer algorithm (GWOA) [10], artificial bee colony (ABC) [11], grasshopper

optimization algorithm (GOA) [12], particle swarm optimization (PSO) [13] and salp swarm

algorithm (SSA) [14] are among the most popular ones.

Various problems in diverse disciplines have benefited from SI problem-solving solutions,

such as medical applications for diagnosing serious diseases in early stages [15] or the COVID-

19 cases predictions [16], problems with optimization of artificial neural network parameters

[17–20], the management and normal functioning of wireless sensor networks [21–23] up to

resolving issues in cloud computing [24–26]. The paper [27] offered an extensive analysis of

metaheuristics for the feature selection problem.

Apropos COVID-19 patient diagnostic, paper [28] proposed a hybrid FS method to find

optimal subset of features obtained from the chest computed tomography images. Research

[29] introduced a deep network model to pinpoint the COVID-19 disease built on X-ray

images. Relief-based FS algorithm suggested in [30], is used to filter the unnecessary features

in COVID-19 prediction.

Multiple swarm intelligence algorithms are employed to solve the feature selection problem

[31–33]. For that purpose, copious binary metaheuristic methods are created, predominantly

for wrapper-based FS. The two essential terms, transfer function (TF) and binarization, are uti-

lized. Binary particle swarm optimization (BPSO) is presented in [34]to resolve discrete prob-

lems. Dragonfly algorithm (DA) [35], created to solve continuous optimization problems by

simulating the swarming patterns of a dragonfly, got its binary version BDA [36], which uti-

lizes transfer functions that differ in time. Heavy exploitation of BDA can produce a local

optima problem, thus failing to obtain the global optimal solution. An improved version, the

hyper learning binary dragonfly algorithm (HLBDA) [37], uses the hyper learning strategy

enabling the dragonfly to learn from both personal and global best solutions throughout the

search phase. Research [38] presented a binary artificial bee colony (BABC) established on the

Jaccard coefficient dissimilarity, but the method has a complex structure. A binary version of a

grasshopper optimization algorithm (BGOA) [39] employs sigmoid and V-shaped transfer

functions and has an integrated mutation operator to improve the diversification stage.

3 Proposed method

First, the original fruit fly optimization algorithm is introduced, followed by the proposed

hybrid method for feature selection problem.

3.1 Original fruit fly optimization algorithm

Fruit fly optimization algorithm, proposed by Prof. Pan [40, 41], is a somewhat new nature-

inspired optimization algorithm. In contrast to other metaheuristic algorithms, FFO is easy to

comprehend and apply, thanks to the simple computational operation.

This method is an auspicious swarm intelligence algorithm motivated by the knowledge of

the foraging behavioural patterns of fruit flies. The fruit fly surpasses other species relating to

vision and olfaction, on which they predominantly rely—fruit flies can gather miscellaneous

aerial smells, despite the source of food being far away. Throughout the scouring activity, fruit

flies scout and locate food sources surrounding the swarm and estimate the smell concentra-

tion for each food source. When the best location with the highest smell concentration is

detected, the swarm navigates towards it.

Undeniably, the process of effective communication and teamwork among individual fruit

flies is essential to accomplishment in the tactics of solving an optimization problem. The algo-

rithm contains four phases:
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• initialization,

• osphresis foraging,

• population evaluation,

• vision.

Initially, the parameters are set—the maximum number of iterations and population size.

The solutions, i.e. fruit flies, are initiated randomly (1)

Xi;j ¼ randðUBj � LBjÞ þ LBj; ð1Þ

where Xi,j implies i-th solution and j denotes the element’s position in the i-th solution. LB rep-

resents lower bound, while UB represents an upper bound, and rand is a random number

from the uniform distribution.

Then, the position update of each solution occurs in accordance with the osphresis foraging

phase. The solutions are distributed randomly from the current location, formulated in (2)

Xðtþ1Þ

i;j ¼ XðtÞi;j � randðÞ; ð2Þ

where Xðtþ1Þ

i;j represents the new position, XðtÞi;j represent current solution, rand() 2[−1, 1], while

t denotes the iteration counter. Following the position update, distance and smell are calcu-

lated. Then, the computation of smell concentration—the function of smell (fitness function),

for each solution, ensues. If the solution’s new best fitness function value is better than the pre-

vious best, then the solution’s new location with the best fitness function value will replace all

solution’s positions. Otherwise, the old solution’s location will remain. This process represents

the vision foraging phase of the algorithm. The algorithm continues until satisfying the stop-

ping criteria and yields the best solution.

3.2 Motivation for improvement and proposed chaotic oppositional fruit

fly optimization algorithm

The adaptation of a FFO algorithm to a particular problem is uncomplicated since its some-

what simple configuration. Notwithstanding the good performance of basic FFO [40, 41], by

performing extensive practical simulations on a wide range of benchmark instances from Con-

gress on Evolutionary Computation (CEC), it was observed that the basic FFO can be further

improved.

Namely, basic FFO in some runs, due to stochastic nature, exhibits not so good exploration

ability, because it performs fixed position update strategy and can be easily stuck in the local

optima. Moreover, it was suggested that its exploitation capabilities can be further enhanced.

Method proposed in this study addresses above mentioned drawbacks by implementing

opposition-based learning (OBL) and chaotic behavior in the original FFO approach. Inspired

by the proposed modifications, method showed in this study is named chaotic oppositional

fruit fly optimization (COFFO) algorithm.

The OBL was introduced for the first time in 2005 by Tizhoosh [42] and it was proved that

this mechanism can substantially improve exploration and exploitation abilities of metaheuris-

tics method [42, 43].

The OBL mechanism is mathematically described as follows: let xj denotes j-the parameter

of solution x and the xoj represents its opposite number. The opposite number of j-th parameter

of individual x calculates as follows:

xoj ¼ LBj þ UBj � xj; ð3Þ
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where xj 2 [LBj, UBj] and LBj, UBj 2 R, 8j 2 1, 2, 3, . . .D. Parameter D represent the number of

solution dimensions (parameters).

In complex implementations, the imbalance between exploitation and exploration and the

randomness of the initialization phase causes the entrapment of optimization algorithms in

the local optima. Literary manuscripts propose chaos theory as one of the methods for resolv-

ing this issue. Chaos optimization algorithm (COA) [44] is an example of chaos implementa-

tion that exploits the nature of the chaotic structure. Classification performance can be

improved by applying chaotic system rather than the random parameter values [45]. Examples

of these implementations are the following: chaotic whale optimization algorithm (CWOA)

[46], chaotic grey wolf optimization (CGWO) [47] and chaotic grasshopper optimization algo-

rithm (CGOA) [48].

