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Supplementary Figure S1
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Figure S1. YY?2 is negatively correlated with disease progression in clinical HCC
patients. (A and B) mRNA expression levels of CSC markers in adherent and
stem-like tumor spheres formed by MHCC-97H (A) and HepG2 (B) cells, as
determined using gRT-PCR. (C) mRNA expression levels of YY2 and GTF2H4 in
adherent and stem-like tumor spheres formed by HCC-LM3, as determined using
gRT-PCR. (D) Correlation between YY2 expression level and HCC disease
progression, as analyzed using TCGA dataset. B-actin was used for gRT-PCR
normalization. Quantification data are shown as mean = SD (n = 3). P values were
calculated using two-tailed unpaired Student’s t-test. Ad: adherent cells; Sp: stem-like

tumor spheres; LIHC: liver hepatocellular carcinoma; **P < 0.01.



Supplementary Figure S2
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Figure S2. YY2 overexpression suppresses CSC markers expression levels. (A)
YY2 protein expression level in HCC-LM3, MHCC-97H, and HepG2 cells
transfected with YY2 overexpression vector, as determined using western blotting. (B)
YY2 expression level in HCC-LM3 cells transfected with YY2 overexpression vector,
as determined using immunofluorescence (scale bars: 15 um). (C) mRNA expression
levels of CSC markers in HepG2 cells overexpressing YY2, as determined by
gRT-PCR. (D and E) Establishment of YY2 knock-out HCC cells using CRISPR/Cas?.
Sequencing results depicting the deleted region (D) and western blotting results
showing YY2 protein expression level in YY2 knock-out HCC cells (E) are shown.
Cells transfected with pcCon or corresponding wild-type cells were used as controls.
B-actin was used for gRT-PCR normalization and as western blotting loading control.
Quantification data are shown as mean = SD (n = 3). P values were calculated using

two-tailed unpaired Student’s t-test. pcCon: pcEF9-Puro. *P < 0.05; **P < 0.01.



Supplementary Figure S3
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Figure S3. YY2 negatively alters liver CSC frequency. (A and B) Liver CSC
frequency in YY2-overexpressed (A) and YY2 knock-out (B) MHCC-97H cells, as
determined by in vitro LDA. (C) Anchorage-independent colony formation potential
of YY2-overexpressed HCC cells, as determined using soft agar assay. Representative
images (scale bars: 100 um) and quantification results (n = 6) are shown. Cells
transfected with pcCon or wild-type cells were used as controls. Quantification data
are shown as mean = SD. P values were calculated using two-tailed unpaired

Student’s t-test. pcCon: pcEF9-Puro. **P < 0.01.



Supplementary Figure S4
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Figure S4. Effect of YY2 alteration on HCC cells migration potential and drug



resistance. (A) Migration potential of HCC cells overexpressing YY2. Representative
images (scale bars: 100 um) and quantification of migrated cells from three
independent experiments (n = 6/experiment) are shown. (B and C) YY2 mRNA (n =
3; B) and protein (C) expression levels in HCC cells transfected with shRNAs
targeting different sites of YY2, as determined using gRT-PCR and western blotting,
respectively. (D) Migration potential of YY2 knock-down HCC cells. Representative
images (scale bars: 100 um) and quantification of migrated cells from three
independent experiments (n = 6/experiment) are shown. (E) ICso of cisplatin in
YY2-overexpressed HCC-LM3 cells (n = 3). Cells transfected with shCon or pcCon
were used as controls. B-actin was used for gRT-PCR normalization and as western
blotting loading control. Quantification data are shown as mean + SD. P values were
calculated using two-tailed unpaired Student’s t-test. pcCon: pcEF9-Puro. *P < 0.05;
**P < 0.01.



