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Carcinomas are phenotypically arrayed along an epithelial–mesenchymal

transition (EMT) spectrum, a developmental program currently exploited

to understand the acquisition of drug resistance through a re-routing of

growth factor signaling. This review collates the current approaches

employed in developing therapeutics against cancer-associated EMT, and

provides an assessment of their respective strengths and drawbacks. We

reflect on the close relationship between EMT and chemoresistance against

current targeted therapeutics, with a special focus on the epigenetic mecha-

nisms that link these processes. This prompts the hypothesis that carci-

noma-associated EMT shares a common epigenetic pathway to cellular

plasticity as somatic cell reprogramming during tissue repair and regenera-

tion. Indeed, their striking resemblance suggests that EMT in carcinoma is

a pathological adaptation of an intrinsic program of cellular plasticity that

is crucial to tissue homeostasis. We thus propose a revised approach that

targets the epigenetic mechanisms underlying pathogenic EMT to arrest

cellular plasticity regardless of upstream cancer-driving mutations.

1. The EMT spectrum

Recent evidence has advanced and broadened the defi-

nition of epithelial–mesenchymal transition (EMT) in

human pathologies. While earlier studies relied on the

use of key epithelial and mesenchymal markers to

detect its aberrant activation during pathogenesis, it

now becomes clear that this is a not a simple binary

decision to acquire either an epithelial or a mesenchy-

mal state. Rather, pathological EMT manifests

dynamic transitional states punctuated by metastable

intermediates (Nieto et al., 2016). This review collates

the current knowledge of the molecular mechanisms

underlying this phenomenon, and discusses current

efforts in the deployment and development of thera-

peutic interventions.

EMT is orchestrated by a core set of transcription

factors (EMT-TFs), each having the ability to drive

EMT via largely analogous genetic programs. These

include SNAI1/2, TWIST, and ZEB, among others.

As reviewed elsewhere, a myriad of growth factor and

developmental signals activate these EMT-TFs (Thiery

et al., 2009). However, the precise reasons for why this

highly controlled program is aberrantly triggered at

times are varied and often obscured. This is com-

pounded by the inherent difficulty in quantifying the
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extent of the so-called partial EMT in each disease

state – just exactly how stable is metastable? Such

complexities present a formidable challenge in rational

drug design. Indeed, with such variations, what works

in one context or in a particular patient could be futile

or harmful in another. Nevertheless, with fresh knowl-

edge and the benefit of hindsight, certain principles

have emerged.

Like with other examples of heterogeneity encoun-

tered in biology, there is also heterogeneity following

the execution of the EMT program. One explanation

is that EMT heterogeneity results from a diverse mix

of populations undergoing EMT at different rates

and downstream to various cues. For example, circu-

lating tumor cells (CTCs) isolated from patients with

breast cancer display a spectrum of epithelial–
mesenchymal hybrid features (Khoo et al., 2015;

Yadavalli et al., 2017; Yu et al., 2013a), the composi-

tion of which varies significantly among patients and

is greatly dominated by the underlying biology of the

primary tumor. Along the clinical course, the epithe-

lial–mesenchymal hybrid features of CTCs continue

to evolve, further illustrating that the metastable state

itself exists as a dynamic range of equilibrium. With

this appreciation of EMT as a spectrum of different

states, broader perspectives of how to manipulate the

metastable state within each context can thus be

provided.

2. EMT drug discovery platforms

At the heart of each drug discovery platform is a cohe-

sive concept. In the development of EMT-targeting

therapeutics, the following approaches have been

adopted: (a) killing cells that have undergone EMT

and (b) reversing EMT in metastable cells. It is worth

noting here that while these approaches share a com-

mon purpose, the rationale for each is distinct.

2.1. Targeting EMT-induced cancer stem cells

In addition to greater chemoresistance, cells that have

undergone EMT bear increased stem-like traits in vitro

(Mani et al., 2008; Morel et al., 2008) and in vivo

(Guo et al., 2012); this observation raised the hope

that targeting EMT could eradicate the rare self-

renewing and multipotent ‘cancer stem cells’ (CSCs)

that persist following conventional chemotherapy.

EMT is also associated with increased cell migration

and resistance to anoikis, properties that are associated

with tumor invasion and metastasis. Thus, the specific

killing of cells that have undergone EMT is an attrac-

tive therapeutic strategy against CSCs.