Chaos represents a non-linear occurrence of a dynamic but deterministic system with sto-

chastic patterns that is exceedingly receptive to its initial conditions. Although multiple chaotic

maps exist, experimental testing shows that the logistic map provided the best results with the

introduced COFFO. Chaotic-based search strategy implementation in the presented COFFO

is generated by the chaotic sequence in line with the limitations of a specific problem. When

the sequence is created, individuals employ it to explore the search space. The COFFO uses

chaotic sequence β, which starts from arbitrary initial number β0 created by the logistic map-

ping. Logistic map executes in K steps in a following way:

b
kþ1

i;j ¼ mb
k
i;jð1 � bi;jÞ; k ¼ 1; 2; :::K; ð4Þ

where b
k
i;j and b

kþ1

i;j denote chaotic variable for j-th component of the i-th solution in steps k
and k+ 1, respectively, while μ denotes chaotic control parameter. The μ typically has the value

4 [49], a value used in this work as well, to guarantee chaotic behaviour of individuals, the βi,j
6¼ 0.25, 0.5 and 0.75 and σi, j 2 (0, 1).

Action of mapping solutions onto generated chaotic sequences is achieved with following

formulation for each component j of individual i:

Xci ¼ biXi; ð5Þ

where Xci is the new location of individual i after chaotic disruptions.

To establish an initial population of high quality, proposed COFFO first incorporates cha-

otic-opposition-based initialization, which is shown in Algorithm 1.

Algorithm 1 Chaotic-opposition-based initialization pseudo-code
Step 1: Generate standard random population P of N solutions with
expression: Xi = LB+ (UB−LB) � rand(0, 1), i = 1, . . .N, where rand(0, 1)
denotes pseudo-random number from the interval [0, 1].
Step 2: Generate opposition population Po for first N/2 individuals by
triggering OBL using Eq (3)
Step 3: Generate chaotic population Pc of N/2 individuals by mapping
solutions from P to chaotic sequences using expressions (4) and (5).
Step 4: Calculate fitness of all solutions from P, Po and Pc.
Step 5: Sort all individuals from P [ Po [ Pc according to fitness.
Step 6: Select N best individuals from sorted set P [ Po [ Pc for ini-
tial population.

In this way, initial population P is closer to optimum region of the search space and the

COFFO can utilize more iterations for performing exploitation and exploration in this region.

However, despite of novel initialization strategy, exploitation ability in later cycles should

also be improved and for this reason, COFFO incorporates chaotic local search (CLS) strategy

which is executed around the current global best (X�) solution. Throughout every step k, new
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X�, represented as X
0�

, is created by applying Eqs (6) and (7), for each component j of X�:

X0�j ¼ ð1 � lÞx
�
j þ lSj ð6Þ

Sj ¼ lj þ b
k
j ðuj � ljÞ; ð7Þ

where b
k
j is calculated by Eq (4), while λ is a dynamic shrinkage parameter, depending on the

maximum number of fitness function evaluations (maxFFE) and the current fitness function

evaluation (FFE) in the algorithm’s execution:

l ¼
maxFFE � FFEþ 1

maxFFE
ð8Þ

The use of dynamic λ allows for a better exploitation-exploration equilibria to be built

around the X�. Earlier stages of execution explore a larger search area around the X�, while

later stages emphasize on fine-tuned exploitation. Alternatively, themaxFFE and FFE can be

replaced with T and t when the maximum number of iterations is considered as the termina-

tion condition.

In that manner, utilization of the CLS strategy is an attempt to enhance X� in K steps. If the

X
0�

achieves better fitness value than the X�, then the CLS procedure terminates and the X
0�

replaces X�. Nevertheless, if X� cannot improve in K steps, it remains in the population.

Again, by conducting empirical experiments with CLS, it was observed that this mechanism

should not be triggered too early. If it is executed in early iterations, when the search process

did not converge enough, many FFEs are wasted. For that reason, additional control parame-

ters, CLS trigger (clst) is incorporated that determines whether or not the CLS around X� will

be executed. The value of this parameter is determined empirically, as it is shown in Section 4.

Taking all into consideration, workings of proposed COFFO are summarized in Algorithm 2.

Algorithm 2 Proposed COFFO pseudo-code
Generate initial population according to Algorithm 1
Set the FFEs to 0 and define the termination criteria (maxFFEs)
Evaluate the fitness of each individuals
while FFEs < maxFFEs do
for i = 1 to N do
Update the position according to FFO updating mechanism by Eq (2)

end for
Determine the X� solution
if FFEs > clst then
Perform CLS strategy by using Eqs 6 and 7
Adjust λ by applying expression 8

end if
end while
Return the X� solution

Complexity in metaheuristics is measured by the number of FFEs, as the FFE is the most

demanding operation. For the suggested algorithm, it can be calculated in a following way:

O COFFOð Þ ¼ O N � 2ð Þ þ O N � Tð Þ þ O Tð Þ;

where N is the number of solutions in a population, T is the maximum number of iterations.

This equation stands in a worst-case scenario, i.e. in each iteration, a chaotic local search is

executed, and one solution evaluated.maxFFE is used as a termination condition in simula-

tions for unbiased comparative analysis, even if the proposed algorithm uses more FFEs than

some algorithms in each iteration.
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4 Simulation and comparative analysis for unconstrained

functions

First, the presented approach is substantiated on unconstrained benchmark functions.

Ten CEC2019 functions [50] are utilized to validate the performance of the presented

method, before applying it to a real-world task. The original FFO and nine other metaheuris-

tic-based algorithms: elephant herding optimization (EHO) [51], EHO improved (EHOI) [52],

sine cosine algorithm (SCA) [53], salp swarm algorithm (SSA) [14], grasshopper optimization

algorithm (GOA) [12], moth-flame optimization (MFO) [54], particle swarm optimization

(PSO) [13], whale optimization algorithm (WOA) [9], biogeography-based optimization

(BBO) [55] are tested on ten recent benchmark function set, presented on the Congress on

Evolutionary Computation 2019 (CEC2019) [50], under similar circumstances. Additionally,

the existing PSO embedded with chaotic opposition-based initialization (COPSO) is added for

a more comprehensive comparative analysis. These results are then compared to the results

gained by the presented algorithm.

The CEC2019 bound-constrained benchmark function characteristics are given in Table 1

Research paper [52] provides the simulation results of previously mentioned algorithms for

the same benchmarks. The same experiments are conducted anew to corroborate results from

[52] and from an unbiased comparative analysis. Control parameters used to test methods in

[52], population size N = 50 and a maximum number of iterationsmaxIter = 500, might

prompt a very biased comparative analysis considering not all algorithms use the same number

of fitness function evaluations (FFEs) in one iteration. In the initialization phase, most of these

algorithms use N evaluations and then, in every iteration for each individual in the population,

execute one more FFE. Hence, the termination conditionmaxFFE = N + N�maxIter is set to

25, 050 for all methods. That way, the same experimental conditions are established as in the

[52], and the comparative analysis is unbiased.

Other parameters are set as follows: the size of the population is fixed at N = 50 and the clst
expression was empirically determined asmaxFFEs/3, which is in this case 8,350. This experi-

ment is redone in 30 independent runs. Table 2 shows the control parameters for COFFO

used throughout the unconstrained benchmark function experiment.

Control parameters for metaheuristics, used in this comparative analysis, were set as sug-

gested in the original manuscripts.

Table 3 displays the gained experimental results—corresponding mean values and standard

deviations of the presented and comparable methods. The best mean value is displayed in bold

style for every benchmark instance, while the best standard deviation value is in italic, for

Table 1. CEC 2019 benchmark characteristics.

