
RESEARCH ARTICLE

Vertically distinct microbial communities in

the Mariana and Kermadec trenches

Logan M. Peoples1, Sierra Donaldson1, Oladayo Osuntokun1, Qing Xia1,2, Alex Nelson3,

Jessica Blanton1, Eric E. Allen1, Matthew J. Church3,4, Douglas H. Bartlett1*

1 Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego,

La Jolla, CA, United States of America, 2 Department of Soil Science, North Carolina State University,

Raleigh, NC, United States of America, 3 Center for Microbial Oceanography: Research and Education, C-

MORE Hale, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America, 4 Flathead Lake

Biological Station, University of Montana, Polson, MT, United States of America

* dbartlett@ucsd.edu

Abstract

Hadal trenches, oceanic locations deeper than 6,000 m, are thought to have distinct micro-

bial communities compared to those at shallower depths due to high hydrostatic pressures,

topographical funneling of organic matter, and biogeographical isolation. Here we evaluate

the hypothesis that hadal trenches contain unique microbial biodiversity through analyses of

the communities present in the bottom waters of the Kermadec and Mariana trenches. Esti-

mates of microbial protein production indicate active populations under in situ hydrostatic

pressures and increasing adaptation to pressure with depth. Depth, trench of collection, and

size fraction are important drivers of microbial community structure. Many putative hadal

bathytypes, such as members related to the Marinimicrobia, Rhodobacteraceae, Rhodos-

pirilliceae, and Aquibacter, are similar to members identified in other trenches. Most of the

differences between the two trench microbiomes consists of taxa belonging to the Gamma-

proteobacteria whose distributions extend throughout the water column. Growth and sur-

vival estimates of representative isolates of these taxa under deep-sea conditions suggest

that some members may descend from shallower depths and exist as a potentially inactive

fraction of the hadal zone. We conclude that the distinct pelagic communities residing in

these two trenches, and perhaps by extension other trenches, reflect both cosmopolitan

hadal bathytypes and ubiquitous genera found throughout the water column.

Introduction

The deep sea is one of the largest biomes on Earth, containing over half of the microbial cells

in the ocean [1,2]. Pelagic deep-ocean microbial communities are distinct from those above

them [3,4,5,6] and in many cases display higher activities under in situ hydrostatic pressures

and low temperatures when compared to atmospheric pressure conditions [7]. However,

deep-sea environments also contain allochthonous members that descend from above, such as

in association with sinking particulate organic matter [8]. These communities can differ from

one another, varying by water mass or ocean basin and showing metabolic rates ranging over
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six orders of magnitude [9]. These variations may reflect resource availability [10,11] and dis-

persal limitation [12].

More is known about the bathy- and abyssopelagic than the hadopelagic zone, which exists

at depths greater than 6,000 m and represents 41% of the oceanic depth continuum [13]. Most

hadopelagic sites are associated with trenches, tectonically-active steep-walled depressions that

form via subduction. The current study focuses on the Mariana and Kermadec trenches, two

hadal sites approximately 6,000 km apart in the Pacific Ocean. The Kermadec Trench in the

Southern Hemisphere begins about 120 km off the northeastern coast of New Zealand and

reaches its greatest depth at 10,047 m, making it the 5th deepest trench [14]. The Mariana

Trench, located in the Northern Hemisphere near the Mariana Islands, extends to 10,984 m at

its greatest depth in the Challenger Deep near its southwestern terminus [15], making this the

deepest location in the global ocean. Trenches have been proposed to contain unique biodiver-

sity and endemic megafauna due to their geographic isolation [13,16,17,18], but some taxa

show a more cosmopolitan distribution, suggesting potential for between-trench dispersal

[19,20]. However, studies comparing microbial communities within trenches have not been

conducted.

Until recently our understanding of hadal microbial communities has been restricted to

highly selective culture-based analyses and small sample size 16S rRNA gene sequence studies

[21,22,23]. Distinct microbial taxa adapted to high hydrostatic pressures have been cultured

from hadal zones [24,25,26,27,28], of which many are piezophiles, microbes that show optimum

growth at pressures greater than 0.1 and as high as 140 Megapascals (MPa; [29]). Recently,

increased sample collection and the use of next generation sequencing approaches to hadopela-

gic communities from the Mariana, Japan, and Puerto Rico trenches have shown that hadal

microbial communities are distinct from those above them [30,31,32,33]. At the greatest depths

of the Mariana Trench, Gammaproteobacteria, including Pseudomonas and Pseudoalteromonas,
are present as major constituents [31,33], findings attributed to trench topography funneling

sinking organic matter downward and thereby fueling greater heterotrophic activity [34,35,36,

37]. To address microbial community structure, potential endemism, and high-pressure adapta-

tion within hadal trenches, we analyzed the microbial communities inhabiting abyssal and hadal

bottom waters within the Kermadec and Mariana trenches using culture-independent high-

throughput sequencing, culture-dependent taxonomic characterization, and estimates of micro-

bial activity and abundance.