To date, the most extensive and prominent EMT-

targeting screen was performed on the HMLE series of

immortalized human mammary epithelial lines. These

lines have been well characterized in studies of cellular

transformation (Elenbaas et al., 2001). This model sys-

tem led to the discovery of the EMT-induced, tumor-

initiating CSC, typified by their CD44high/CD24low

phenotype (Mani et al., 2008; Morel et al., 2008). The

production of these cells was shown to be achieved

either through the forced expression of EMT-TFs

(SNAI1, TWIST1, and ZEB1) or through a combina-

tion of growth factors and RNAi (shEcad) (Mani

et al., 2008; Scheel et al., 2011).

A high-throughput screen in a 384-well format was

conducted using an HMLE derivative line that was

induced to undergo EMT by expressing shEcad. This

screen identified the selective cytotoxic effects of salino-

mycin, a potassium ionophore hitherto known as an

antibiotic, on the CSC subpopulation >100-fold relative

to paclitaxel (Gupta et al., 2009). Subsequent studies

revealed that salinomycin promotes the degradation of

the Wnt coreceptor LRP6 (lipoprotein receptor-related

protein 6) by inhibiting its phosphorylation, thereby

attenuating Wnt signaling (Lu et al., 2011). The

HMLE platform was further deployed in expanded

screens identifying other candidate compounds, most

notably ML239, which appears to target NF-jB signal-

ing (Carmody et al., 2012). More recently, a synthetic

derivative of salinomycin was shown to kill breast

CSCs by sequestering iron in the lysosome, thereby

triggering ferroptosis (Mai et al., 2017).

However, despite these advances, there are potential

drawbacks to the cytotoxic killing of carcinoma cells

undergoing an EMT. First, the endpoint of their tran-

sition is often not a permanent mesenchymal state but

rather a metastable intermediate state, thus rendering

them difficult to target. Indeed, the spectrum of inter-

mediate states exhibited by CTCs (Khoo et al., 2015;

Yadavalli et al., 2017; Yu et al., 2013a) likely means

that they are not an effective target. Second, cytotoxic-

ity exerts a selective pressure that may hasten the evo-

lution of CSCs into alternative metastable states not

sensitive to the drug.

2.2. Reversing EMT in metastable cancer cells

In using an EMT reversal approach, mesenchymal-like

carcinoma cells are reverted to their epithelial-like (origi-

nal) phenotype, thereby restricting the (acquired) self-

renewal and invasive properties of these cancer cells.

However, few suitable models exist for testing noncyto-

toxic, EMT-reversing agents. One platform used the

NBT-II rat bladder carcinoma line to screen for
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compounds that could reverse growth factor-induced cell

scattering (Chua et al., 2012). Although modest in scale,

this screen identified noncytotoxic compounds that tar-

get ALK5/TGFbR1, MAPK, Src, and PI3K to reverse

the scattering phenotype without impacting cellular pro-

liferation. Two of these compounds, PD0325901 and

saracatinib, enhanced mesenchymal-epithelial transition
(MET) when used in combination in non-small cell lung

cancer (NSCLC) lines (Chua et al., 2015). Two other

preclinical studies have reported the anti-EMT activity

of Src kinase inhibitors in ovarian and breast carcinoma

cell lines (Huang et al., 2013; Vultur et al., 2008).

A mesenchymal derivative of the HMLE cell model

has also been used to identify compounds that pro-

mote MET (Pattabiraman et al., 2016; Tam et al.,

2013). In a high-throughput screen with a firefly repor-

ter linked to the Cdh1/E-cadherin, the authors found

that forskolin and cholera toxin effectively induced

MET by activating protein kinase A (PKA) through

elevating intracellular cyclic AMP. This, in turn, acti-

vates PHD finger protein 2 (PHF2), which demethy-

lates histone H3K9me2 and H3K9me3 to derepress

epithelial markers and permanently reverse EMT dri-

ven by epigenetic mechanisms. Importantly, the resul-

tant MET strongly suppresses the tumor-initiating

capacity and increases the drug sensitivity of

EMT-prone carcinoma lines of various tissue origins.