Supplementary Figure S5
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Figure S5. YY2 suppresses HCC cell stemness in vivo. (A) YY2 protein expression
level in HCC-LM3 stably overexpressing YY2, as determined using western blotting.
(B) Tumor weight at day 12 after transplantation. Ratio of the number of mice with
tumor to the number of total mice transplanted with indicated cells are shown. (C)
YY2, CD44, and EpCAM protein expression levels in the xenografted tumors formed
using the indicated cells, as determined using western blotting. Cells transfected with
pcCon were used as controls. 3-actin was used as western blotting loading controls for
cellular experiments; while GAPDH was used as loading controls for samples from
xenograft experiments to avoid antibody cross-reactivity with mouse [-actin.
Quantification data are shown as mean + SD. P values were calculated using one-way

ANOVA. pcCon: pcEF9-Puro.



Supplementary Figure S6
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Figure S6. YY2 promotes liver CSC differentiation. (A) Schematic diagram of

EGFP reporter vectors with CMV-Numb (Pcmv-nump-EGFP) or  CMV-Albumin

(Pcmv-a-EGFP) promoter. (B) EGFP-positive cells in HCC-LM3 cells transfected

with pEGFP-N1, Pcvv-numb-EGFP, or Pemv-a-EGFP vector (scale bars: 200 um). (C

and D) Percentages of EGFP-positive cells in adherent and stem-like tumor spheres

formed by HCC-LM3 cells transfected with Pcyv-nump-EGFP (C) and Pevv-a-EGFP

(D) vector. (E and F) Percentages of EGFP-positive cells in YY2-overexpressed (E)

and YY2 knock-out (F) HCC-LM3 cells transfected with Pcwmv-ain-EGFP vector, as

analyzed using flow cytometry. (G and H) Protein expression levels of Numb and



Albumin in YY2-overexpressed (G) and YY2 knock-out (H) HCC-LM3 cells, as
determined by western blotting. Cells transfected with pcCon or wild-type cells were
used as controls. B-actin was used as western blotting loading control. Ad: adherent
cells; Sp: stem-like tumor spheres. Quantification data are shown as mean + SD (n =
3). P values were calculated using two-tailed unpaired Student’s t-test. pcCon:

pcEF9-Puro; **P < 0.01.
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Supplementary Figure S7
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Figure S7. YY2 decreased mitochondrial membrane potential (A¥n). (A)
Quantification results of mitochondria in YY2-overexpressed HCC-LM3 stem-like
tumor spheres (n = 30). (B) Transmission electron microscopy images of
mitochondria in YY2 knock-out HCC-LM3 stem-like tumor spheres. Representative
images (left; scale bars: 200 nm) and quantification results (right; n = 30) are shown.
(C and D) AW, of YY2-overexpressed (C) and YY2 knock-out (D) MHCC-97H
stem-like tumor spheres, as examined using MitoTracker Red/MitoTracker Green
staining and confocal microscopy. Representative images (left; scale bars: 10 um) and
quantification results (right; n = 10) are shown. (E and F) A¥, in YY2-overexpressed
(E) and YY2 knock-out (F) MHCC-97H stem-like tumor spheres, as determined using
JC-1 staining and flow cytometry (n = 3). Cells transfected with pcCon or wild-type
cells were used as controls. Quantification data are shown as mean + SD. P values

were calculated using two-tailed unpaired Student’s t-test. pcCon: pcEF9-Puro; **P <
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Supplementary Figure S8
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Figure S8. YY2 negatively regulates A¥, by suppressing mitochondrial fission.

(A) A¥Ym in YY2-overexpressed HCC-LM3 stem-like tumor spheres treated with

staurosporine, as examined using MitoTracker Red/MitoTracker Green staining (n =

10). (B and C) Mitochondria membrane potential in stem-like tumor spheres formed

by YY2-overexpressed MHCC-97H cells treated with staurosporine, as determined by

JC-1 staining and flow cytometry. (D) A¥m in HCC-LM3Y"?° stem-like tumor

spheres treated with mDivi-1, as examined using MitoTracker Red/MitoTracker

Green staining (n = 10). (E and F) Mitochondria membrane potential in stem-like

tumor spheres formed by YY2 knock-out MHCC-97H cells treated with mDivi-1, as

determined by JC-1 staining and flow cytometry. Cells transfected with pcCon or
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wild-type cells were used as controls. Final concentrations of staurosporine and
mDivi-1 used were 1 uM and 10 uM, respectively. Quantification data are shown as
mean + SD. P values were calculated using two-tailed unpaired Student’s t-test.

