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Interest in the evolution and maintenance of personality is burgeoning. Individuals of diverse animal

species differ in their aggressiveness, fearfulness, sociability and activity. Strong trade-offs, mutation–

selection balance, spatio-temporal fluctuations in selection, frequency dependence and good-genes mate

choice are invoked to explain heritable personality variation, yet for continuous behavioural traits, it

remains unclear which selective force is likely to maintain distinct polymorphisms. Using a model of trust

and cooperation, we show how allowing individuals to monitor each other’s cooperative tendencies, at a

cost, can select for heritable polymorphisms in trustworthiness. This variation, in turn, favours costly

‘social awareness’ in some individuals. Feedback of this sort can explain the individual differences in trust

and trustworthiness so often documented by economists in experimental public goods games across a

range of cultures. Our work adds to growing evidence that evolutionary game theorists can no longer afford

to ignore the importance of real world inter-individual variation in their models.
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1. INTRODUCTION

It is increasingly evident that individuals of a diverse range

of species show consistent differences in their behaviour,

even under standardized conditions (Wilson et al. 1994;

Wilson 1998; Budaev et al. 1999a,b; Gosling & John 1999;

Fischbacher et al. 2001; Gosling 2001; Sih et al. 2004b).

Such ‘personality types’ (Pervin & John 1999) may be

stable across contexts, e.g. an individual that is aggressive

towards conspecifics may also be bolder in exploring novel

environments; Dingemanse & Reale 2005a) and/or over

time within a single context, e.g. in the presence of a

potential predator, individuals may show consistent flight

reactions over long periods of time (Boissy 1995; Sih et al.

2004b). Interest in the evolution and maintenance of such

behavioural variation is burgeoning (Macdonald 1995;

Dall et al. 2004; Sih et al. 2004a; Dingemanse & Reale

2005b; Nettle 2005; McElreath & Strimling 2006; Nettle

2006; Reale et al. 2007; Stamps 2007; Wolf et al. 2007).

Recent modelling work (McElreath & Strimling 2006;

Wolf et al. 2007) has focused on potential adaptive

explanations of consistency across contexts. Here, by

contrast, we assume individual differences that are stable

over time, and explore the evolutionary consequences of

such personality differences within a particular context.

Our aim is to identify a selective force that can maintain a

range of such personalities within the same population.

Specifically, in a cooperative context, we are interested in

how selection can prevent all interacting individuals

evolving towards the same monomorphic optimum.
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Evolutionary game theory shows that, in principle,

frequency-dependent selection can maintain a range of

trait values within the same population. But the crucial

question is often what biological factor (or factors) is likely

to generate the requisite frequency-dependent effects?

Here, we offer a novel perspective on this question. Put

succinctly, we show that natural variation in a social

context can itself promote frequency dependence. In other

words, variation provides the necessary selection pressure

to generate variation.

Within evolutionary game theory, the traditional

approach focuses on the mean values of continuous traits.

The implication is that this will approximate reality

when the variance in trait values is small. However, this

ignores the fact that in real populations traits often

exhibit substantial levels of variation. In social contexts,

once variation is non-negligible, there can be a need to be

socially aware, and once individuals are socially aware this

changes the selection pressure on all behavioural traits.

The resulting evolutionary outcome is then likely to be

totally different from that predicted by the traditional

approach (McNamara et al. 2004). Here, we provide an

example in which some individuals are socially aware at

evolutionary stability. This results in disruptive selection

on the continuous trait being monitored socially. The

resultant variation in this trait in turn provides the need for

social awareness.