A similar platform also utilized an epithelial marker

promoter induction (EpI) screen to identify histone

deacetylase inhibitors (HDACi) as a potent class of

EMT-reversing agents (Tang et al., 2016; Yun-Ju

Huang and Yo-Yan Huang, 2016).

An inherent shortcoming of the conventional cell-

based platforms is their inadequacy to model the com-

plex tissue microenvironment in which EMT occurs

in vivo. To mimic this, a coculturing system employing

modern microfluidics has been developed incorporat-

ing tumor spheroids in a three-dimensional hydrogel

scaffold (Aref et al., 2013). This model also allows for

assessing the contribution of endothelial cells in the

system. One could expect that, with continual

advances in methodology, new facets of the EMT pro-

cess and, therefore, new strategies of intervention will

be uncovered.

Several candidate EMT-reversing agents are already

available clinically, such as saracatinib. Initially devel-

oped for the treatment of cancer, saracatinib is a dual-

kinase inhibitor, targeting Src and Bcr-Abl tyrosine

kinases. Although saracatinib is well tolerated in

humans and showed promising results in animal stud-

ies, its efficacy in clinical trials has been disappointing

either alone or in combinatorial treatments

(Kim et al., 2009; Puls et al., 2011). In view of this,

the functionally related focal adhesion kinase (FAK)

could be tested for EMT reversal properties, as an

inhibitor PF-00562271 has shown encouraging signs in

early clinical trials (Infante et al., 2012).

A further application of these EMT-reversing inhibi-

tors would be in combination with other drugs to gener-

ate synthetic lethality. Along these lines, small chemical

inhibitors of various signaling pathways are currently

being used in clinical trials for their anti-EMT activities.

Among these, inhibitors targeting the TGF-b pathway –
a classical activator of EMT – have shown the most

promise. Of note, the TGF-b inhibitor, LY2157299

(galunisertib), is in phase II studies against glioblastoma

and hepatocellular carcinoma (Brandes et al., 2016;

Giannelli et al., 2016; Rodon et al., 2015). Activation of

the AXL receptor is reported to aberrantly phosphory-

late SMAD3 to induce EMT in hepatocellular carci-

noma (HCC) progression in collaboration with TGF-b
(Reichl et al., 2015). As such, the concurrent targeting

of AXL and TGF-b may prove superior to monother-

apy aimed at interfering with TGF-b signaling, and this

warrants further investigation, especially given the cur-

rent availability of AXL inhibitors in the clinic (Antony

et al., 2016; Byers et al., 2013; Feneyrolles et al., 2014;

Giannelli et al., 2016; Nieto, 2013).

Broadly speaking, inhibitors targeting the major cel-

lular signaling pathways often have an impact on the

EMT status of the carcinomas, as these pathways are

intimately linked with EMT during development

(Thiery et al., 2009; Voon and Thiery, 2017). It is

worth noting, too, the potential hazards of reversing

EMT in disseminated tumor cells, as MET is already

employed by these metastasized cells as a strategy to

promote colonization at distal sites (Beerling et al.,

2016; Nieto, 2013; Ocana et al., 2012; Tsai et al.,

2012). Therefore, precautions should be observed in

the use of EMT-reversing agents in the clinic and only

within a clear therapeutic window.

While these drugs may have anti-EMT activities,

they were developed to target cancer-driving mutations

within these pathways (Table 1). In other words, their

clinical benefits are seldom benchmarked against their

overall contribution to EMT-associated tumorigenicity

and plasticity. Ironically, their inability to completely

inhibit EMT may eventually become a driving force

behind chemoresistance against these drugs.

2.3. EMT, epigenetics, and chemoresistance

Numerous studies have reported the presence of resid-

ual resistant cells following chemotherapy, and these

cells have been associated with an EMT phenotype in

clinical settings as well as in animal models (Byers
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Table 1. A list of clinical trials and drug discovery experiments targeting EMT regulatory components.

Disease Tissues Inhibitors Targets Pathway targeted/mechanism Study type References

Fibrosis Kidney Cyclosporin Calcineurin Association of EMT and kidney

graft interstitial fibrogenesis

Retrospective Hazzan et al.

(2011), Hertig

et al. (2008)

Cyclosporin Calcineurin Early withdrawal of

immunosuppressant did not

reduce fibrosis risk in transplant

kidneys with EMT features

CERTITEM Rostaing et al.