Methods

Sites and sample collection

Kermadec Trench samples were collected aboard the R/V Thompson from April to May 2014

using HROV Nereus [38], CTD casts, and free-falling/ascending landers (Elevator Lander;

[39]). Samples were collected from the Mariana Trench, including within the deepest point of

the Sirena Deep [40], aboard the R/V Falkor from November to December 2014 using CTD

casts and free-falling/ascending landers (Rock Grabber (RG), Schmidt Ocean Institute, https://

schmidtocean.org/technology/elevators-landers/; Leggo, Scripps Institution of Oceanography

(SIO), https://scripps.ucsd.edu/labs/dbartlett/contact/challenger-deep-cruise-2014/). One

sample was also collected from the Challenger Deep in the Mariana Trench. Lander-based sea-

water samples were recovered from vertically-positioned Niskin bottles 2 m above the sedi-

ment-water interface within the benthic boundary layer, and closed ~12 hours after landing to

avoid capturing resuspended sediment material. Recovered samples were immediately trans-

ferred to a 4˚C cold room and their temperature taken. Sampling within the Kermadec Trench

Mariana and Kermadec trench hadal communities
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was approved under a NIWA Special Permit issued by the New Zealand Ministry for Primary

Industries and within the Mariana Trench by the NOAA Monuments office.

Environmental data

Bathymetry [41] was plotted using the R package marmap [42]. Seawater used for inorganic

nutrient analyses was frozen at -20˚C and processed at the Oceanographic Data Facility at SIO

(S1 Text; https://scripps.ucsd.edu/ships/shipboard-technical-support/odf/documentation/

nutrient-analysis). Replicates that varied by over two standard deviations from the mean

within each trench were removed. Technical replicates were averaged at each collection site.

For cell counts seawater was fixed with 1% paraformaldehyde and stored at -800078C. Samples

were later thawed, stained with SYBR Green (Thermo Fisher Scientific, Waltham, MA), and

cells enumerated using flow cytometry (Attune Acoustic Focusing Flow Cytometer, Applied

Biosystems, Foster City, CA).

Microbial activity within the Mariana trench

Activity was evaluated using biorthogonal noncanonical amino acid tagging (BONCAT;

[43,44]) with the methionine analog homopropargylglycine (HPG; Thermo Fisher Scientific).

Seawater was placed into KAPAK bags (Komplete Packaging, Grand Prairie, TX) in 50 mL ali-

quots in duplicate. Bags were amended with 5 μM HPG, heat sealed, and incubated at 4˚C in

pressure vessels [45] at 0.1 MPa, in situ pressure at collection depth, and 110 MPa to mimic

full trench depth. Negative controls were amended with 3% formaldehyde prior to incubation.

After 48 hours, samples were fixed with formaldehyde, filtered onto 25 mm, 0.2 μm pore-size

GTTP filters (EMD Millipore, Billerica, MA), and stored at -20˚C. Active cells were detected as

previously described (S1 Text; [43]). The percentage of active cells in each sample was calcu-

lated by dividing the number of active cells (DAPI + HPG active) by the total number of cells

(DAPI) in each sample. Values from duplicate incubations from each location and pressure

condition were averaged and the percent of active cells at one pressure was divided by that at

another pressure to determine the effect of pressurization.

DNA extraction and sequencing

Seawater (40–120 L per sample) was serially filtered through 3.0 (47 mm diameter), 0.2 (47

mm or Sterivex), and 0.1 μm (142 mm) polycarbonate filters using a peristaltic pump. Filters

were then placed into a sucrose buffer [46] and frozen at -80˚C. DNA was extracted from

whole filters using a protocol previously described [33,47]. Negative controls using blank filters

were extracted in concomitance with every extraction performed.

The 16S rRNA gene region between 515f-926R was amplified in triplicate for 30 cycles and

pooled [48]. Samples were tagged with sample-specific Illumina barcodes during a secondary

PCR step, combined at equimolar concentrations, and sent for sequencing on an Illumina

Miseq (S1 Text). Overlapping paired reads were merged using FLASH [49] and discarded if

they fell below a q score of 33 within a 50 bp sliding window [48] using Trimmomatic [50].