Function Fi = Fi(x�) D Search Range

CEC1 1 9 [-8192, 8192]

CEC2 1 16 [-16384, 16384]

CEC3 1 18 [-4,4]

CEC4 1 10 [-100,100]

CEC5 1 10 [-100,100]

CEC6 1 10 [-100,100]

CEC7 1 10 [-100,100]

CEC8 1 10 [-100,100]

CEC9 1 10 [-100,100]

CEC10 1 10 [-100,100]

https://doi.org/10.1371/journal.pone.0275727.t001
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easier reading. The obtained results of EHO, EHOI, SCA, SSA, GOA, MFO, PSO, WOA and

BBO are slightly different from the results in the paper [52] due to the stochastic nature of

observed algorithms.

From the results in Table 3, it is apparent that the presented method outperformed other

tested algorithms. COFFO has the best mean value regarding eight functions (CEC1, CEC2,

CEC3, CEC4, CEC5, CEC7, CEC8 and CEC9). The original FFO achieved the best mean value

on CEC6 test instance, followed by COFFO. EHOI performed best on function CEC10, mar-

ginally in front of COFFO. COPSO obtained a better mean fitness value than the original PSO

on seven functions due to chaotic opposition-based initialization. The new COFFO is promi-

nent on CEC1 and CEC2 test instances in comparison to other algorithms.

Table 2. COFFO control parameters.

Parameter Description Notation Value

Size of population N 50

Termination condition in terms of FFEs maxFFEs 25,050

Chaotic parameter K 4

CLS trigger clst 8,350

https://doi.org/10.1371/journal.pone.0275727.t002

Table 3. Mean fitness and standard deviation results of compared approaches on CEC2019 benchmark functions.

Function Stats EHOI EHO SCA SSA GOA WOA BBO MFO PSO COPSO FFO COFFO

CEC1 mean 4.76 � 104 1.35 � 107 9.83 � 109 3.21 � 109 1.61 �

1010
1.03 �

1010
3.52 �

1010
7.17 � 109 6.75 �

1011
4.17 � 1010 1.46 � 103 1.19 � 102

std 2.69 � 103 7.74 � 106 5.47 � 108 2.07 � 109 1.14 �

1010
8.81 � 109 2.55 �

1010
7.58 � 109 6.53 �

1011
4.76 � 1010 4.46 � 102 1.32 � 101

CEC2 mean 1.70 � 101 1.72 � 101 1.75 � 101 1.73 � 101 1.74 � 101 1.73 � 101 8.87 � 101 1.74 � 101 8.56 � 101 1.64 � 102 2.79 � 100 2.43 � 100

std 1.07 �
10−15

4.82 �

10−15
3.98 �

10−2
8.07 � 10−5 1.40 �

10−2
2.77 � 0−3 2.49 � 101 3.83 �

10−15
3.96 � 101 1.27 � 101 1.38 � 102 8.14 � 101

CEC3 mean 1.27 � 101 1.27 � 101 1.27 � 101 1.27 � 101 1.27 � 101 1.27 � 101 1.27 � 101 1.27 � 101 1.27 � 101 1.27 � 101 9.71 � 100 5.29 � 100

std 1.90 �
10−15

1.90 �
10−15

1.09 �

10−4
2.33 �

10−15
1.21 �

10−4
1.39 �

10−7
2.58 �

10−7
3.39 � 10−5 6.61 �

10−4
3.95 �

10−4
4.27 � 10−1 2.64 �

10−1

CEC4 mean 1.28 � 101 1.55 � 101 8.32 � 102 3.25 � 101 1.51 � 102 2.65 � 102 6.95 � 101 1.38 � 102 6.92 � 101 2.83 � 101 3.99 � 100 1.00 � 100

std 3.84 � 100 6.37 � 100 2.91 � 102 1.32 � 101 1.49 � 102 1.28 � 102 2.35 � 101 1.57 � 102 8.02 � 100 7.43 � 100 4.21E �
10−1

5.16 �

10−1

CEC5 mean 1.05 � 100 1.07 � 100 2.23 � 100 1.35 � 100 1.33 � 100 1.67 � 100 1.31 � 100 1.13 � 100 1.55 � 100 1.33 � 100 1.02 � 100 1.00 � 100

std 2.12 � 10−2 2.20 � 10−2 7.79 �

10−2
1.12 � 10−1 1.41 �

10−1
4.18 �

10−1
9.68 �

10−2
8.23 � 10−2 1.16 �

10−1
1.37 �

10−1
2.34 � 10−2 2.10 �

10−2

CEC6 mean 8.334 � 100 9.45 � 100 1.04 � 101 3.79 � 100 6.19 � 100 9.14 � 100 5.78 � 100 4.92 � 100 1.03 � 101 6.56 � 100 1.61 � 100 1.87 � 100

std 8.56 � 10−1 1.24 � 100 7.58 �

10−1
1.27 � 100 1.37 � 100 1.04 � 100 6.43 �

10−1
2.21 � 100 6.78 �

10−1
7.13 �

10−1
6.17 � 10−2 5.41 �

10−2

CEC7 mean 1.42 � 102 1.81 � 102 6.38 � 102 2.89 � 102 2.87 � 102 4.53 � 102 4.92 � 100 3.19 � 102 6.97 � 102 3.93 � 102 5.91 � 100 2.33 � 100

std 3.97 � 102 1.43 � 102 1.38 � 102 2.35 � 102 1.74 � 102 2.17 � 102 1.26 � 102 2.10 � 102 1.62 � 102 1.36 � 102 1.07 � 102 4.14 � 101

CEC8 mean 2.69 � 100 3.15 � 100 5.77 � 100 5.08 � 100 5.49 � 100 5.75 � 100 4.81 � 100 5.45 � 100 5.10 � 100 5.22 � 100 1.15 � 100 1.02 � 100

std 8.63 � 10−1 1.17 � 100 5.50 �
10−1

6.42 � 10−1 8.13 �

10−1
7.76 �

10−1
1.13 � 100 5.78 � 10−1 7.38 �

10−1
7.56 �

10−1
7.99 � 10−1 5.64 �

10−1

CEC9 mean 2.29 � 100 2.41 � 100 9.75 � 101 2.38 � 100 2.45 � 100 5.16 � 100 3.75 � 100 2.46 � 100 2.65 � 100 2.54 � 100 3.91 � 100 2.15 � 100

std 6.34 � 10−3 1.38 � 10−2 9.23 � 101 4.52 � 10−2 7.28 �

10−2
7.59 �

10−1
2.51 �

10−1
6.24 � 10−2 9.41 �

10−2
5.84 �

10−2
2.85 � 10−1 6.38 �

10−3

CEC10 mean 1.92 � 101 2.11 � 101 2.08 � 101 2.03 � 101 2.00 � 101 2.05 � 101 2.07 � 101 2.02 � 101 2.06 � 101 2.06 � 101 2.10 � 101 1.95 � 101

std 1.52 � 100 1.03 � 10−1 8.27 �

10−2
8.29 � 10−2 9.24 �

10−2
4.91 �

10−2
2.29 �

10−2
1.48 � 10−1 1.07 �

10−1
8.31 �

10−2
1.14 � 10−5 9.09 �

10−5

https://doi.org/10.1371/journal.pone.0275727.t003
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When comparing various algorithms, contemporary computer science theory requires a sta-

tistical validation of the significance of improvements. The Friedman test [56, 57], a two-way

variance analysis by ranks, demonstrates the considerable distinction between the proposed and

other tested methods. Table 4 displays the ranking of twelve algorithms applied on ten functions.