Our focus on a cooperative context is motivated by

evidence from experimental economics that people from

many cultural backgrounds show consistent differences

in their strategic approaches to cooperative economic

games, with subjects often exhibiting a range of strategies

from completely trusting and trustworthy to tactical

cooperation and free riding (Fischbacher et al. 2001;
This journal is q 2008 The Royal Society
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Fehr & Fischbacher 2003; Henrich et al. 2005; Kurzban &

Houser 2005). Indeed, individual differences in neural

activity in brain areas associated with reward processing

during altruistic giving (Harbaugh et al. 2007) and

punishment (de Quervain et al. 2004) are also being

documented. This diversity is particularly striking since

traditional game theoretic analyses of cooperation

between non-relatives, such as the Prisoner’s Dilemma

(Axelrod & Hamilton 1981), typically predict outcomes

that lack inter-individual variation in cooperative

tendencies (but see Boyd et al. 2003). Our analysis

therefore offers a novel adaptive explanation for real

world variation in a key human feature.
P1 pay-off = 0
P2 pay-off = 1

Figure 1. Decision tree for the trust and cooperation game
in the simple version (without sampling), showing path-
ways and outcomes contingent on the behaviours of
individuals adopting the role of P1 and individuals adopting
the role of P2.
(a) Social awareness in a game of trust and

cooperation

We illustrate our general thesis using a variant of the two-

player game of Guth & Kliemt (2000). This game

provides a convenient framework for analysing the

evolution of trust and cooperation. Pairwise interactions

proceed in two phases (figure 1). One individual, chosen

at random, is assigned to the role of player one (P1), while

the other is assigned to the role of player two (P2). In the

first phase, P1 decides whether to trust P2. If P2 is not

trusted, both individuals receive a reward s, the non-

cooperator’s pay-off. If P2 is trusted, the game moves to a

second phase in which P2 decides whether to cooperate or

not (i.e. defect). If P2 cooperates, both individuals receive

the cooperator’s pay-off r. If P2 does not cooperate, P2

receives a pay-off of 1, while P1 gets nothing. Reward

magnitudes satisfy 0!s!r!1.

When P1 has no information about P2 (e.g. individuals

only ever interact once), this game has a simple

evolutionarily stable outcome. If trusted, it is best for P2

to defect. If P2 will defect P1 does best not to trust P2.

Thus, at evolutionary stability, P1 never trusts P2 and

both players get pay-off s; had they been trusting and

cooperative, they would both have received the higher pay-

off, r. This game can be regarded as a variant of the

Prisoner’s Dilemma game (Axelrod & Hamilton 1981).

In our extension of this game, we allow P1 to gain

information about P2, and let the frequencies of

behavioural types evolve as frequency-dependent

responses to each other. We make three principal changes

to the basic model analysed elsewhere (Guth & Kliemt

2000; McNamara & Houston 2002).

(i) Previous formulations (McNamara & Houston

2002) considered the unrealistic case where P2

always cooperated or always defected. Typically,

however, heritable behavioural traits are continu-

ously distributed within populations (Dall et al.

2004; Dingemanse et al. 2004; van Oers et al. 2005;

Blumstein et al. 2006; Penke et al. 2007). To reflect

this, we model an individual’s heritable (uncondi-

tional) tendency to cooperate in role P2 as specified

by p (0%p%1), where p is the probability of

cooperating.

(ii) To highlight the importance of social awareness, P1

individuals have the option of obtaining infor-

mation on P2s at a cost. In our specific model, this

information is observed by sampling; we allow P1

to observe n previous P2 decisions by the

individuals playing P2 and base their decision on
Proc. R. Soc. B (2009)
what they observe. Specifically, the heritable trait of

P1s is their tendency to accept P2s in phase 1 of the

game. They may be unconditional accepters (UA;

always accepting P2 without sampling), uncondi-

tional rejecters (UR; always rejecting P2 without

sampling) or one of n sampling types. The sampling

types are specified by an integer k where 1%k%n.

Type k samplers accept the P2 if and only if the P2

was trustworthy on at least k of the n occasions.

Samplers pay a cost c (0%c!s) reflecting, for

example, the costs of using and maintaining the

cognitive machinery required to keep track of the

behaviour of others (Stephens 2007). Uncondi-

tional strategies do not pay a sampling cost.

