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Machine-learning predicts genomic determinants
of meiosis-driven structural variation in a
eukaryotic pathogen

Thomas Badet!, Simone Fouché'?, Fanny E. Hartmann3, Marcello Zala? & Daniel Croll® '

Species harbor extensive structural variation underpinning recent adaptive evolution. How-
ever, the causality between genomic features and the induction of new rearrangements is
poorly established. Here, we analyze a global set of telomere-to-telomere genome assemblies
of a fungal pathogen of wheat to establish a nucleotide-level map of structural variation. We
show that the recent emergence of pesticide resistance has been disproportionally driven by
rearrangements. We use machine learning to train a model on structural variation events
based on 30 chromosomal sequence features. We show that base composition and gene
density are the major determinants of structural variation. Retrotransposons explain most
inversion, indel and duplication events. We apply our model to Arabidopsis thaliana and show
that our approach extends to more complex genomes. Finally, we analyze complete genomes
of haploid offspring in a four-generation pedigree. Meiotic crossover locations are enriched
for new rearrangements consistent with crossovers being mutational hotspots. The model
trained on species-wide structural variation accurately predicts the position of >74% of newly
generated variants along the pedigree. The predictive power highlights causality between
specific sequence features and the induction of chromosomal rearrangements. Our work
demonstrates that training sequence-derived models can accurately identify regions of
intrinsic DNA instability in eukaryotic genomes.
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tructural variation including duplications, inversions,

insertions, and deletions is often the most common form of

genetic variation within species!=3. A wide range of phe-
notypes including human diseases, traits for crop improvements,
and pathogen virulence are associated with chromosomal
rearrangements?~7. Breaks in genome collinearity can have
important consequences for the faithful exchange of alleles during
meiosis®~10. Hence, chromosomal rearrangements can also
underpin adaptation stemming from co-adapted alleles including
sex determination loci! 12, Structural variation arises either from
non-allelic homologous recombination, homology-directed
repair, and microhomology-mediated end joining between repe-
titive regions in the genome or the activity of transposable
elements! 314, However, predicting the likelihood of sequence
rearrangement events remains challenging. In most species, the
repetitive sequence content is poorly resolved at the nucleotide
level leading to fuzzy predictions about fragile sites that are prone
to rearrangementslS. Furthermore, analyzing segregating struc-
tural variants at the population level only partially reflects
sequence rearrangement events because selection tends to remove
deleterious variants over generations.

Most sequence rearrangements are generated through double-
strand break repair!®. Germline double-strand breaks are typi-
cally induced during meiotic recombination!. Microhomology,
tandem repeats, and large-scale duplicated sequences can be at
the origin of fragile sites and cause chromosomal instability!7-18.
However, whether and how individual genetic and epigenetic
sequence features attract higher rates of sequence rearrangements
is poorly understood!®1°. Pangenome studies across eukaryotes
showed that structural variation segregating within species can
exceed single-nucleotide variation®. Species-wide structural var-
iation is often heterogeneously distributed along chromosomes
and shows strong associations with epigenetic marks and the
activity of transposable elements®20-22, Purifying selection in
populations removes deleterious chromosomal rearrangements
over generations, hence skewing the spectrum towards neutral or
nearly neutral structural variation®.

Here, we establish a nucleotide-level map of structural varia-
tion based on 19 chromosome-level assemblies of the fungal
pathogen Zymoseptoria tritici, which is one of the most devas-
tating pathogens of wheat, causing 5-10% annual losses in Eur-
ope alone?3. Based on genome-wide association mapping of 24
phenotypes characterizing the life cycle of the pathogen, we show
that top associated SNPs tend to map near sequence rearrange-
ment loci and that the recent emergence of pesticide resistance
was disproportionally driven by structural variation. We apply
machine learning integrating 30 sequence metrics to train a
species-wide model to predict causal factors underlying structural
variation. We show that the model has high precision and
accuracy to predict insertion/deletion (indel) events and we
successfully apply the same approach to predict structural var-
iation in the pangenome of Arabidopsis thaliana. To disentangle
the effect of purifying selection from the mechanisms promoting
structural variation, we generate chromosome-level assemblies of
nine haploid progeny over four generations. We assess the power
of the pangenome-derived model and quantify the impact of

parental background on the generation of sequence
rearrangements.
Results

Pangenome-wide collinearity analyses reveal hotspots of
structural variation. To build a model of how structural variation
arises within a species, we analyzed the high-quality and world-
wide distributed pangenome of the fungal wheat pathogen Z.
tritici (Fig. 1A). Homologous chromosomes show substantial

breaks in collinearity across the global species range driven both
by indels and inversions (Fig. 1B). Eight of the 21 chromosomes
are accessory in the species with presence/absence polymorphism
and can undergo drastic rearrangements such as the fusion of two
chromosomes in the isolate from Yemen (Fig. 1B, C).