(2015)

Cance Bladder Saracatinib c-Src Attenuated growth and metastasis

of transplanted tumors

Preclinical Green et al.

(2009)

Breast SM16 ALK5/TGFbR1 Reducing spontaneous metastases

of established allograft tumors

Preclinical Rausch et al.

(2009)

Ki26896 ALK5/TGFbR1 Reduced bone metastasis of breast

cancer cell line

Preclinical Ehata et al. (2007)

1400W, L-NAME,

L-NMMA

iNOS Impairment of HIF-1a and ER

stress/TGF-b/ATF3,4 crosstalk

Preclinical Granados-Principal

et al. (2015)

EW-7195/7197/7203,

IN-1130

ALK5/TGFbR1 Inhibition of TGF-b1-mediated EMT

and metastasis of breast cancer

Preclinical Park et al. (2011a,

b), Son et al.

(2014)

Salinomycin LRP6 Identified in high-throughput screen

to show selectivity against

CD44high/CD24low mammary

cancer stem cells

HTS Gupta et al.

(2009), Lu et al.

(2011)

ML239 NF-jB pathway Identified in an expanded screen

using the same platform as Gupta

et al.

HTS Carmody et al.

(2012)

Colon LY2109761 TGFbRI/II Reduced liver metastases in a

metastatic colorectal xenograft

model

Preclinical Li et al. (2010a,b),

Zhang et al.

(2009)

Sorafenib/regorafenib SHP1 Activate SHP1 to block TGF-b-

induced EMT and STAT3

phosphorylation

Preclinical Fan et al. (2015,

2016)

Emodin CK2alpha Inhibition of CK2alpha suppressed

tumorigenicity and EMT of CRC

cells

Preclinical Zou et al. (2011)

HNSCC Gefitinib EGFR Gefitinib sensitivity in HNSCC lines

is associated with EMT markers

Preclinical Frederick et al.

(2007)

Gefitinib/saracatinib EGFR/c-Src Combined targeting of EGFR and c-

Src effectively inhibited HNSCC

growth and invasion

Preclinical Koppikar et al.

(2008)

Cisplatin, cetuximab,

and valproic acid

HDAC/EGFR HDAC inhibitory activity of valproic

acid may offer same benefits as

vorinostat in suppressing EGFR

expression and reversing EMT

Phase II Bruzzese et al.

(2011), Caponigro

et al. (2016)

HCC Galunisertib TGFbRI Inhibiting TGF-b signaling restores

E-cadherin expression and

diminishes the migratory capacity

of HCC cells

Phase II Giannelli et al.

(2016, 2014)

miR-216a inhibitor PTEN, SMAD7 miR-216a/217 targets PTEN and

SMAD7 to confer sorafenib

resistance

Preclinical Xia et al. (2013)

miR-125 SMAD2/4 Interference of SMAD2/4 to

attenuate TGF-b-mediated

chemoresistance

Preclinical Zhou et al. (2015)
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et al., 2013; Fischer et al., 2015; Kitai et al., 2016;

Manchado et al., 2016; Shao et al., 2014; Zheng et al.,

2015). EMT-associated chemoresistance may also be

accompanied with a switch to compensatory pathways,

so that carcinoma cells can regain cellular homeostasis

(Kitai et al., 2016; Manchado et al., 2016). While the

precise basis for the correlation between EMT and cell

survival remains obscure, it is likely that intermediate

EMT states offer attractive ‘safe havens’ in which cell

signaling can be re-wired to become independent of

the targeted pathway. Here, the capacity to shift to an

alternate and viable phenotype relies on the cell’s

EMT-endowed plasticity, often termed epithelial–
mesenchymal plasticity (EMP) (Byers et al., 2013;

Nieto, 2013).