Primers were removed and operational taxonomic units (OTUs) picked at 97% similarity

using UCLUST in QIIME 1.9.1 [51]. Chimeras were identified with the Ribosomal Database

Project gold database (training database v9) using VSEARCH [52] and removed. Taxonomy

was assigned against the SILVA [53] 123 database and sequences identified as contaminants

were discarded (S1 Text). Finally, OTUs with fewer than 3 reads in at least 4 samples across the

entire dataset were excluded. Sequence data have been submitted to the SRA database under

accession numbers SRR5643386-SRR5643480.
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Statistical analyses

Sequencing reads were processed with the R package phyloseq [54]. Samples were rarefied to

even sampling depth to account for differing sequencing depths. Alpha diversity was calculated

using vegan [55] and comparisons between samples were performed using the beta-diversity

metrics Bray-Curtis and weighted Unifrac [56]. Ordinations based on Bray-Curtis dissimilar-

ity and permutational analysis of variance with adonis in vegan were used to identify statisti-

cally significant variables. Samples were classified into depth groups of surface, abyssal, or

hadal by UPGMA hierarchical clustering using the command hclust. Samples were classified

based on a hard depth cutoff in each trench; samples that clustered with one depth group but

belonged to the other based on depth cutoff were grouped by depth of collection. A differential

expression enrichment analysis using DESeq2 [57] was used to test the hypotheses that certain

taxa are enriched within specific trenches, hadal zones, and certain size fractions using the un-

rarefied dataset [58] with low abundance (at least>1000 total reads per OTU or >3000 reads

per phylum) taxa removed. For construction of phylogenetic trees, sequences were aligned

using the SINA Aligner [59] and trees built using FastTree [60].

Isolation and characterization of microbes

Microbes were cultured at 4˚C on agar plates at 0.1 MPa or in transfer bulbs (Samco, Thermo

Fisher Scientific) at either 0.1 MPa or high pressure. Enrichments from the Kermadec Trench

were conducted using 2216 Marine Medium (2216; BD DifcoTM), A1 Medium, or a seawater

minimal medium (S1 Text), while those from the Mariana Trench were conducted in 2216

only. For incubations at high pressure the media was inoculated, mixed with gelatin at a final

concentration of 4%, transferred into bulbs, and incubated at the desired pressure [45]. Ker-

madec Trench samples were incubated at 100 MPa while those from the Mariana Trench were

incubated at in situ pressure (40–110 MPa). After ~2 months colony forming units (CFUs)

were calculated and representative isolates identified via PCR using the primers 27F and

1492R [61].

Isolate growth and survival

The high-pressure growth and survival characteristics of select strains were evaluated. This

included strains from the Mariana Trench isolated at atmospheric pressure; Pseudomonas
sp. 28, Pseudoalteromonas sp. 164, Psychrobacter sp. 151, andHalomonas sp. 73, and additional

strains collected elsewhere; Pseudomonas pelagia [62], Pseudoalteromonas sp. TW7 [63], Psy-
chrobacter aquimaris [64], Alteromonas mediterranea [65], and Alteromonas sp. SIO [66].

Growth experiments as a function of pressure (0.1, 20, 40, 60, and 90 MPa) and temperature

(15˚C and 4˚C) were set up by inoculating early exponential phase cultures 1:100 into 2216

and either incubated in tubes at 0.1 MPa with shaking at 150 rpm or into bulbs and pressur-

ized. At each time point three bulbs for each strain were sacrificed and their optical density

measured (OD600; GENYSIS UV-Vis, Thermo Fisher Scientific).

To estimate survival, early exponential phase cultures were pelleted and reconstituted in

0.2 μm filtered, autoclaved sterile seawater collected from the Scripps Pier. Cultures were then

diluted 1:100 into sterile seawater, placed into bulbs, and pressurized at 0.1, 20, 40, 60, and 90

MPa at 4˚C. After 30 days, cultures were decompressed and plated on 2216 agar plates at 15˚C

to estimate surviving CFUs. Cultures were also fixed and total cell counts determined

microscopically.