Completely consistent (UA, UR) and/or less stable

(type k samplers) individual patterns of P1 trust are

free to evolve in our formulation.

(iii) Mutation is a ubiquitous source of trait variation in

biological systems and can have unexpected effects

on the direction of selection (McNamara et al.

2004, 2008) so we allow for both P1 and P2 traits

to be inherited with mutation.
2. MATERIAL AND METHODS
We model an infinite population of actors playing the

asymmetric game outlined in figure 1. Each individual carries

genes specifying behaviour in each of its two possible roles. In

each role an individual receives a pay-off that depends on its

trait in this role. This pay-off equals the mean outcome of all

interactions with other members of the population when in

that role; essentially we assume that in each generation, each

individual interacts with many other individuals chosen at

random. The fitness of an individual equals the sum of its

pay-offs in the two roles. Note, however, that since the pay-off

in one role does not depend on the pay-off in the other role, at

evolutionary stability the trait values in one role are

statistically independent of the trait values in the other role.

This means that when we track evolution to find an evolu-

tionarily stable strategy, we do not need to keep track of the
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association between the genes controlling the P1 trait and

the genes controlling the P2 trait. Instead, we can just keep

track of the distribution of the P1 trait and the distribution

of the P2 trait.

Behaviour in the P1 role is controlled by trait 1, defined as

either unconditional rejecters (UR), unconditional accepters

(UA) or type k samplers (1%k%n), where n is a constant. For

ease of notation, we refer to all possible P1 types by their

associated k trait value. In particular, URs are assumed to

have a trait value of kZnC1 (i.e. they will never sample or

cooperate, because a P2 can never be observed to be

trustworthy nC1 times out of n trials), while UAs are

assumed to have a trait value of kZ0 (i.e. they will always

cooperate without sampling because, out of n trials, the

number of observations of a P2 being trustworthy will always

be R0). Trait 1 value k occurs in the population with

frequency f1(k), where
PnC1

kZ0 f1ðkÞZ1.

P2 behaviour is controlled by trait 2, conceptualized as a

continuum of values, p, in the range 0%p%1, to capture the

continuous nature of such an unconditional behavioural trait.

However, for computational purposes, we represent p on a

fine discrete grid; pZ0, 0.01, 0.02, ., 0.99, 1. Trait 2 value p

occurs in the population with frequency f2( p), whereP
pf2ðpÞZ1. Evolution of the two traits is not directly linked

(except through frequency dependence).

We start with some initial frequency distribution for both

traits and iterate one generation at a time. In each generation,

new frequencies of each trait value for both traits 1 and 2 are

calculated as detailed below. The model continues until stable

distributions of frequencies are reached (determined when

summed absolute changes, D, fall below a predefined

tolerance; all results reported here used a tolerance of 10K9).
(a) Trait fitness

Pay-offs resulting from dyadic interactions are illustrated in

figure 1. For unconditional trait 1 values (kZ0 and kZnC1)

P1 does not assess P2’s previous behaviour and so pays

no assessment cost (cZ0). In all other situations (1%k%n),

P1 pays the assessment cost, c (where 0!c!s). So far, for

clarity, we have described strategic interactions as particular

outcomes within a stochastic framework. Nevertheless, to

gain general insight into the evolutionary implications of our

logic, we analyse expected outcomes in an infinite population

as follows.

The probability that P1 trusts P2 is given by

aðk; pÞZ
Xn
xZk

n!

x!ðnKxÞ!
pxð1KpÞnKx for 1%k%n; ð2:1Þ

with að0; pÞZ1 and aðnC1; pÞZ0.

Equation (2.1) arises because P2 behaviour in interactions

is a binomial process (they can cooperate or defect). The term

within the summation reflects this, showing the binomial

probability that P2 is seen to cooperate x times in n trials. This

is summed for all xRk.