It has been proposed that intermediate states repre-

sent quasi-discreet epigenetic states, which are

characterized by altered histone modifications on key

loci such as E-cadherin/Cdh1 and miR-200 (Nieto

et al., 2016; Tam and Weinberg, 2013). Accordingly,

the same epigenetic machineries that mark these inter-

mediate states are often implicated in the acquisition

of chemoresistance. An important class of such histone

modifiers are the polycomb group (PcG) repressor

complexes, PRC1 and -2. During EMT, the PRC2

complex is recruited to the CDH1 promoter by the

EMT-TF SNAI1, whereby it catalyzes the trimethyla-

tion of histone H3K27 to repress E-cadherin expres-

sion (Herranz et al., 2008). The same complex is also

responsible for the trimethylation and silencing of

miR-200, which gives rise to chemoresistance (Ceppi

et al., 2010; Lim et al., 2013; Sato et al., 2017; Tryn-

dyak et al., 2010). PRC1 components, such as BMI1,

are considered stem cell factors that support normal

Table 1. (Continued).

Disease Tissues Inhibitors Targets Pathway targeted/mechanism Study type References

Lung Erlotinib EGFR Erlotinib sensitivity in NSCLC lines

and xenografts is determined by

EMT status

Preclinical Thomson et al.

(2005)

Erlotinib/PQIP EGFR/IGF-1R EMT status determines the

efficacy of combined blockade of

EGFR/IGF-1R in NSCLC lines and

xenografts

Preclinical Buck et al. (2008)

Silmitasertib CK2 Inhibition of TGF-b1 induced EMT

in A549 cells

Preclinical Kim and Hwan

Kim (2013)

Silmitasertib CK2 and

FAK–Src–paxillin

Blocks micropillar-induced FAK

activation and EMT

HTS Kim et al. (2015)

Gefitinib/DN-30 EGFR/cMET Concurrent suppression of c-MET

significantly increases gefitinib

sensitivity in NSCLC cells

Preclinical Yano et al. (2008),

Zucali et al.

(2008)

Gefitinib EGFR Gefitinib sensitivity of NSCLC lines

is correlated with the expression

of EMT-associated markers

Preclinical Frederick et al.

(2007)

Melanoma PLX4032 BRAFV600E Significant regression of metastatic

melanoma that carries the V600E

BRAF mutation

Approved Flaherty et al.

(2010)

Ovary ABT-627 ET-1/ETAR-ILK Inhibition of ILK suppressed EMT

and tumor growth in a xenograft

model

Preclinical Rosano et al.

(2005)

ZD4054 ETAR/paclitaxel Cotreatment with ZD4054

sensitized ovarian xenograft

tumors to paclitaxel

Preclinical Rosano et al.

(2007)

Saracatinib c-Src Inhibition of c-Src restored E-

cadherin expression in ovarian cell

lines with intermediate

mesenchymal state and

attenuated spheroid formation

Preclinical Huang et al.

(2013)

Pancreas LY2109761 TGFbRI/II Significant reduction in

spontaneous abdominal liver

metastases in combination with

gemcitabine

Preclinical Melisi et al.

(2008)
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stem cells and their transformed counterparts (Park

et al., 2004; Valk-Lingbeek et al., 2004). The upregula-

tion of BMI1 during carcinogenesis was reported to

induce EMT and the invasive phenotype, and this was

mediated via its cooperative actions with TWIST1 on

Cdh1 and INK4A (Song et al., 2009; Yang et al.,

2010).

Acetylation is another histone modification associ-

ated with EMT and chemoresistance. During cancer

metastasis, the histone deacetylases (HDAC) 1 and

2 – as part of the Mi-2–nucleosome remodeling and

deacetylase (NuRD) repressive complex – are recruited

by Snail and TWIST to the Cdh1 and Foxa1 promoters,

leading to their repression, respectively (von Burstin

et al., 2009; Fu et al., 2011; Peinado et al., 2004; Xu

et al., 2017). However, various components of the

NuRD complex, and specifically the HDACs, will con-

fer drug resistance to cancer cells (Fu et al., 2011; Li

et al., 2014; Sakamoto et al., 2016). Consequently,

HDAC inhibitors such as vorinostat, mocetinostat, and

valproic acid are currently being evaluated as anti-EMT

agents (Bruzzese et al., 2011; Caponigro et al., 2016;

Lan et al., 2016; Meidhof et al., 2015; Sakamoto et al.,

2016; Schech et al., 2015; Schobert and Biersack, 2017).