pcCon: pcEF9-Puro; **P < 0.01.
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Supplementary Figure S9
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Figure S9. Mitochondrial fission is crucial for YY2 regulation on tumor sphere
formation potential. (A and B) Tumor sphere formation potential of
YY2-overexpressed MHCC-97H cells treated with staurosporine. Representative
images (A) and quantification results (B) are shown. (C and D) Tumor sphere
formation potential of MHCC-97HY "% cells treated with mDivi-1. Representative
images (C) and quantification results (D) are shown. Cells transfected with pcCon or
wild-type cells were used as controls. Scale bars: 200 um. Final concentrations of
staurosporine and mDivi-1 used were 1 uM and 10 uM, respectively. Quantification

data are shown as mean £ SD (n = 6). P values were calculated using two-tailed
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unpaired Student’s t-test. pcCon: pcEF9-Puro; **P < 0.01.
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Supplementary Figure S10
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Figure S10. YY2 regulates DRP1 transcription. (A and B) mRNA expression levels

of mitochondrial fission-related genes in stem-like tumor spheres formed by YY2
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knock-out HCC-LM3 (A) and MHCC-97H (B) cells. (C) Relative luciferase activities
of DRP1 reporter vectors in HCC-LM3 cells overexpressing YY2. (D) Schematic
diagram showing YY2 mutations in corresponding mutant YY2 overexpression vectors
(pcYY2P22 peYY29%%4 and peY Y25 respectively). (E-G) Relative luciferase
activities of DR-Luc-1 (E), DRP1 mRNA (F), and protein (G) expression levels in
HCC-LM3 cells overexpressing indicated YY2 mutants. Cells transfected with pcCon
or corresponding wild-type cells were used as controls. Quantification data are shown
as mean £ SD (n = 3). P values were calculated using two-tailed unpaired Student’s

t-test. pcCon: pcEF9-Puro; *P < 0.05; **P < 0.01; NS: not significant.
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Supplementary Figure S11
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Figure S11. Efficacies of DRP1 overexpression vector and shRNA expression
vectors targeting DRP1. (A) DRP1 protein expression level in HCC-LM3 cells
transfected with pcDRP1, as determined using western blotting. (B and C) DRP1
mRNA (B) and protein (C) expression levels in HCC-LM3 cells transfected with
shRNAs targeting different sites of DRP1, as determined using qRT-PCR and western
blotting, respectively. Cells transfected with pcCon or shCon were used as controls.
-actin was used for gRT-PCR normalization and as western blotting loading control.
Quantification data are shown as mean £ SD (n = 3). P values were calculated using

two-tailed unpaired Student’s t-test. pcCon: pcEF9-Puro; **P < 0.01.
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Supplementary Figure S12
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Figure S12. DRP1 promotes HCC cells stemness. (A and B) Tumor sphere
formation potential (A; scale bars: 200 um; n = 6) and liver CSC frequency (B) in
DRP1 knock-down HCC-LM3 cells, as determined using in vitro LDA. (C and D)
Tumor sphere formation potential (C; scale bars: 200 um; n = 6) and liver CSC
frequency (D) in DRP1-overexpressed HCC-LM3 cells, as determined using in vitro
LDA. Cells transfected with shCon or pcCon were used as controls. Quantification
data are shown as mean + SD. P values were calculated using two-tailed unpaired