COFFO’s average ranking for the Friedman test is 1.20, thus demonstrating its superiority

over the ten remaining algorithms (Table 4). At the significance level α = 0.005, the Friedman

statistics (w2
r ¼ 60:2) is greater than the χ2 critical value (χ2 = 19.7); hence the null hypothesis

(H0) is rejected, allowing the conclusion that COFFO is substantially distinct from the rest of

the compared methods.

Furthermore, Iman and Davenport’s test [58] is conducted since, as per [59], it can be more

precise than the approximation of chi-square. The summary of the statistical results is given in

Table 5.

The F-distribution critical value (1.89) is less than the gained Iman-Davenport statistic of

(10.9), so the second test rejectsH0 as well. The significance level is greater than the p−value in

both tests, as presented in Table 5.

Since both tests reject the null hypothesis, Holm’s step-down procedure, as a post-hoc pro-

cedure, is conducted with its results displayed in Table 6.

The presented algorithm substantially surpassed ten out of eleven compared methods at sig-

nificance level α = 0.1, with nine out of eleven at significance level α = 0.05.

In addition, a quad test [60] for the average fitness function is conducted, and the obtained

F value is 8.53, while the p−value is 2.06E−10.

It can be concluded that the COFFO algorithm enhance the performance of the original

FFO metaheuristic, thus affirming the goal of proposing an improved FFO algorithm.

Next, Fig 1 displays convergence speed graphs for some algorithms. The best three,

COFFO, FFO and EHOI, are emphasized in these graphs with different line styles. These show

that the proposed COFFO algorithm has “starting adventage”, since its initialization utilizes

chaotic sequences and opposition-based learning. Meaning, it has a better initial population

then other algorithms, making the search easier.

Table 4. Friedman ranks of tested methods on CEC2019 benchmark functions.

Function EHOI EHO SCA SSA GOA WOA BBO MFO PSO COPSO FFO COFFO

CEC1 3 4 7 5 9 8 10 6 12 11 2 1

CEC2 3 4 9 5.5 7.5 5.5 10 7.5 12 11 2 1

CEC3 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 2 1

CEC4 3 4 12 6 10 11 8 9 7 5 2 1

CEC5 3 4 12 9 7.5 11 6 5 10 7.5 2 1

CEC6 8 10 12 3 6 9 5 4 11 7 1 2

CEC7 4 5 12 7 6 10 2 8 11 9 3 1

CEC8 3 4 12 6 10 11 5 9 7 8 2 1

CEC9 2 4 12 3 5 11 9 6 8 7 10 1

CEC10 1 12 10 5 3 6 9 4 7.5 7.5 11 2

Average 3.75 5.85 10.55 5.70 7.15 9.00 7.15 6.60 9.30 8.05 3.70 1.20

Rank 3 5 12 4 7 10 8 6 11 9 2 1

https://doi.org/10.1371/journal.pone.0275727.t004

Table 5. Resilts of Friedman and Iman-Davenport tests (α = 0.05).

Friedman value χ2 critical value p-value Iman-Davenport value F critical value p-value

6.02 � 101 1.97 � 101 1.11 � 10−16 1.09 � 101 1.89 � 100 1.11 � 10−13

https://doi.org/10.1371/journal.pone.0275727.t005
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5 Feature selection simulation results

The presented algorithm is substantiated on 21 standard datasets, collected from the UCI

repository [61] and Arizona State University [62]. These feature selection datasets include:

colon, arrhythmia, primary tumor, ILPD, ionosphere, leukemia, dermatology, zoo, glass,

SCADI, SPECT heart, horse colic, libras movement, lung discrete, musk1, TOX 171, soybean,

seeds, lymphography, LSVT and hepatitis. Details regarding datasets (number of features and

training samples, dimensions)can be retrieved from [37]. Utilized datasets are devised of a

diverse number of dimensions and features, of which leukemia and TOX 171 have the highest

dimensionality, with 7070 and 5748 features respectively. Therefore, the performance of the

presented algorithm is evaluated on disparate constructions that illustrate its effectiveness in

divergent dimensions [63].

Five evaluation measures are determined to assess the performance of the algorithm. These

measures represent the following: the best fitness value, the standard deviation of fitness value,

the mean fitness value, feature selection ratio and classification accuracy.

5.1 Fitness evaluation and experimental conditions

The purpose of the fitness function is to estimate the quality of the solutions. Iteratively, every

fruit fly is assessed by applying a fitness function. The fitness function in this research is

selected to maximize classification accuracy and minimize the number of selected features.

The fitness function is as follows [37]:

Fit ¼ aERþ b
jSj
jOj

ð9Þ

where ER is the classification’s error, |S| is the length of the subset of selected features, and |O|

is the length of original features. Two weight infectors, α 2 [0, 1] and β = (1−α), are used to

indicate the influence of classification error and feature size on the fitness function. In

COFFO, the transfer function is utilized to adapt the algorithm for binary problems. S-shaped

and V-shaped transfer functions, named after the shape of the TF curve, are tested. V-shaped

TF provided the best results and therefore implemented in the presented method. Table 7 pro-

vides the mathematical formulation of V-shaped transfer functions.

Modelled on the paper [37], the dataset is divided into the training and evaluation set utilis-

ing the stratified 10-fold cross-validation method. For wrapper-based FS, the K nearest neigh-

bour (KNN, k = 5) is used to calculate classification error. The benefits of using KNN as a

Table 6. Results of Holm’s step-down procedure.

Compared methods p-value Rank 0.05/(k−i) 0.1/(k−i) H01 H02

COFFO vs SCA 3.34 � 10−9 0 0.004545 0.009091 1 1

COFFO vs PSO 2.54 � 10−7 1 0.005000 0.010000 1 1

COFFO vs WOA 6.58 � 10−7 2 0.005556 0.011111 1 1

COFFO vs COPSO 1.08 � 10−5 3 0.006250 0.012500 1 1

COFFO vs GOA 1.12 � 10−4 4 0.007143 0.014286 1 1

COFFO vs BBO 1.12 � 10−4 5 0.008333 0.016667 1 1

COFFO vs MFO 4.06 � 10−4 6 0.010000 0.020000 1 1

COFFO vs EHO 1.51 � 10−3 7 0.012500 0.025000 1 1

COFFO vs SSA 2.63 � 10−3 8 0.016667 0.033333 1 1

COFFO vs EHOI 5.69 � 10−2 9 0.025000 0.050000 0 0

COFFO vs FFO 6.05 � 10−2 10 0.050000 0.100000 0 1

https://doi.org/10.1371/journal.pone.0275727.t006
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learning algorithm are its simplicity and low computational cost. All methods are conducted

in 20 independent runs due to the non-deterministic nature of optimization algorithms. The

averages of results are collected. The maximum number of iterationsmaxIter = 100 can pro-

duce a biased comparative analysis since number of utilized FFEs per iteration can vary

Fig 1. Convergence graphs for ten CEC 2019 benchmark functions and direct comparison between COFFO and

FFO.

https://doi.org/10.1371/journal.pone.0275727.g001
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between algorithms. Thus, the termination conditionmaxFFes = N+ N�maxIter is set to 1010.