The mean pay-off to P1 for a random interaction is

given by

w1ðkÞZ
X
p

f2ðpÞ 1Kaðk; pÞ
� �

sCaðk; pÞpr
� �

Kc

for 1%k%n; or; ð2:2aÞ

w1ðkÞZ
X
p

f2ðpÞ 1Kaðk; pÞ
� �

sCaðk; pÞpr
� �

otherwise: ð2:2bÞ
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Equations (2.2a) and (2.2b) differ only because samplers

are assumed to pay a cost of sampling, c. Otherwise, both

formulations show (within braces) that the expected reward

of an interaction with a given type of P2 is the non-

cooperator’s pay-off, s, multiplied by the probability of not

trusting P2, 1Ka(k,p), plus the probability of trusting P2,

a(k,p), multiplied by the pay-off from doing so, pr. This is

summed over all possible P2 types that the P1 can encounter,

weighted by the probability of such an encounter.

For a P2 with trait 2 value p, the mean pay-off from an

interaction with a random actor is given by

w2ðpÞZ
XnC1

kZ0

f1ðkÞ 1Kaðk; pÞ
� �

sCaðk; pÞ prC ð1KpÞ
� �� �

:

ð2:3Þ

Equation (2.3) is similar to the pay-offs for P1s. Within the

braces, the first term shows the probability that the P1 does not

trust, multiplied by the non-cooperator’s pay-off, s. The

second term shows the probability that the P2 is trusted,

multiplied by the pay-off to the P2 from such an interaction.

The latter pay-off has two components: either P2 cooperates

(with probability p), in which case the pay-off is r, or P2 defects

(with probability 1Kp), in which case the pay-off is 1. Again,

the pay-offs are summed for all possible P1 types that can be

encountered, weighted by the probability of such encounters.
(b) Changing trait frequencies

Mutation rates in the model are controlled by three separate

parameters (figure 2). For P1s, mutation from URs to UAs

(and vice versa), from kZ1 samplers to UAs, from kZn

samplers to URs, and between kZi samplers and kZiC1

samplers (and vice versa), occurs at the rate 31 in each

generation. To represent lower rates of mutation from

unconditional strategies to the more sophisticated sampler

strategies, mutation from UAs to kZ1 samplers and from URs

to kZn samplers, occurs at a lower rate h (h%31/2). This seems

biologically realistic, since the more sophisticated samplers

may be less likely to arise by chance from the unconditional

acceptors or rejecters—for instance, the origin of conditionality

may require relatively more mutational steps than switching

from one unconditional action to another (or varying levels of

scepticism) because the ability to elicit both actions as well as

process information must be acquired. Using a mutation rate

from unconditional to conditional strategies that is lower than

that between other pairs of P1 traits i.e. (h!31) does not

increase the frequency with which disruptive selection occurs

on the P2 trait). However, it does emphasize that disruptive

selection is a consequence of genuine selection for conditional

P1 traits, rather than mutation to those traits alone. Indeed,

several variant sets of assumptions regarding mutation on the

P1 trait were examined (including uniform mutation rates

between conditional and unconditional traits, and potential

mutation between all trait values); all variants produced

the general effects that we report here. Finally, P2 mutation

occurs between neighbouring trait values on the grid of values

at the rate 32.

For unconditional P1 trait values, recruitment, R(k), is

given by

R1ðkÞZ

ð1K 31KhÞ f 1ð0Þw1ð0ÞC31 f 1ð1Þw1ð1Þ

C31 f 1ðnC1Þw1ðnC1Þ; kZ0;

ð1K 31KhÞ f1ðnC1Þw1ðnC1Þ

C31 f 1ðnÞw1ðnÞC31 f 1ð0Þw1ð0Þ; kZ nC1:

8>><
>>:

ð2:4Þ



Figure 2. Flow diagram illustrating the source of recruitment to each P1 trait value in the nZ3 case (corresponds to equation
(2.7) in the main text). Note that mutation between similar types (i.e. between unconditional traits or between conditional traits)
occurs at the rate 31. Mutation from conditional to unconditional types also occurs at that rate. By contrast, mutation from
unconditional to conditional types is assumed to occur at a lower rate, h, where h%0.531 (see text for further details), reflecting
the lower likelihood of the more complex, sampling strategies arising.
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Here, the total recruits produced by individuals bearing any

trait value are given by the frequency of that trait value

multiplied by its fitness. Total recruitment in either case is the

sum of recruits from three sources, corresponding to the three

terms: from individuals with the focal trait (subtracting 31Ch

that mutate away from that trait); from individuals with the

neighbouring trait (including only the 31 recruits that mutate

to the focal trait); and from the other unconditional strategy

(again, including only the 31 recruits that mutate to the focal

trait). Note that for nZ0, hZ0 and the second term in each

case in equation (2.4) is omitted.

For samplers (occurring only when nO0), the situation is

slightly more complicated. Specifically, if nZ1, recruitment is

given by

R1ðkÞZ ð1K231Þf1ð1Þw1ð1ÞCh f1ð0Þw1ð0Þ

Ch f1ðnC1Þw1ðnC1Þ: ð2:5Þ

Here, the first term corresponds to recruitment from the

focal trait (subtracting the 231 recruits that mutate away from

that trait). The second and third terms correspond to low

levels of recruitment arising from mutation in recruits of the

two unconditional strategies. When nZ2, recruitment is

R1ðkÞZ

ð1K231Þf1ð1Þw1ð1ÞChf 1ð0Þw1ð0Þ

C31 f 1ð2Þw1ð2Þ; kZ1;

ð1K231Þf1ð2Þw1ð2ÞChf 1ðnC1Þw1ðnC1Þ

C31 f 1ð1Þw1ð1Þ; kZ2:

8>><
>>:

ð2:6Þ

Finally, for nR3, recruitment is given by

R1ðkÞZ

ð1K231Þ f 1ð1Þw1ð1ÞCh f1ð0Þw1ð0Þ

C31 f 1ð2Þw1ð2Þ; kZ1;

ð1K231Þ f 1ðkÞw1ðkÞC31 f 1ðkK1Þw1ðkK1Þ

C31 f 1ðkC1Þw1ðkC1Þ; 1!k!n;

ð1K231Þ f1ðnÞw1ðnÞCh f1ðnC1Þw1ðnC1Þ

C31 f 1ðnK1Þw1ðnK1Þ; kZn:

8>>>>>>>>>><
>>>>>>>>>>:

ð2:7Þ

For clarity, this more complex situation is illustrated in

figure 2.
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The frequency of individuals carrying trait value k in the

next generation is then calculated as

f 01ðkÞZ
R1ðkÞ

PnC1

kZ0

R1ðkÞ

: ð2:8Þ

The process of calculating changes in the frequencies of

values for trait 2 is similar, as follows. Recall that trait 2 is

modelled as discrete, with potential values separated by the

interval iZ0.01 (i.e. P2 traits had 101 possible values). First,

recruitment is calculated by

R2ðpÞZ

ð1K32Þ f2ð0Þw2ð0ÞC32 f 2ði Þw2ði Þ; pZ0;

ð1K232Þ f2ðpÞw2ðpÞC32 f 2ð pKiÞw2ðpKi Þ

C32 f 2ð pCi Þw2ðpCi Þ; 0!p!1;

ð1K32Þ f2ð1Þw2ð1ÞC32 f 2ð1KiÞw2ð1Ki Þ; pZ1:

8>>><
>>>:

ð2:9Þ

The frequency of individuals carrying trait 2 value p in the

next generation is then calculated as

f 02ðpÞZ
R2ðpÞP
pR2ðpÞ

: ð2:10Þ

(c) Assessing stability

For some parameter sets stable solutions could not be found,

even after running simulations for very long time frames

(greater than 107 generations). Typically, simulations that

failed to stabilize were characterized by fluctuations in the

summed absolute changes of trait frequencies, D, with no

downward trend in that value. Consequently, all simulations

that failed to stabilize were terminated after 107 generations or

after 50 000 changes in the direction of magnitude of D (recor-

ded following the first 105 generations). Extensive compu-

tations revealed that results were entirely robust to initial

conditions (i.e. initial frequency distributions on the two traits).
3. RESULTS AND DISCUSSION
To illustrate the crucial role of social awareness in driving

polymorphisms in P2 behaviour, consider first the case

where no sampling is possible (nZ0). All P2s do equally



Box 1. Variation in P2 behaviour favours P1 samplers and vice versa.