Mariana and Kermadec trench hadal communities
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Results and discussion

Hadal microbial communities are adapted to high hydrostatic pressure

conditions

Seawater samples were collected at 38 locations within the Kermadec and Mariana trenches at

depths up to 10,004 m and 10,920 m, respectively (Fig 1, S1 Fig, S1 Table). Cell abundances of

abyssal and hadal samples were approximately 104 cells mL-1 (S2 Fig). To assess the activity of

microbes collected from the Mariana Trench, the fraction of cells engaged in protein synthesis

was evaluated using BONCAT. Although many estimates of deep-ocean microbial activity

have been conducted under atmospheric pressure conditions, community activity in stratified

waters may be highest under in situ hydrostatic pressures [7]. However, such measurements

are lacking from hadal locations (e.g. [67,68]). Therefore, the fraction of Mariana Trench cells

that were active at atmospheric pressure and following recompression to in situ pressures was

determined. In the abyssal and hadal samples ~18% (6.5–34.5%) of the cells were active after

recompression to in situ pressures while ~9% (4.7–13.8%) were active under atmospheric pres-

sure conditions (S3 Fig). Low percentages of active cells may be consistent with prior measure-

ments of microbial activity in the bathypelagic, where activity rates drop over two orders of

magnitude from those at the surface and turnover times are estimated to be 0.1–30 years [7,9].

In nearly all samples the proportion of active cells was higher under high hydrostatic pressure

(Fig 2). The only exception was a sample from the Challenger Deep, which had warmed to

above 15˚C during retrieval. These results likely reflect the thermal sensitivity and selective

inactivation of autochthonous deep-sea residents over allochthonous microbes from shallower

depths [69]. Comparisons of communities incubated at full-ocean depth pressures versus in
situ pressure showed increasing ratios of full-ocean depth active members with collection

depth (Fig 2), indicative of progressive increases in the extent of high pressure adaptation with

depth. In contrast to the low percentage of active cells in the deep ocean, over 75% of the com-

munity was active in the surface waters at 28˚C (S3 Fig). This percentage dropped to ~10%

when incubated at 4˚C and was further repressed at increasing pressure. We emphasize that

bulk community activity was not estimated here, which may exhibit more or less activity as a

function of pressure due to the variability of taxa-specific activity rates. Furthermore, benthic

boundary layer communities may be more or less active as a function of pressure, relative to

the deep pelagic, because these sites are a mixing zone of autochthonous members, allochtho-

nous sinking taxa, and resuspended organic matter from the seafloor [70,71]. Regardless, these

findings suggest that hadal communities contain active members adapted to high hydrostatic

pressures, even following the stresses imposed by decompression during sample retrieval.

Hadopelagic communities are unique from abyssal assemblages

Microbial communities within the Kermadec and Mariana trenches were compared using

high-throughput sequencing of the V4-V5 region of the 16S rRNA gene. The dataset consists

of 95 samples and 7,169,109 total sequences, with rarefaction resulting in 15,346 sequences per

sample and 8,908 total OTUs (S2 Table). The most abundant group in the abyssal and hadal

samples was the Gammaproteobacteria within the Proteobacteria (Fig 3), composed primarily

of Alteromonas, Idiomarina, Pseudoalteromonas, Psychrobacter, and Shewanella. These taxa

represented 10–20% of the community on each size fraction but were sometimes >50%. Other

abundant groups included theMarinimicrobia, Thaumarchaeota, Bacteroidetes, and SAR324,

consistent with other studies of deep-ocean and hadal communities.

Hadal microbial communities have been shown to be different from those present in shal-

lower locales [30,31,32,33]. Here, the hadal communities in the Kermadec and Mariana

Mariana and Kermadec trench hadal communities
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trenches were distinct from those in the abyssal zone (Fig 4, S4 Fig). Depth was a significant

driver of community composition in both trenches (Both trenches, R2 = 0.13, p<0.001; Mari-

ana, R2 = 0.16, p<0.001; Kermadec R2 = 0.21, p<0.001) when comparing samples deeper than

4,000 m. Distinct communities were identified at depths greater than 6,084 m in the Kermadec

Trench (Abyssal, 4,046–5,000 m; Hadal, 6,084–10,004 m) and 6,877 m in the Mariana Trench

(Abyssal, 4,616–6,065 m; Hadal, 6,877–10,525 m). These findings are similar to changes in

Fig 1. Sample collection locations. Pelagic sample collection locations within the Kermadec and Mariana trenches.

https://doi.org/10.1371/journal.pone.0195102.g001
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megafaunal demersal fish assemblages, which showed distinct hadal communities starting at

6,750 m in the Kermadec Trench and 6,831 m in the Sirena Deep [72]. The Bacteroidetes and

Nitrospira were more abundant in hadal zones and Thaumarchaeota and Chloroflexiwere

more abundant in abyssal zones (S5 Fig), which may in part be driven by ammonia concentra-

tion/flux and higher amounts of organic matter with increasing depth [31,32,73,74]. Many

hadal-enriched taxa identified here (Fig 5, S3 Table) shared sequence similarity with microbes

previously obtained from trenches, including OTUs belonging to theMarinimicrobia, Plancto-
mycetaceae, Rhodobacteraceae, and Flavobacteriaceae. TheMarinimicrobia have been observed

as one of the most abundant phyla within the Puerto Rico [75] and Mariana [31,33] trenches,

consistent with their high abundances seen here. OTUs related to Aquibacter (Flavobacteria-
ceae; 96% similar to A. zeaxanthinifaciens) and Defluviicoccus (Rhodospirilliceae; 85% similar to