The population size is N = 10.

5.2 Comparison with other feature selection methods

This subsection provides the comparative performance analysis between the presented algo-

rithm and eleven eminent algorithms: HLBDA, binary dragonfly algorithm (BDA) [35], binary

multiverse optimizer (BMVO) [64], binary artificial bee colony (BABC) [65], binary particle

swarm optimization (BPSO) [34], success-history based adaptive differential evolution with

linear population size reduction (LSHADE) [66], chaotic crow search algorithm (CCSA) [45],

evolution strategy with covariance matrix adaptation (CMAES) [67], binary coyote optimiza-

tion algorithm (BCOA) [68, 69], COPSO and FFO. Table 8 shows the parameters for the com-

pared algorithms.

The personal learning rate (pl) and global learning rate (gl) of HLBDA are set to 0.4 and

0.7, respectively. The maximum limit for BABC is set at 5. The wormhole existence probability

(WEP) increases from 0.02 to 1 whilst the traveling distance rate (TDR) decreases from 0.6 to

0—both in BMVO. In BPSO, acceleration factors are set at 2 and the inertia weight is decreas-

ing from 0.9 to 0.4. In CCSA the awareness probability (AP) and flight length (fl) are set at 0.1

and 2, respectively. In BCOA, the number of coyotes and packs are set to 5 and 2. The number

of parents for CMAES is set at 25% of solutions. When it comes to LSHADE, the memory size

and minimum population size are set at 5 and 4.

Table 7. V-shaped transfer functions.

Name Transfer function

V1

TðxÞ ¼
�
�
�
�erf

ffiffi
p
p

2
x

� �
�
�
�
� ¼

ffiffi
2
p

p

Z
ffiffi
p
p

2
x

0

e� t2dt

�
�
�
�
�

�
�
�
�
�

V2 T(x) = |tanh(x)|

V3 TðxÞ ¼ j xffiffiffiffiffiffiffi
1þx2
p j

V4 TðxÞ ¼ 2

p
arctan p

2
x

� ��
�

�
�

https://doi.org/10.1371/journal.pone.0275727.t007

Table 8. Control parameter settings for comparative feature selection methods.

Method Parameter Value

HLBDA pl 0.4

gl 0.7

BDA All controlling parameters Identical to the original paper

BABC Maximum limits 5

BMVO WEP [0.02, 1]

TDR [0.6, 0]

BPSO Inertia weight, w [0.9, 0.4]

Acceleration factors, c1 and c2 2

CCSA AP 0.1

fl 2

BCOA Coyote number 5

Paks number 2

CMAES Parents number λ/4

LSHADE Minimum size of population 4

Size of memory 5

https://doi.org/10.1371/journal.pone.0275727.t008
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Tables 9–11 show testing results of mean fitness, the best fitness, and the standard deviation

of fitness function for the presented COFFO. As shown in Table 9, COFFO identified the opti-

mal best fitness value on fifteen datasets, accompanied by HLBDA in eight datasets.

Results in Table 10 display that COFFO detected the optimal mean fitness value in fourteen

datasets, followed by HLBDA with four. These results entail that the presented COFFO can

locate the optimal feature subset in most cases, yielding a satisfying performance.

As shown in Table 11, COFFO discerned the lowest standard deviation in twelve datasets,

accompanied by BABC with four. COFFO consistently obtained better results compared to

FFO.

Fig 2 provides the classification accuracy result of tested algorithms. As demonstrated,

COFFO obtained the highest accuracy in 12 datasets, exceeding the remaining algorithms in

procuring the optimal feature subset.

Boxplot is a type of chart often used in explanatory data analysis. It shows minimum score

(the lowest score, excluding outliers), lower quartile (25% of scores fall below the lower quartile

value), median (marks the mid-point of the data), upper quartile (75% of the scores fall below

the upper quartile value), maximum score (the highest score, excluding outliers), whiskers

(represent scores outside the middle 50%) and the interquartile range (IQR) (box plot display-

ing the middle 50% of scores). The average error rate was taken for all 21 datasets from which

the boxplots analysis is conducted, to exhibit the stability, i.e. diversification of the proposed

algorithm.

Fig 3 provides the boxplots analysis of eleven different algorithms. As seen in Fig 3, the pre-

sented COFFO is relatively stable, and in comparison to second best HLBDO and original

FFO, has smaller IQR, that is, lower dispersion and the best maximal score. The gained results

Table 9. Best fitness value results for tested algorithms.