Consider a population where the P2 trait p has mean mZE{ p} and variance s2Zvar( p). In this population, the pay-off to
an unconditional accepter (UA) is

WUA ZE fprgZmr;

and the pay-off to an unconditional rejecter (UR) is

WUR Z s:

Thus

WUAOWUR5mO s=r:

Now suppose that nZ1. In this case, a sampler accepts a P2 if and only if they are observed to be trustworthy on the one
occasion they are observed (kZ1). Suppose that a P2 has trait value p. Then a sampler rejects this P2 (receiving pay-off s)
with probability 1Kp and accepts the P2 (receiving expected pay-off pr) with probability p. Thus, in its interaction with this
particular P2, a sampler has expected pay-off

w ðpÞZ ð1KpÞsCp2rKc:

The mean pay-off to the sampler is therefore

Ws ZE fw ð pÞgZ ð1KmÞsC ðm2 Cs2ÞrKc:

This formula shows that both the mean and variance of p affect the pay-off for sampling. When mZs/r, so that UAs and URs
do equally well, it is easy to see that samplers do better if and only if

s
2Oc=r:

For other values of m, the variance (s2) needs to be higher still if samplers are to do better than both UAs and URs.
With this population the pay-offs to a P2 player with trait value p in an interaction with a UA, a UR, and a sampler are

VUAðpÞZ1Kð1KrÞp;

VURðpÞZ s;

and

Vsð pÞZ sC ð1KsÞpKð1KrÞp3;

respectively. Thus pay-off has a maximum at pZ0 in an interaction with a UA. In an interaction with a sampler, pay-off is
maximized at

pZminf1; ð1KsÞ=2ð1KrÞg:

In particular, it is maximized at an intermediate value of p provided 2rKs!1. This intermediate value of p is an optimal
compromise: as p increases, the probability of being trusted increases, but the pay-off to the P2 (if it is trusted) decreases.
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well against URs and so p can drift. Nevertheless,

mutation always ensures the presence of some UAs

(which can also increase in frequency if p drifts to

sufficiently high levels). This favours untrustworthy

behaviour because pay-offs for P2s decrease linearly with

their increasing p in the presence of UAs (box 1); the result

is a modal value of p at zero (and therefore the presence of

UAs is only driven by mutation) as illustrated in figure 3a.

Thus, it is not possible to maintain reasonable levels of

trustworthiness (and trust) without social awareness

(Guth & Kliemt 2000; McNamara & Houston 2002).

When sampling is possible (nR1) the presence of

samplers selects for some degree of trustworthiness in the

P2 trait, while the presence of UAs selects for untrust-

worthiness (box 1). The relative frequencies of samplers

and UAs determine the direction of selection on the P2

trait (recall all P2s do equally well against URs). Thus,

even if both samplers and UAs are selected against, the low

absolute numbers of samplers maintained by mutation–

selection balance can select for trustworthiness in the P2

trait. To avoid this occurring, we set the rate of mutation to

sampling types to be much lower than between UAs and

URs (see §2). As a consequence, in the results we present

below, levels of samplers are maintained through active
Proc. R. Soc. B (2009)
selection (rather than simply by mutation). In general, if

there is little variation in the P2 trait then UAs or URs (or

both) have higher pay-offs than samplers (box 1). This is

because it is only worth paying the cost of sampling if

there is something useful to be learnt by sampling. Thus,

at evolutionary stability, sampling is maintained by

frequency-dependent selection only if sufficient variation

in the P2 trait is maintained.