A similar correlation between EMT and chemoresis-

tance is also observed for lysine-specific demethylases,

such as LSD1, an emerging class of epigenetic modula-

tors (Bennani-Baiti, 2012; Lei et al., 2015; Nagasawa

et al., 2015). LSD1 modulates gene expression by

removing methyl groups on lysine 4 or lysine 9 of his-

tone H3 to repress or activate target promoters,

respectively (Shi et al., 2004). In the context of EMT,

the induction of EMT in mammary epithelial cells

involves the recruitment of LSD1 by SNAI1 to pro-

moters of E-cadherin, claudin, and cytokeratin family

genes, which targets them for repression (Lin et al.,

2010a,b). In recent years, the association of LSD1

expression with malignancy, chemoresistance, and

poor survival has raised interest into the therapeutic

potential of its inhibitors (Lv et al., 2012; Nagasawa

et al., 2015; Yu et al., 2013b; Zhao et al., 2012).

In addition to histone modification, DNA methyla-

tion patterns are altered during persistent, mutation-

driven EMT during carcinogenesis (McDonald et al.,

2011; Tam and Weinberg, 2013). A key mediator of

these aberrations appears to be the ten-eleven translo-

cation 1 (TET1) methylcytosine dioxygenase, which

initiates the demethylation of DNA and is associated

with tumorigenesis in many cancers (Fu et al., 2014;

Song et al., 2013; Sun et al., 2013; Tsai et al., 2014).

However, there is opposing evidence as to the role of

TET1 in EMT-induced chemoresistance: TET1 has

been reported to promote cisplatin resistance through

its induction of EMT in ovarian cancer (Han et al.,

2017), but act as a barrier against EMT in mammary

epithelial cells by derepressing the miR-200 promoter

(Song et al., 2013).

Finally, it warrants highlighting that the epigenetic

states of the EMT intermediates are cooperatively

maintained at multiple levels of epigenetic regulation,

with all the usual regulatory elements and limitations

of a complex network. For example, just as miR-200 is

a target of PRC2-mediated repression, the PRC2

component Suz12 is conversely targeted by miR-200

(Iliopoulos et al., 2010; Lim et al., 2013). Moreover, a

functional crosstalk between TET1 and NuRD during

EMT is also likely, given their cooperation in vitamin

C-induced MET during somatic cell reprogramming

(Chen et al., 2013).

2.4. A better mousetrap beyond the EMT

spectrum?

From a clinical perspective, the resistance of cancer

cells by virtue of their EMT state necessitates targeting

the compensatory pathways employed by the cells for

their eradication. However, it is just as likely that the

very same mechanisms will later give rise to resistance

to a new drug. Hence, rather than targeting the ever-

shifting compensatory growth factor pathways, it

would seem a better idea to shutdown cellular plastic-

ity. A major obstacle in this approach is that we have

an incomplete grasp of the molecular underpinnings of

this plasticity. Nevertheless, some cues can be drawn

from the field of tissue stem cells, where recent data

reveal a genetic program in differentiated cells that

promotes cellular plasticity.

Modern lineage tracing studies have demonstrated

that some differentiated epithelial cells possess an

innate ability to dedifferentiate in vivo, and gain multi-

potency under specific circumstances (van de Moosdijk

et al., 2017; Rios et al., 2016). This phenomenon is

most clearly seen during injury and tissue regeneration,

but also during inflammation and at certain stages

during postnatal development, such as in the mam-

mary gland during pregnancy. Indeed, in specific

instances, the induction of stemness is reliant on the

coactivation of the EMT program (Guo et al., 2012;

Ye et al., 2015). And, although the precise reason for

this association is not known, it is clear that the capac-

ity for somatic cell reprogramming – which was dra-

matically demonstrated in the generation of induced

pluripotent stem cells (iPSc) from terminally differenti-

ated fibroblasts – is integral to tissue homeostasis (van

Es et al., 2012; Gregorieff et al., 2015; Smith et al.,

2016; Takahashi and Yamanaka, 2006; Tetteh et al.,
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2016). In this light, it is possible that our current

investigation of EMT-associated plasticity and induc-

tion would converge on common molecular mecha-

nisms. That is, disease-associated EMT may be a

pathological manifestation of aberrantly activated nor-

mal somatic reprogramming of differentiated cells into

functional stem cells (Ye et al., 2015).