No. Dataset Best fitness value

HLBDA BDA BABC BMVO BPSO CCSA BCOA CMAES LSHADE COPSO FFO COFFO

1 Glass 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067

2 Hepatitis 0.1154 0.1244 0.1304 0.1224 0.1237 0.1310 0.1219 0.1231 0.1234 0.1231 0.1211 0.1199

3 Lymphography 0.1117 0.1180 0.1121 0.1295 0.1178 0.1310 0.1255 0.1170 0.1224 0.1186 0.1176 0.1115

4 Primary Tumor 0.5647 0.5730 0.5675 0.5888 0.5623 0.5755 0.5642 0.5623 0.5880 0.5763 0.5729 0.5620

5 Soybean 0.2010 0.2073 0.2037 0.2420 0.2190 0.2293 0.2037 0.2010 0.2038 0.2037 0.2069 0.2008

6 Horse Colic 0.1300 0.1329 0.1349 0.1439 0.1311 0.1418 0.1303 0.1300 0.1327 0.1336 0.1327 0.1295

7 Ionosphere 0.0695 0.0730 0.0831 0.0980 0.0816 0.0904 0.0715 0.0745 0.0720 0.0749 0.0752 0.0718

8 Zoo 0.0332 0.0325 0.0332 0.0332 0.0325 0.0337 0.0325 0.0333 0.0325 0.0332 0.0332 0.0323

9 Musk 1 0.0608 0.0625 0.0880 0.0940 0.0782 0.0834 0.0663 0.0740 0.0633 0.0633 0.0638 0.6039

10 Arrhythmia 0.2927 0.3180 0.3329 0.3351 0.3280 0.3400 0.3105 0.3271 0.3000 0.2991 0.3086 0.2922

11 Dermatology 0.0130 0.0133 0.0161 0.0216 0.0158 0.0184 0.0160 0.0134 0.0160 0.0158 0.0134 0.0128

12 SPECT Heart 0.1385 0.1385 0.1413 0.1455 0.1359 0.1409 0.1336 0.1388 0.1398 0.1385 0.1359 0.1333

13 Libras Movement 0.1667 0.1810 0.1940 0.2020 0.1912 0.1915 0.1720 0.1749 0.1690 0.1702 0.1795 0.1662

14 ILPD 0.2672 0.2672 0.2721 0.2699 0.2672 0.2672 0.2672 0.2672 0.2672 0.2672 0.2678 0.2678

15 Seeds 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453 0.0453

16 LSVT 0.2389 0.2695 0.3001 0.2797 0.2619 0.2980 0.3007 0.2865 0.3009 0.2834 0.2713 0.2596

17 SCADI 0.1158 0.1168 0.1310 0.1311 0.1176 0.1319 0.1159 0.1165 0.1162 0.1159 0.1159 0.1151

18 TOX 171 0.1260 0.1378 0.1898 0.1958 0.1720 0.1735 0.1484 0.1960 0.1383 0.1377 0.1424 0.1258

19 Leukemia 0.0311 0.0313 0.0458 0.0444 0.0456 0.0580 0.0308 0.0456 0.0313 0.0311 0.0314 0.0308

20 Lung discrete 0.0554 0.0599 0.0830 0.0845 0.0717 0.0829 0.0658 0.0736 0.0559 0.0584 0.0602 0.0551

21 Colon 0.0823 0.0966 0.1152 0.1157 0.1130 0.1300 0.0987 0.1134 0.0994 0.0986 0.1018 0.0892

https://doi.org/10.1371/journal.pone.0275727.t009
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Table 10. Mean fitness value results for tested algorithms.

No. Dataset Mean fitness value

HLBDA BDA BABC BMVO BPSO CCSA BCOA CMAES LSHADE COPSO FFO COFFO

1 Glass 0.0112 0.0112 0.0111 0.0116 0.0111 0.0116 0.0111 0.0118 0.0116 0.0111 0.0114 0.0113

2 Hepatitis 0.1312 0.1369 0.1384 0.1452 0.1335 0.1455 0.1424 0.1428 0.1400 0.1325 0.1402 0.1337

3 Lymphography 0.1312 0.1360 0.1351 0.1525 0.1340 0.1513 0.1418 0.1394 0.1475 0.1328 0.1353 0.1306

4 Primary Tumor 0.5849 0.5933 0.5845 0.6086 0.5849 0.5998 0.5943 0.5935 0.5990 0.5845 0.5898 0.5839

5 Soybean 0.2125 0.2214 0.2256 0.2593 0.2246 0.2481 0.2170 0.2179 0.2209 0.2218 0.2206 0.2119

6 Horse Colic 0.1360 0.1429 0.1481 0.1673 0.1410 0.1701 0.1432 0.1420 0.1481 0.1392 0.1413 0.1353

7 Ionosphere 0.0843 0.0930 0.1014 0.1107 0.0960 0.1112 0.0871 0.0883 0.0911 0.0947 0.0976 0.0929

8 Zoo 0.0400 0.0408 0.0400 0.0480 0.0368 0.0494 0.0439 0.0471 0.0501 0.0369 0.0434 0.0382

9 Musk 1 0.0674 0.0832 0.0959 0.1081 0.0930 0.1018 0.0791 0.0844 0.0795 0.0911 0.0819 0.0668

10 Arrhythmia 0.3159 0.3340 0.3451 0.3540 0.3415 0.3528 0.3292 0.3351 0.3272 0.3304 0.3286 0.3147

11 Dermatology 0.0173 0.0192 0.0202 0.0254 0.0195 0.0238 0.0209 0.0181 0.0198 0.0196 0.0197 0.0166

12 SPECT Heart 0.1507 0.1543 0.1573 0.1705 0.1541 0.1632 0.1612 0.1646 0.1600 0.1540 0.1545 0.1503

13 Libras Movement 0.1814 0.1938 0.2026 0.2094 0.2005 0.2074 0.1858 0.1889 0.1900 0.1952 0.1927 0.1809

14 ILPD 0.2789 0.2788 0.2803 0.2815 0.2792 0.2801 0.2815 0.2844 0.2835 0.2793 0.2801 0.2782

15 Seeds 0.0557 0.0557 0.0529 0.0533 0.0529 0.0529 0.0532 0.0538 0.0559 0.0529 0.0537 0.0530

16 LSVT 0.3008 0.3165 0.3173 0.3169 0.3174 0.3294 0.3280 0.3204 0.3337 0.3171 0.3201 0.3082

17 SCADI 0.1260 0.1311 0.1344 0.1415 0.1331 0.1412 0.1292 0.1285 0.1264 0.1329 0.1321 0.1255

18 TOX 171 0.1577 0.1836 0.2138 0.2371 0.2072 0.2299 0.1816 0.2197 0.1778 0.1992 0.1829 0.1572

19 Leukemia 0.0509 0.0625 0.0696 0.0754 0.0609 0.0741 0.0553 0.0681 0.0628 0.0591 0.0616 0.0501

20 Lung discrete 0.0774 0.0834 0.0940 0.1041 0.0908 0.0981 0.0832 0.0892 0.0811 0.0867 0.0848 0.0765

21 Colon 0.1331 0.1500 0.1628 0.1701 0.1506 0.1684 0.1434 0.1603 0.1436 0.1505 0.1548 0.1436

https://doi.org/10.1371/journal.pone.0275727.t010

Table 11. Standard deviation of fitness value results for tested algorithms.