D. vanus) were specifically enriched in the hadal samples and reached abundances of up to

11% and 1.5%, respectively. These OTUs showed high similarity to sequences previously

obtained from the pelagic Puerto Rico, Mariana, and Japan trench datasets as well as sediments

Fig 2. Microbial activity as a function of pressure using HPG. A; Ratio of the percentage of active cells under in situ
pressure versus atmospheric pressure. B; Ratio of the percentage of active cells at 110 MPa versus in situ pressure. Filled

circles, seawater collected at<13˚C, excluding the surface sample; open circles, seawater collected at>15˚C.

https://doi.org/10.1371/journal.pone.0195102.g002

Fig 3. Abundant pelagic phyla. Relative abundances of the ten most abundant phyla in the pelagic zones of the Kermadec and Mariana trenches, organized by trench

and size fraction (>3.0, 3.0–0.2, 0.2–0.1 μm).

https://doi.org/10.1371/journal.pone.0195102.g003
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from the Ogasawara Trench (S6 Fig; [76,77]). These groups may represent bathytypes, taxa

adapted to the specific ecological niches associated with depth. Heterotrophic Gammaproteo-
bacteria, including Psychrobacter andHalomonas, were also preferentially enriched within the

Fig 4. Ordinations of sequenced abyssal and hadal communities. Distances between abyssal and hadal communities

visualized via ordinations using Bray-Curtis dissimilarity. A, Mariana Trench; B, Kermadec Trench; C, both trenches.

https://doi.org/10.1371/journal.pone.0195102.g004

Mariana and Kermadec trench hadal communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0195102 April 5, 2018 9 / 21

https://doi.org/10.1371/journal.pone.0195102.g004
https://doi.org/10.1371/journal.pone.0195102


hadal versus abyssal depths examined, but were found to have widespread, cosmopolitan dis-

tributions that include shallow-water locations (e.g. S13 Fig).

Kermadec and Mariana trench communities are distinct from each other

Trenches may represent independent zoographic provinces [16,17], each with its own unique

signature of biodiversity and endemism due to their extreme depth, topography, nutrient

inputs, and in many cases isolation from other trench systems. Comparisons of the Kermadec

and Mariana trench communities revealed distinctive memberships in each trench (Fig 4, S4

Fig; R2 = 0.15, p<0.001). When excluding surface samples, 50% of all OTUs were specific to

one trench but made up only 5% of the total sequences. Of these unique OTUs 75% belonged

to the Mariana Trench, in agreement with increased richness in the Mariana relative to the

Kermadec (S7 Fig). When comparing the abyssal and hadal zones 48% of the OTUs were

Fig 5. OTUs enriched in the hado- or abysso- pelagic communities. A; OTUs showing enrichment within the hadal or abyssal zones of the Mariana and Kermadec

trenches labeled by the lowest discernible taxonomic rank. Filled, enriched in the abyssal zone; open, enriched in the hadal zone. B; OTUs showing enrichment within

the hadal zone of the Kermadec or Mariana trench. Filled, enriched in the Kermadec Trench; open, enriched in the Mariana Trench.

https://doi.org/10.1371/journal.pone.0195102.g005
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zone-specific but made up only 5% of all sequences, while 13% of all OTUs were found in both

trenches and both pelagic zones and accounted for 83% of all sequences. Therefore, these

assemblages contain widespread, abundant lineages and a number of rare, potentially endemic

taxa that make up a large number of OTUs but a small fraction of the entire community. Simi-

lar findings have been reported for the meso- and bathypelagic [12,78], where these communi-

ties are composed of both abundant and widely distributed species as well as rare, sample-

specific taxa that represent a minor fraction of the total community [4]. The importance of

such low-abundance taxa is not well understood, but they may represent a microbial seed

bank capable of becoming more abundant under specific environmental conditions [79].