Such a model of common epigenetic pathways gov-

erning EMP and induced pluripotency (iP) indeed has

the capacity to accommodate common observations

between the two phenomena. A prime example of this

would be the role of p53 as a barrier, whereby the loss

of its function lowers the threshold for entrance into

EMP just as it would enhance the iP efficiency

(Ansieau et al., 2008; Austin et al., 2013; Hong et al.,

2009; Kawamura et al., 2009; Marion et al., 2009;

Mu et al., 2017). A significant part of this is mediated

through the p53-miR-200 regulatory network, which

features prominently in the regulation of EMP and iP

(Chang et al., 2011; Hu et al., 2014; Kim et al., 2011;

Song et al., 2013). A further common feature is the

repressive effects exerted by lineage-determining tran-

scription factors, such as BRIGHT/ARID3A,

RUNX3, GRHL2, and PAX5 (Chung et al., 2016;

Hanna et al., 2008; Hikichi et al., 2013; Popowski

et al., 2014; Voon et al., 2012). Of relevance, both pro-

cesses are governed by cell extrinsic factors, such as

growth factors (van Es et al., 2012; Lluis et al., 2008;

Thiery et al., 2009; Vidal et al., 2014), and intrinsic

epigenetics elements, such as the TET/miR-200 axis

(Hu et al., 2014; Song et al., 2013) and the NuRD

repressor complex (Chen et al., 2013; Ebrahimi, 2015;

Fu et al., 2011; dos Santos et al., 2014).

Despite these parallels, there are obvious differences

between the induction of EMP in carcinoma and

somatic reprogramming, specifically during the genera-

tion of iPSc from fibroblasts. Most notably, the induc-

tion of pluripotency in the case of the latter is

preceded by MET. It reverts fibroblasts into an epithe-

lial phenotype similar to that of embryonic stem cells

(Li et al., 2010b). Consistent with this, pro-EMT sig-

nals like TGF-b (Ichida et al., 2009; Qin et al., 2014;

Vidal et al., 2014), Wnt/b-catenin (Ho et al., 2013;

Lluis et al., 2008), and Hippo (Qin et al., 2012) path-

ways act as barriers against iP in a context-specific

manner. At the same time, inhibitors of these path-

ways, such as the aforementioned anti-EMT TGF-b
inhibitors, strongly enhance the efficiency of somatic

reprogramming (Ichida et al., 2009; Maherali and

Hochedlinger, 2009). Overall, it seems EMP and iP

each require a phenotypic shift along the EMT spec-

trum (albeit, in opposite directions) toward an inter-

mediate metastable state en route to dedifferentiation

and reprogramming. If so, then it is imperative that

the innate molecular barriers – such as oxidative and

methylation states of the chromatin and their regula-

tors, which safeguard against phenotypic slippage –
are thoroughly elucidated. Ultimately, the promise of

a plasticity-centric paradigm is its amenability to the

precise targeting of EMT-associated plasticity in carci-

nomas irrespective of the upstream driver mutations,

and invulnerable to the re-routing of the signaling cir-

cuit observed in current strategies. Accordingly, the

development of these next-generation therapeutics will

require discovery platforms that assay the functional

output of the involved epigenetic machineries rather

than, for example, the activation of a particular mar-

ker gene.

3. Concluding remarks

EMT has emerged in recent years to be a major driver

of chemoresistance to anticancer therapies in the clinic.

This is closely linked to phenotypic plasticity in the

form of metastable intermediates over the EMT spec-

trum. The biological reason for this phenomenon is

currently unclear, but it is possible that aberrant EMT

in carcinoma cells unlocks an innate dedifferentiation

program integral to tissue repair, development, and

homeostasis. Importantly, such an engine of plasticity

would also fuel tumor heterogeneity, progression, and

immune escape. Despite the clear need, targeting EMT

in cancer therapy has proven challenging due to con-

ceptual difficulties in the design of viable screens. Con-

ventional screening approaches that focus on

interfering with specific molecular interactions are

unsuitable or have yielded inconsistent results. In this

review, we surveyed the current efforts to develop and

deploy anti-EMT therapeutics and discussed their rela-

tive effectiveness. By way of this evaluation, a novel

concept is put forth to selectively inhibit low-order epi-

genetic mechanisms that promote plasticity. In doing

so, the phenotypic flexibility that enables cancer cells to

be ‘moving targets’ will be greatly restricted, thereby

enhancing the efficacies of current therapeutics.
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