No. Dataset Standard deviation of fitness value

HLBDA BDA BABC BMVO BPSO CCSA BCOA CMAES LSHADE COPSO FFO COFFO

1 Glass 0.0033 0.0033 0.0033 0.0033 0.0033 0.0032 0.0033 0.0036 0.0033 0.0033 0.0033 0.0033

2 Hepatitis 0.0094 0.0063 0.0059 0.0100 0.0079 0.0065 0.0138 0.0133 0.0092 0.0070 0.0068 0.0057

3 Lymphography 0.0129 0.0120 0.0126 0.0105 0.0140 0.0115 0.0133 0.0151 0.0148 0.0134 0.0122 0.0101

4 Primary Tumor 0.0103 0.0100 0.0086 0.0081 0.0114 0.0118 0.0136 0.0136 0.0135 0.0118 0.0102 0.0080

5 Soybean 0.0088 0.0095 0.0088 0.0120 0.0043 0.0110 0.0102 0.0114 0.0111 0.0065 0.0099 0.0061

6 Horse Colic 0.0040 0.0090 0.0075 0.0163 0.0071 0.0141 0.0109 0.0099 0.0156 0.0078 0.1008 0.0079

7 Ionosphere 0.0086 0.0104 0.0102 0.0054 0.0056 0.0091 0.0105 0.0071 0.0100 0.0059 0.0092 0.0053

8 Zoo 0.0080 0.0081 0.0072 0.0101 0.0067 0.0098 0.0093 0.0100 0.0114 0.0071 0.0082 0.0063

9 Musk 1 0.0063 0.0100 0.0064 0.0075 0.0079 0.0079 0.0078 0.0075 0.0098 0.0075 0.0081 0.0075

10 Arrhythmia 0.0094 0.0089 0.0044 0.0075 0.0073 0.0066 0.0099 0.0059 0.0131 0.0069 0.0090 0.0069

11 Dermatology 0.0020 0.0034 0.0023 0.0025 0.0020 0.0039 0.0025 0.0023 0.0035 0.0023 0.0027 0.0019

12 SPECT Heart 0.0068 0.0083 0.0082 0.0096 0.0078 0.0097 0.0203 0.0185 0.0169 0.0079 0.0090 0.0078

13 Libras Movement 0.0084 0.0103 0.0086 0.0051 0.0075 0.0091 0.0101 0.0089 0.0122 0.0073 0.0078 0.0049

14 ILPD 0.0050 0.0049 0.0049 0.0054 0.0047 0.0051 0.0063 0.0081 0.0065 0.0049 0.0050 0.0045

15 Seeds 0.0152 0.0152 0.0057 0.0060 0.0057 0.0057 0.0061 0.0066 0.0151 0.0057 0.0061 0.0059

16 LSVT 0.0312 0.0273 0.0190 0.0209 0.0243 0.0221 0.0227 0.0201 0.0217 0.0204 0.0203 0.0186

17 SCADI 0.0081 0.0091 0.0058 0.0064 0.0063 0.0066 0.0117 0.0074 0.0080 0.0060 0.0076 0.0056

18 TOX 171 0.0213 0.0273 0.0179 0.0156 0.0177 0.0200 0.0181 0.0141 0.0213 0.0176 0.0182 0.0138

19 Leukemia 0.0134 0.0153 0.0137 0.0156 0.0114 0.0142 0.0134 0.0113 0.0199 0.0113 0.0136 0.0111

20 Lung discrete 0.0095 0.0105 0.0073 0.0092 0.0090 0.0085 0.0110 0.0078 0.0102 0.0985 0.0094 0.0081

21 Colon 0.0335 0.0350 0.0257 0.0305 0.0274 0.0264 0.0296 0.0335 0.0269 0.0273 0.0308 0.0273

https://doi.org/10.1371/journal.pone.0275727.t011
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uphold the effectiveness of the proposed algorithm in maintaining the highest classification

accuracy.

Table 12 shows the feature selection ratio results. The length of the optimal feature subset

obtained by algorithms is proportional to the feature selection ratio—the smaller the subset is,

Fig 2. The result of the accuracy of tested algorithms.

https://doi.org/10.1371/journal.pone.0275727.g002
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the lower the ratio. The results display that COFFO attained the smallest feature size in thirteen

datasets, accompanied by HLBDA with seven. Compared to other algorithms, COFFO can fre-

quently find a small, most informative subset of features. Indisputable, COFFO is efficient in

selecting the best feature selection solution and preventing the local optima.

For the statistical analysis, the Wilcoxon signed-rank test [70] is conducted for COFFO

comparison against other methods. If the p−value is smaller than 0.05, then the classification

accuracy of the two compared methods is significantly different. Table 13 displays the results

of the Wilcoxon test of COFFO as opposed to other methods. The results acquired prove that

COFFO’s classification performance is significantly better than the remaining candidates in all

cases except for HLBDA.

Particular emphasis should be placed on COFFO’s performance in high-dimensional data-

sets, such as TOX171 and Leukemia. Experimental results indicate that the proposed approach

is more effective in selecting relevant features than the original FFO and other tested methods.

For extensive analysis, error rate convergence graphs of COFFO, FFO and six more meth-

ods on eight datasets are provided in Fig 4.

The introduced COFFO generated the best initial population on six out of eight datasets, thus

showing a considerable advantage of chaotic-based and opposition-based learning implementa-

tion. BPSO obtained the best results in its initial phase on aDermatology dataset, while all tested

algorithms gave a similar performance on the Colon dataset. The proposed COFFO is drastically

better when generating the initial population than the original FFO in most datasets.

6 COVID-19 dataset and results

What started as an acute respiratory syndrome outbreak in China quickly became a pandemic.

The SARS-CoV-2, also called COVID-19, has caused the deaths of millions of people world-

wide since its beginning [71, 72]. Artificial intelligence can help with the prevention, detection

Fig 3. Boxplots analysis of the tested algorithms using average error rate across 21 datasets.

https://doi.org/10.1371/journal.pone.0275727.g003
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and diagnosis of COVID-19 [73]. This section displays the implementation of the proposed

algorithm in COVID-19 patient health prediction. The dataset of COVID-19 cases was gath-

ered from the [74]. Table 14 shows fifteen features contained within the said dataset. The aim

is to predict the death and recovery conditions determined by specific factors. Solely the data

containing values for “death” and “recov” status are considered. For validation, the data is

divided equally into two disjunct sets—training and testing. Each feature has a numeric form

assigned to it.

As Table 15 shows the proposed COFFO has optimal mean fitness value, best fitness value

and feature selection ratio value, followed by HLBDA.

Fig 5 demonstrates the average accuracy and selected feature size of all compared algo-

rithms tested on the COVID-19 dataset. COFFO outperformed the original FFO and other

algorithms by attaining the average classification accuracy of 92.46% and the smallest feature

size of 2.29. According to the collected data, the most selected features were gender, age and

symptom2. On the other hand, id and symptom6 were never selected by COFFO algorithm.

The results indicate that these features are ineffective in discerning the data patterns in patient

health prediction procedure. The accuracy of patient health prediction can be more precise in

the future by gathering additional clinical features.

Table 13. The result of the Wilcoxon test of presented COFFO against compared methods.

HLBDA BDA BABC BMVO BPSO CCSA BCOA CMAES LSHADE COPSO FFO

p-value 1.01 � 10−1 9.54 � 10−7 2.38 � 10−6 4.77 � 10−7 3.34 � 10−5 9.54 � 10−7 6.53 � 10−5 4.77 � 10−6 6.13 � 10−5 5.25 � 10−5 4.77 � 10−7

https://doi.org/10.1371/journal.pone.0275727.t013

Table 12. Feature selection ratio results for tested algorithms.