Taxa were identified that showed differential abundances between the two hadal zones (Fig

5, S4 Table). Regardless of abundance, however, they were found in both trenches and showed

similarity to other deep-ocean sequences (e.g. S7 Fig). Therefore these taxa are widespread but

differentially abundant within the deep-sea communities. Variations in abundance of depth-

cosmopolitan taxa, especially members of the Gammaproteobacteria, were also seen. While the

Kermadec Trench was enriched in sequences related to Alteromonas, Pseudoalteromonas,
Photobacterium, Cobetia, and Psychrobacter, the Mariana Trench was enriched in sequences

related to Shewanella, Alcanivorax, Idiomarina, Marinobacter, Halomonas, and Pseudomonas.
All of these sequences show similarity to those within surface waters. The differences in com-

munity composition between these two trenches may be due to fluxes of organic matter, as

annual rates of primary production in the overlying waters of the Kermadec have been esti-

mated as 87 g C m-2 yr-1, compared to lower productivity (59 g C m-2 yr-1) in the waters above

the Mariana Trench [13,80]. Water masses, which can have distinct biogeochemical properties,

may also affect community composition [81]. Differences in nutrients between the two

trenches (S2 Fig) indicate different water mass inputs, with the Kermadec being the first trench

in the Pacific Ocean to receive Lower Circumpolar Deep Water [16] while the Mariana

receives both Lower Circumpolar Deep Water and North Pacific Deep Water [82]. Site-to-site

variations may also be driven by benthic boundary layer nutrient concentrations, perhaps

because of differing influences from topographic focusing of settling organic material and/or

sediment resuspension. For example, within the Mariana Trench higher relative abundances

of nitrogen-cycling Nitrospira and Nitrosomonas correlated with sites containing higher nitrite

concentrations (S8 Fig).

Community composition differs between size fractions

Different size fractions may represent distinct niches, with larger size fractions containing par-

ticle-attached microbes and smaller size fractions including free-living microbes. We separated

the trench microbial communities into >3.0 μm (particle-associated), 3.0–0.2 μm (free-living),

and 0.2–0.1 μm (ultra-small free-living) size fractions. Size fraction was a small driver of com-

munity composition (both trenches; R2 = 0.05, p<0.001; Mariana, R2 = 0.12, p<0.001; Ker-

madec, R2 = 0.08, p>0.08). The most well represented taxa associated with the particle fraction

included members of the phylum Planctomycetes (S9 Fig), which have a particle-attached life-

style in bathypelagic settings [83]. The taxa most enriched in the free-living fraction included

Alteromonas, SAR324, SAR202, and theMarinimicrobia. Comparisons between the free-living

and ultra-small free-living size fractions showed that the ultra-small free-living fraction was

enriched in three archaeal phyla, including the Thaumarchaeota, Marine Hydrothermal Vent

Group (MHVG), andWoesearchaeota, and two members of the candidate phyla radiation

[84], the Parcubacteria and Gracilibacteria (S10 Fig). Many of these taxa were specifically

enriched in the Mariana Trench (Fig 5, S4 Table) and show best, albeit low, similarity to

sequences from the Mariana, Japan, and Ogasawara trenches, highlighting their potential
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uniqueness. The Parcubacteria and other members of the candidate phyla radiation represent

some of the smallest bacteria known [85]. Our findings support the observation that unique

taxa can be exceptionally small and the abundances of many microbes may be misinterpreted

when sampling stops at the 0.2 μm pore size.

Culturable microbes are widespread

Piezophiles have been isolated from a variety of deep-ocean trenches, with most belonging to

the genera Colwellia, Shewanella,Moritella, or Psychromonas [24,25,26,86,87], r-strategists that

grow relatively rapidly in nutrient-rich media. Abundance estimates of these cultured piezo-

philes indicate that they make up a small fraction of hadal seawater communities despite their

consistent isolation [30]. Previously no discernible portion of the community in the Sirena

Deep was attributed to known piezophiles, although they made up ~0.5% of the communities

in the Challenger Deep [33]. However, distribution and rates of isolation of piezophiles have

not been thoroughly investigated.

To determine if previously isolated piezophilic species were present in the Mariana and

Kermadec trenches, the community sequence data was searched for OTUs with>97% similar-

ity to known piezophiles. Abundances were typically less than 1% within each size fraction and

were higher in the Kermadec relative to the Mariana Trench (Fig 6; T-test, p<0.04). Sequences

related to piezophilic taxa were preferentially enriched on the particle fraction, indicative of a

surface-attached lifestyle associated with the utilization of particulate organic matter (T-test,

both trenches, p>0.05; Kermadec Trench, p<0.05). Now three trenches, including the Puerto

Rico, Mariana, and Kermadec, have been shown to contain sequences associated with previ-

ously isolated and cultured piezophiles at relative abundances of less than 1%. Thus, these

piezophiles, along with other putative bathytypes, appear to maintain connectivity between

trenches, including within the northern and southern hemispheres and the Pacific and Atlan-

tic oceans. Some obligate piezophiles show growth and activity at pressures as low as 40 MPa,

suggesting they can survive at abyssal depths. Therefore many hadal microbes, as with other

deep-sea microbes [12], could be transported into other regions of the global ocean in associa-

tion with water mass circulation at abyssal depths. Curiously, no isolates were obtained at high

hydrostatic pressure from the water column in either trench (S5 Table). The inability to culture

piezophiles here may be due to low abundances of these taxa, especially in the Mariana Trench,

or the small numbers of enrichments performed. Because many piezophilic microbes have

been isolated from hosts and sediments [24,26,86,88], they may be more abundant in these

niches than in the water column.