Student’s t-test. pcCon: pcEF9-Puro; **P < 0.01.
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Supplementary Figure S13
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Figure S13. DRP1 expression level positively correlates with disease progression
and poor prognosis in clinical HCC patients. (A) Correlation between DRP1
expression level and HCC disease progression, as analyzed using TCGA dataset (n =
313; P < 0.05). (B) Kaplan-Meier plot of overall survival (OS) in clinical HCC
patients with low and high DRP1 expression as obtained from the TCGA database (n
= 362; P < 0.01). P values were calculated using one-way ANOVA. LIHC: liver

hepatocellular carcinoma.
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Supplementary Figure S14
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Figure S14. DRP1 downregulation is crucial for YY2 regulation on stem-like

tumor sphere formation potential. (A and B) Tumor sphere formation potential of
YY2-overexpressed, DRP1-overexpressed (A) and YY2 knock-out, DRP1 knock-down
(B) HCC-LM3 cells. Cells transfected with pcCon or wild-type cells transfected with
shCon were used as controls. Scale bars: 200 um. Quantification data are shown as
mean £ SD (n = 6). P values were calculated using two-tailed unpaired Student’s t-test.

pcCon: pcEF9-Puro. **P < 0.01.
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Supplementary Figure S15
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Figure S15. YY2 promotes liver CSC differentiation by suppressing DRP1. (A

and B) Percentages of EGFP-positive cells in YY2-overexpressed,

DRP1-overexpressed (A) and YY2 knock-out, DRP1 knock-down (B) HCC-LM3 cells
transfected with Pcwvan-EGFP vector, as analyzed using flow cytometry. Cells
transfected with pcCon or wild-type cells transfected with shCon were used as

+

controls. Quantification data are shown as mean + SD (n = 3). P values were

calculated using two-tailed unpaired Student’s t-test. pcCon: pcEF9-Puro; **P < 0.01.
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Supplementary Figure S16
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Figure S16. YY2 mediates HCC tumorigenesis potential by regulating DRP1. (A)
Protein  expression levels of YY2 and DRP1 in YY2-overexpressed,
DRP1-overexpressed HCC-LM3 stable cells, as examined using western blotting. (B)
Tumor weight at day 14 after transplantation. Ratio of the number of mice with tumor
to the number of total mice transplanted with indicated cells are shown. (C-F)
Expression levels of YY2 (C), DRP1 (D), CD44 (E), and Numb (F) in the tissue
section of xenografted tumors formed by the indicated cells, as analyzed using
immunohistochemical staining (n = 6). (G) Relative length of mitochondria in the
tissue section of xenografted tumors formed by the indicated cells, as analyzed using
transmission electron microscopy (n = 30). Tumor lesions formed by HCC-LM3 cells
transfected with pcCon were used as controls. B-actin was used as western blotting
loading control. Quantification data are shown as mean + SD. P values were
calculated using one-way ANOVA (B) or two-tailed unpaired Student’s t-test (C-G).
pcCon: pcEF9-Puro. ** P < 0.01.
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Supplementary Figure S17
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Fig. 7
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Supplementary Fig. S2
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Supplementary Fig. S5
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Supplementary Fig. S10
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S10, S11, S16. (continued)
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Supplementary Fig. S11
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16. (continued)
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Supplementary Fig. S16
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Figure S17. Uncropped western blots with the indicated areas of selection in
Figs.1, 2,5, 7 and Supplementary Figs. S2, S4, S5, S6, S10, S11, S16.
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Supplementary Table S1. Primer pairs used for gRT-PCR.