In the simplest case where sampling is possible (nZ1)

P1s are limited to UAs, samplers with kZ1 and URs.

Extensive computations reveal only unimodal distri-

butions of the P2 trait at evolutionary stability. When

the P2 trait mutation rate is low, the variation in this

trait is low; selection acts against samplers and the modal

value of the P2 trait is zero (figure 3b). As the mutation

rate increases (figure 3b–d ), the increased variance

can mean that it is worth paying the cost of sampling

(box 1). When this happens, the direction of selection on

the P2 trait changes and the modal value of the P2 trait

increases (figure 3d ).

When opportunities exist for more extended social

observation (nR2) a second, novel mechanism can

maintain variation in the P2 trait. For example, when

nZ2 a P1 population consisting of a mixture of UAs, URs
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Figure 3. Example outcomes from the asymmetric trust and cooperation game. (a(i),(ii)) nZ0 and sampling is thus not possible.
Even with high mutation on the P2 trait (32Z0.1) the modal value of p is always zero. Other parameters: sZ0.3; rZ0.6;
31Z0.0001. (b–d ) nZ1, permitting some samplers (denoted Sa.). In each case, sZ0.3; rZ0.6; cZ0.005; 31Z0.0001;
hZ0.00001. Mutation on the P2 trait is increasing: (b(i),(ii)) 32Z0.001; (c(i),(ii)) 32Z0.01; (d(i),(ii)) 32Z0.1. Note that for low
and moderate mutation on the P2 trait (b,c), P1s gain nothing by sampling. However, when P2 mutation is high (d ), sampling by
P1s is worthwhile; the presence of samplers ensures increased trustworthiness among P2s. (e(i),(ii)) Example of a stable,
bimodal outcome when nZ2. Parameter values: sZ0.56; rZ0.77; cZ0.04; 31Z0.001; hZ0.0004; 32Z0.08. In this situation,
the mixture of P1 traits, which includes samplers, maintains a bimodal distribution of P2 traits. The bimodal distribution of
P2 traits maintains the need to sample, and hence maintains the P1 mixture.
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and samplers (mostly quite sceptical kZ2 types) and a

bimodal P2 population can be evolutionarily stable

(figure 3e). As stated above, UR individuals have no effect

on the direction of selection on the P2 trait. Thus, this

direction is determined by the ratio of UAs to samplers. P2s
Proc. R. Soc. B (2009)
maximize their pay-off in interactions with UAs by being

completely untrustworthy ( pZ0). In interactions with

samplers the P2 pay-off is maximized at an intermediate

value of p. This value is a compromise between gaining

acceptance through a high p value and optimally exploiting
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P1 once accepted. The mixture of UAs and samplers at

evolutionary stability results in P2 fitness being a bimodal

function of p with two equally high peaks, one involving

complete and consistent untrustworthiness ( pZ0) and the

other at a positive, but less consistent, level of trustworthi-

ness. Consequently, there is disruptive selection on the P2

trait, and the evolutionarily stable distribution of this trait is

bimodal. This bimodal distribution means that there is high

variance in the P2 trait, ensuring that sampling is

maintained. In other words, the mixture of P1 traits,

which includes samplers, maintains a bimodal distribution

of P2 traits. The bimodal distribution of P2 traits maintains

the need to sample, and hence maintains the P1 mixture.

Bimodal solutions can either be stable, as in figure 3e or

maintained as a result of cycling. The forces giving rise to

these outcomes are the same. The dynamics maintaining

polymorphisms are illustrated in figure 4. Increasing n

above 2 leads to an increase in the proportion of unstable

and bimodal outcomes (figure 5). Examples for nZ3 and

nZ4 are shown in figure 6.