Many microbes have also been isolated from deep-ocean samples when incubated at atmo-

spheric pressure, but the role of these isolates in situ remains unclear. In contrast to our high

pressure culturing results, 102–103 CFUs mL-1 were obtained from trench samples on plates

and in bulbs incubated at atmospheric pressure (S5 Table). Most isolates were related to the

genera Pseudoalteromonas, Pseudomonas, Shewanella, Halomonas, and Psychrobacter (Fig 6, S6

Table). Related taxa have been isolated from other deep-ocean samples [31,89,90,91], suggest-

ing there is selection even for microbes that grow at atmospheric pressure. Interestingly, atmo-

spheric pressure isolates are more representative of deep-ocean communities than microbes

isolated under in situ conditions (Fig 6). To assess the ability of deep-sea associated, atmo-

spheric pressure-isolated microbes to grow under deep-sea conditions, growth studies were

performed for nine isolates belonging to the genera Pseudoalteromonas, Pseudomonas, Psy-
chrobacter, Alteromonas, andHalomonas, including five deep-sea isolates and four related shal-

low-water species (S7 Table). None of the isolates were piezophilic or grew at pressures greater

than 40 MPa (S11 Fig), consistent with other estimates of high-pressure growth of related
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PLOS ONE | https://doi.org/10.1371/journal.pone.0195102 April 5, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0195102


strains [89,92,93]. Although growth rates were repressed under the low oxygen conditions that

develop in batch high-pressure cultures, the reduced oxygen availability does not explain the

pressure sensitivity of these strains. After pressurization for one month at 90 MPa cells

remained intact and some strains remained cultivable (S12 Fig), indicating they may remain

viable in the deep sea for long periods. Sequences representative of these genera were found in

the surface, abyssal, and hadal communities in high abundances (S8 Table, S13 Fig), indicating

they may not be obligate bathytypes, and related taxa have been found associated with sinking

particles [94,95,96]. Therefore these atmospheric-pressure adapted “deep-sea” isolates could

represent cell types which colonize particles, either at the surface or at meso- or bathy- pelagic

depths [12,97] and descend to full-ocean depths where they can survive prolonged periods at

high pressure. Future studies should evaluate whether the hadal populations of these genera

represent a mixture of closely-related strains that show ecotype differentiation (e.g. [98]), some

Fig 6. Isolates and their abundances. A; Relative abundances of cultured isolates from seawater in the Kermadec and Mariana trenches at 0.1 MPa and 4˚C on plates

(n = 170) or in bulbs (n = 31). B; Combined relative abundances of OTUs similar to piezophilic Colwellia, Shewanella,Moritella, or Psychromonas species derived

from the community data. C; Combined relative abundances of OTUs related to the genera Pseudoalteromonas, Pseudomonas, Psychrobacter, Halomonas, Shewanella,
and Vibrio derived from the community data.

https://doi.org/10.1371/journal.pone.0195102.g006
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of which are autochthonous to the deep-sea and others that may have sank from shallower

depths.

Conclusions

Hadal microbial communities have been proposed to contain distinct taxa adapted to the

unique in situ conditions found in trenches. Here, we show that hadal communities within the

Kermadec and Mariana trenches are indeed distinct from the abyssal assemblages above them.

Hadal communities are enriched in certain taxa that may represent bathytypes, including

clades such as theMarinimicrobia and specific genera such as Aquibacter. Sequences related to

known piezophiles were identified in both trenches, albeit in higher abundances in the Ker-

madec Trench, but at<1% of total communities. These findings suggest similar hadal-associ-

ated taxa are present in multiple trenches, potentially transported by deep-ocean currents.