Genes |Refseq No. Forward primer sequence (5'-3")  |Reverse primer sequence (5'-3")
YY2 NM_206923.4 GAAGTGGTGGGCTATTGCGA |AGGGTCATCTGGAAGTGCTC
GTF2H4|NM_001517.5 TATTGGACCGATTGTATGGGCA |AGCCCTGTACTTTCCTCCTGA
Nanog |NM_0248654 |ATAACCTTGGCTGCCGTCTC |AGCCTCCCAATCCCAAACAA
EpCAM |NM_002354.3 TGCTGGAATTGTTGTGCTGG AAGATGTCTTCGTCCCACGC
OCT4 |NM_002701.6 |TGAGTAGTCCCTTCGCAAGC |[TTAGCCAGGTCCGAGGATCA
Vimentin|NM_003380.5 |GACGCCATCAACACCGAGTT |CTTTGTCGTTGGTTAGCTGGT
Snail NM_005985.4 TCGGAAGCCTAACTACAGCGA |AGATGAGCATTGGCAGCGAG
DRP1 |NM_012062.5 TCACCCGGAGACCTCTCATTC |GGTTCAGGGCTTACTCCCTTAT
MFF NM_001277061.2|ACTGAAGGCATTAGTCAGCGA |[TCCTGCTACAACAATCCTCTCC
MID49 |NM_139162.4 ATGGCAGAGTTCTCCCAGAAA |GCCCTGTCAATGAACCGCT
MID51 |[NM_019008.6 CACGGCCATTGACTTTGTGC TCGTACATCCGCTTAACTGCC
FIS1 NM_016068.3 AGCGGGATTACGTCTTCTACC |CATGCCCACGAGTCCATCTTT
B-actin [NM_001101.3 CGAGCGCGGCTACAGCTT TCCTTAATGTCACGCACGATTT
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Supplementary Table S2. Antibodies wused for western blotting,
immunofluorescence, immunohistochemistry, and ChlP assay.
Antibody Product No. [Maker Experiment Dilution
Anti-YY2 sc-374455  |Santa Cruz|\Western blotting 1/1000
Biotechnol ||HC 1/100
ogy Immunofluorescence 1/100
ChIP assay 30 pg/mL cell lysate
Anti-DRP1 12957-1-AP |Proteintech |Western blotting 1/1000
Immunofluorescence 1/100
IHC (clinical tissues) 1/100
Anti-CD44 15675-1-AP |Proteintech [Western blotting 1/1000
Immunofluorescence 1/100
IHC (clinical tissue) 1/100
Anti-EpCAM 21050-1-AP |Proteintech |Western blotting 1/10000
IHC (clinical tissue) 1/500
Anti-CD44 A19020 ABclonal |Western blotting (xenograft) [1/1000
IHC (xenograft) 1/100
Anti-EpCAM A23075 ABclonal |Western blotting (xenograft) {1/10000
IHC (xenograft) 1/500
Anti-GAPDH ACO036 ABclonal |Western blotting 1/50000
Anti-Albumin 16475-1-AP |Proteintech |Western blotting 1/5000
Anti-Numb PA5-121867 |Invitrogen |Western blotting 0.2 pg/mL
Immunofluorescence 5 ug/mL
IHC 5 pg/mL
Anti-DRP1 ab56788 Abcam IHC (xenograft) 1/100
Anti-Nanog 14295-1-AP |Proteintech [Western blotting 1/1000
Anti-OCT4 WL03686 |Wanleibio |Western blotting 1/500
Anti-Vimentin WL01960 |Wanleibio |Western blotting 1/500
Anti-Snail WL01863  |Wanleibio |Western blotting 1/1000
Anti-B-actin 60008-1- Ig |Proteintech |Western blotting 1/100000
Anti-histone H3 17168-1-AP |Proteintech |ChIP assay 30 pg/mL cell lysate
Goat anti-rabbit 1gG ZB2301 ZSGB-BIO |Western blotting 1/10000
Goat anti-mouse 1gG ZB2305 ZSGB-BIO [Western blotting 1/10000
Alexa Fluor 488 Donkey|A21206 Invitrogen |Immunofluorescence 1/500
Anti-rabbit IgG
Alexa Fluor 568 Goat|/A11077 Invitrogen |[Immunofluorescence 1/100
Anti-rabbit 1gG
Alexa Fluor 568 Goat|/A11004 Invitrogen |Immunofluorescence 1/100
Anti-mouse 1gG
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