No. Dataset Feature selection ratio

HLBDA BDA BABC BMVO BPSO CCSA BCOA CMAES LSHADE COPSO FFO COFFO

1 Glass 0.2900 0.2900 0.3050 0.3250 0.3050 0.3300 0.3050 0.2900 0.3050 0.3050 0.2900 0.2900

2 Hepatitis 0.3185 0.3660 0.3159 0.3604 0.3261 0.3527 0.3053 0.3501 0.3370 0.3254 0.3248 0.3046

3 Lymphography 0.4499 0.4806 0.5082 0.4890 0.5002 0.4973 0.4471 0.5085 0.4334 0.4811 0.4652 0.4319

4 Primary Tumor 0.6678 0.6120 0.6707 0.5943 0.6675 0.6439 0.6060 0.6264 0.6414 0.6618 0.6071 0.5932

5 Soybean 0.6530 0.6230 0.6429 0.5745 0.6415 0.5972 0.6373 0.6284 0.6485 0.6109 0.6091 0.5734

6 Horse Colic 0.0871 0.1368 0.2425 0.2576 0.1964 0.2926 0.1055 0.1129 0.1501 0.1746 0.1218 0.1023

7 Ionosphere 0.2191 0.2678 0.2899 0.2881 0.2439 0.3425 0.2266 0.2455 0.2822 0.2437 0.2476 0.2177

8 Zoo 0.4562 0.4469 0.4969 0.5189 0.4251 0.4937 0.4532 0.4499 0.4938 0.4235 0.4463 0.4242

9 Musk 1 0.4686 0.4782 0.4946 0.4604 0.4963 0.5033 0.4460 0.4947 0.4848 0.4952 0.4607 0.4453

10 Arrhythmia 0.4051 0.4699 0.4805 0.4302 0.4706 0.4789 0.4050 0.4628 0.4496 0.4613 0.4381 0.4098

11 Dermatology 0.4575 0.4826 0.5572 0.5425 0.5341 0.5425 0.4370 0.4926 0.5074 0.5087 0.4819 0.4365

12 SPECT Heart 0.4477 0.4499 0.4866 0.5274 0.5044 0.5249 0.4161 0.4751 0.4274 0.5038 0.4614 0.4386

13 Libras Movement 0.4161 0.4518 0.4598 0.4313 0.4488 0.4645 0.4061 0.4302 0.4323 0.4486 0.4256 0.4043

14 ILPD 0.2950 0.3150 0.3350 0.2800 0.3250 0.3200 0.3050 0.3450 0.2950 0.3150 0.2950 0.2800

15 Seeds 0.3143 0.3143 0.3143 0.3214 0.3143 0.3143 0.3214 0.3430 0.3214 0.3143 0.3214 0.3214

16 LSVT 0.2845 0.3483 0.4501 0.4007 0.4426 0.4495 0.2986 0.4199 0.3166 0.4297 0.3781 0.3127

17 SCADI 0.2888 0.3728 0.4372 0.4154 0.4250 0.4523 0.3182 0.3980 0.3487 0.4259 0.3972 0.3736

18 TOX 171 0.4796 0.4831 0.5001 0.4453 0.4974 0.4984 0.4592 0.4981 0.4960 0.4982 0.4597 0.4445

19 Leukemia 0.4573 0.4696 0.4910 0.4177 0.4945 0.4934 0.4146 0.4913 0.4776 0.4910 0.4268 0.4140

20 Lung discrete 0.3713 0.4391 0.4862 0.4482 0.4809 0.4855 0.3808 0.4704 0.4378 0.4518 0.4467 0.3909

21 Colon 0.4380 0.4630 0.4865 0.4442 0.4909 0.4886 0.4179 0.4884 0.4667 0.4880 0.4522 0.4391

https://doi.org/10.1371/journal.pone.0275727.t012
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7 Discussion

The results illustrate that COFFO has shown the best performance in selecting relevant fea-

tures while significantly reducing dimensionality.

Fig 4. Error rate convergence graphs.

https://doi.org/10.1371/journal.pone.0275727.g004
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The improvement is reflected in both exploration and exploitation stages. Due to the fixed

position update strategy, the original FFO can get stuck in the local optima in its exploration

phase. To solve this problem, opposition-based learning and mapping solutions to generating

chaotic sequences have been implemented, thus achieving an initial population that is closer to

an optimum region of the search space and accelerating convergence towards the optimal global

solution in a complex feature space. Further, the exploitation phase has been improved with a

chaotic local search strategy for fine-tuned exploitation. The disadvantage of implementing

Table 14. COVID-19 dataset description.

No. Feature Description

1 id The ID of patients

2 location Patients’ location

3 country Patients’ country

4 gender Patients’ gender

5 age Patients’ age

6 sym on Patients’ symptoms date

7 hosp vis Patients’ hospital visit date

8 vis wuhan Previous patient visit to Wuhan, China

9 from wuhan Patient is a resident of Wuhan, China

10 symptom 1 Clinical symptom

11 symptom 2 Clinical symptom

12 symptom 3 Clinical symptom

13 symptom 4 Clinical symptom

14 symptom 5 Clinical symptom

15 symptom 6 Clinical symptom

https://doi.org/10.1371/journal.pone.0275727.t014

Table 15. The result of the best fitness value, mean fitness value, standard deviation of fitness value and feature selection ratio of algorithms on the COVID-19

dataset.

HLBDA BDA BABC BMVO BPSO CCSA BCOA CMAES LSHADE COPSO FFO COFFO

Best fitness 0.0679 0.0683 0.0701 0.0718 0.0712 0.0715 0.0697 0.0706 0.0713 0.0706 0.0701 0.0676

Mean fitness 0.0778 0.0793 0.0804 0.0825 0.0824 0.0839 0.0786 0.0809 0.0812 0.0804 0.0800 0.0761

Standard deviation 0.0082 0.0087 0.0075 0.0073 0.0091 0.0094 0.0118 0.0121 0.0108 0.0089 0.0089 0.0084

Feature selection ratio 0.1627 0.1740 0.2101 0.2427 0.1540 0.2313 0.1593 0.1987 0.1807 0.1536 0.1753 0.1527

https://doi.org/10.1371/journal.pone.0275727.t015

Fig 5. a) Accuracy and b) selected feature size of algorithms on the COVID-19 dataset.

https://doi.org/10.1371/journal.pone.0275727.g005
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chaotic opposition-based learning in the initial phase, and chaotic local search in the exploita-

tion phase, is the increase in time complexity.

8 Conclusion

This study presents a novel chaotic oppositional fruit fly optimization algorithm (COFFO), a

wrapper-based technique for feature selection. The COFFO employs chaotic-based and oppo-

sition-based learning to improve the performance of the original algorithm. With the current

praxis in mind regarding the optimization process, the introduced algorithm is tested on ten

unconstrained benchmark functions from CEC2019. For comparative analysis, eleven other

well-known metaheuristic methods are tested under the same experimental conditions. The

mean fitness and standard deviation are compared between tested algorithms, and, addition-

ally, statistical tests are conducted, which prove that COFFO outperforms all the other tested

methods. Further, the proposed approach outperforms the original FFO significantly.

The next phase centres on applying COFFO to 21 standard datasets. For performance com-

parison, eleven other well-known approaches are tested under the same experimental condi-

tions. The best fitness value, the mean fitness value, standard deviation, accuracy and feature

selection ratio are used for comparison. Wilcoxon statistical test is conducted, as well, for test-

ing the proposed COFFO against other methods. In all the above-noted datasets, COFFO out-

scored tested algorithms in most cases, specifically on high-dimensional feature sets.

Finally, COFFO is employed in COVID-19 patient health prediction, where the introduced

algorithm achieved excellent performance surpassing preceding algorithms. Among the peers,

especially as opposed to the original FFO, COFFO can select a subset of significant features

with high discriminatory capacities. Taking everything into account, the presented COFFO

not only obtains the highest classification accuracy but is also effective in dimensionality

reduction.

As part of the future research proposed COFFO can be tested on various NP-hard optimiza-

tion challenges from domains such as cloud computing, wireless sensor networks, portfolio

optimization and also applied for enhancing machine learning models.
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