Such lineages may be responsible for the higher rates of activity under in situ rather than atmo-

spheric pressures determined here. Communities were also distinct between the Mariana and

Kermadec trenches, showing varying abundances of cosmopolitan taxa and the presence of

unique but rare OTUs. Inter-trench variation was largely driven by differentially abundant

heterotrophic Gammaproteobacteria that show a remarkable ability to survive long-term pres-

surization and may be from bathyal and shallower depths where they colonize particles and

sink. Trenches are therefore home to unique microbial communities, comprised of autochtho-

nous, pressure-adapted members and ubiquitous genera found throughout the water column.

Supporting information

S1 Text. Supplementary information and methods.
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S1 Fig. Cross-section by depth and latitude of water sample collection locations in the Mar-

iana and Kermadec trenches. Circles, CTD cast; Triangles, lander.

(TIF)

S2 Fig. General nutrient data and cell counts within seawater from the Mariana and Ker-

madec trenches. Red circles, Kermadec Trench; Blue circles, Mariana Trench.

(TIF)

S3 Fig. The percentage of active cells at either (A) atmospheric or (B) in situ pressures, where

filled circles were obtained at<13˚C (excluding the surface sample) and open circles at

>15˚C. C; The percentage of active cells of a Mariana Trench surface water sample as a func-

tion of temperature and pressure.

(TIF)

S4 Fig. A; Beta diversity community comparisons between water samples visualized by either

weighted Unifrac or Bray-Curtis ordinations. B; Heirarchical clustering of samples based on

Bray-Curtis dissimilarity colored broadly by pelagic collection location.

(TIF)

S5 Fig. Phyla showing enrichment within either the hadal or abyssal zones in the Kermadec

and Mariana trenches. Positive, hadal; negative, abyssal.

(TIF)

S6 Fig. Phylogenetic trees showing the relationship of hadal-enriched OTUs (blue) with

other closely related sequences. A, Aquibacter; B, Defluviicoccus; C, Rhodobacteraceae; D,
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Planctomyces.
(TIF)

S7 Fig. Alpha diversity comparisons of the Mariana and Kermadec trenches separated by

size fraction. Red, Kermadec Trench; Blue, Mariana Trench.

(TIF)

S8 Fig. A; Relative abundances of the nitrogen-cycling bacteria Nitrosomonas, Nitrospina, and

Nitrospira in the community Itag data. B; Nitrite concentrations within the Kermadec and

Mariana Trenches. C; Relative abundances of Nitrosomonas and Nitrospira within each abyssal

or hadal sampling site in either the Mariana (left) or Kermadec (right) trench plotted as a func-

tion of nitrite concentrations.

(TIF)

S9 Fig. OTUs showing enrichment within either the >3.0 or 3.0–0.2 μm size fractions

within the abyssal and hadal zones. Taxonomic labels represent the lowest discernible taxo-

nomic rank. Positive, >3.0 μm; negative, 3.0–0.2 μm.

(TIF)

S10 Fig. Phyla showing enrichment within either the 3.0–0.2 μm or 0.2–0.1 μm size frac-

tions within the abyssal and hadal zones. Positive, 0.2–0.1 μm; negative, 3.0–0.2 μm.

(TIF)

S11 Fig. Growth curves of nine representative isolates at 15˚C or 4˚C under atmospheric

or high hydrostatic pressure (MPa) conditions.

(TIF)

S12 Fig. Total and culturable cell counts of nine representative isolates after 30 days at 4˚C

and varying hydrostatic pressures. T0; counts prior to long-term pressurization.

(TIF)

S13 Fig. Phylogenetic trees of OTUs related to Pseudoalteromonas (A), Psychrobacter (B), and

Halomonas (C) that were abundant in surface, abyssal, and hadal samples.

(TIF)

S1 Table. Sample collection locations used in this study.

(XLSX)

S2 Table. Samples used for high throughput 16S rRNA gene community composition anal-

yses.

(XLSX)

S3 Table. OTUs showing enrichment within either the hadal or abyssal zones in the Ker-

madec and Mariana trenches. Positive log2FoldChange, hadal; negative abyssal.

(XLSX)

S4 Table. OTUs showing enrichment within the hadal zones of either the Kermadec or

Mariana trenches. Positive log2FoldChange, Mariana; negative Kermadec.

(XLSX)

S5 Table. Colony forming units (CFUs) per mL of sample at different sampling locations

based on media type and incubation method.

(XLSX)

S6 Table. List of isolates obtained at atmospheric pressure and 4C on plates and in bulbs.

(XLSX)
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S7 Table. Isolate information used for growth curve and survival analyses.

(XLSX)

S8 Table. Relative abundances, OTU rank, and culturing ranks of taxa found at >.05%

abundance on 3.0 and 0.2 um size fractions at all depths. Relative abundances shown were

determined after combining samples by size fraction and depth zone (Surface (1–131 m), abys-
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