Our analysis clearly demonstrates how social aware-

ness—trusting on the basis of prior evidence of trust-

worthy behaviour—can encourage variability in

trustworthiness. Such variability in turn favours some
Figure 5. As opportunities for social observation increase
(i.e. as n increases: (a), nZ2; (b), nZ3; (c), nZ4), so the
proportion of parameter space producing stable bimodal
(bottom circles) or unstable (middle circles) increases (total
bimodal and unstable cases are indicated by the top circles).
In each case, parameter space was sampled randomly by
selecting 105 parameter sets, each selected in the following
order: s (0.1!s!0.8); r (sC0.05!r!1.0); c (0.001!c!s/2); 32
(0.001!32!0.1); 31 (0.0002!31!32/10); h (31/100!h!31/2).
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Figure 6. Examples of stable, bimodal outcomes where greater opportunities exist for P1s to monitor the behaviour of P2s.
(a(i),(ii)) nZ3; sZ0.48; rZ0.88; cZ0.04; 31Z0.00045; hZ0.00021; 32Z0.08. (b(i),(ii)) nZ4; sZ0.49; rZ0.85; cZ0.03;
31Z0.00072; hZ0.00033; 32Z0.11. Sa., samplers.
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socially aware individuals, even when their awareness is

costly (Nettle 2006). In our model, individuals can gain

information about others by observing their behaviour in

the past, with the parameter n representing the quality of

this information. There is a certain lack of realism in this

formulation. In particular, we might expect that in a real

population the ease with which P2 can be observed being

trusted by others would depend on the number of UAs. In

the current model, however, we have chosen not to allow n

to vary with the proportion of UAs. This is because our

general conclusion is not restricted to the specific manner

in which information is obtained; it applies to any system

in which an individual can gain information about others

at a cost. Potential methods of acquiring information

include communication of information by third parties

(when the cost is in terms of the time needed to interact

with others and be part of a social network), and acquiring

information by observing facial expression (when the cost

is in terms of development of the neural machinery needed

to interpret facial expressions). Although we analyse a

specific model, our general message—that variation begets

variation in social contexts—has broad implications for

the analysis of evolutionary games in biology and to a wide

range of disciplines that use game theory. Game theory

needs to take both variance and social sensitivity into

account in a systematic manner if it is to be an effective

tool for dealing with real populations and in particular

when dealing with the inter-individual variation associated

with personality.

Our formulation can also be related to models of indirect

reciprocity and the evolution of cooperation (Nowak &

Sigmund 1998; Leimar & Hammerstein 2001). Nowak &

Sigmund (1998) studied a game in which a donor decides

whether to give aid to a recipient. The donor’s decision

depends on the image score of the recipient. An individual’s

image score increases when the individual is observed to give

aid to another individual and decreases when the individual

is observed not giving aid when a donation was possible. In

this game, donors should be concerned about their

reputation and hence, as Leimar & Hammerstein (2001)
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pointed out, donors should base their decisions on their

own image score rather than on the image score of the

recipient. Although our model involves observations and a

form of assessment, our pay-off structure differs from that

of Nowak & Sigmund. In our game, the pay-off to P1

depends on the accuracy with which P1 assess the personality

of P2. It is therefore reasonable for P1 to make decisions on

the basis of a score that is assigned to P2. Furthermore, P1 is

not observed so there is no pressure on P1 to establish a

reputation. These features mean that the objection raised by

Leimar and Hammerstein does not apply.

Finally, our work demonstrates how the diversity in

trust and trustworthiness so often documented in

experimental public goods games (Fischbacher et al.

2001; Fehr & Fischbacher 2003; Henrich et al. 2005;

Kurzban & Houser 2005) can evolve in response to the

premiums on selfishness in the presence of trusting

individuals (who cannot be bothered to monitor the social

interactions going on around them), coupled with some

incidence of monitoring effort that such selfishness

necessitates. Thus, the ‘arms race between observing

and being observed’ (Milinski & Rockenbach 2007) may

explain yet another important facet of human altruism and

altruistic tendencies.
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