We performed all possible pairwise alignments between the 19
complete genome assemblies to analyze whether the extent of
structural variation within the species varied among chromoso-
mal regions. Collinearity (or synteny) can be expressed as a ratio
of syntenic segments over the total number of syntenic and non-
syntenic segments across windows (Fig. 1D). We averaged
synteny scores across the pangenome and found distinct profiles
along chromosomes. Telomeric regions were universally of low
synteny consistent with higher densities of repetitive sequences
and more opportunity for non-allelic homologous recombination.
Core chromosomes showed marked drops in synteny in regions
of major sequence rearrangements including large inversions on
chromosomes 3 and 12. The inversion on chromosome 12 is
present in 3 isolates (1E4, CRI10, and KE94), encompasses nearly
3% of the total chromosome length, and affects 11-17 genes
(Fig. 1B). Accessory chromosomes showed greatly reduced
synteny scores compared to core chromosomes with pronounced
signatures of sequence dissimilarity. Overall, 40% of the species
gene content is not fixed (ie., accessory genes). Chromosomal
length variation was positively correlated with transposable
element content (Fig. 1E). Essential (core) chromosomes showed
a cap at ~6% size variation despite significant variability in
transposable elements. Accessory chromosomes showed signifi-
cantly relaxed constraints on chromosome length and transpo-
sable element content.

Long-read and whole-genome alignment-based structural var-
iant analyses. Local synteny scores do not resolve precise
sequence rearrangement events. Hence, we analyzed structural
rearrangements using PacBio long reads mapped against the
reference genome (IPO323). Evaluating evidence from split
mapped reads, mismatch, and coverage data, we identified a total
of 21,718 structural variants localized at base-pair resolution.
Detected variants included duplications (0.85%), indels (56.6%),
inversions (0.95%), and translocations (41.6%) (Supplementary
Data 1). To avoid false positives due to noisy long-read mapping,
we analyzed sequence rearrangements using an alternative
method based on pairwise whole-genome alignments. This sec-
ond approach revealed a total of 50,767 unique rearrangements
including duplications (5.3%), copy polymorphisms (6.5%),
highly diverged regions (i.e., unresolved complex rearrangements)
(16.2%), indels (52.5%), inversions (0.9%), inverted duplications
(4.9%), inverted translocations (5.8%), tandem repeats (2.2%),
and translocations (5.4%) (Supplementary Data 2). We con-
solidated variants based on physical proximity and type (see
“Methods” section). After merging, both variant mapping meth-
ods yielded a similar number of structural rearrangements with
13,902 rearrangements overlapping between the PacBio read and
whole-genome alignment methods (Supplementary Fig. 1). The
pairwise whole-genome alignment approach revealed a more
diverse set of structural rearrangements compared to the read
mapping method (Supplementary Data 1 and 2). Read mapping is
sensitive to read orientation and coverage at breakpoint positions,
which likely explains the higher proportion of coarsely classified
variants as translocations given unresolved breakpoints.

We performed resampling over the included genomes to assess
the breadth of total structural variation within the species
captured in our analyses. Both read mapping and genome
alignment-based structural variation calling revealed a near-linear
relationship between the number of genomes included and the
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Fig. 1 Species-wide genome structure of a highly polymorphic microbial eukaryote. A Worldwide map showing the country of origin of the 19
Zymoseptoria tritici isolates and phylogenetic relationships based on 50 random orthologous genes. Colors indicate the continent of origin. The map was
generated using the R package rworldmap. B Synteny plot of core chromosome 12 and accessory chromosome 16. The red and blue gradients represent the
percentage of identity given BLAST alignments for syntenic and inverted segments, respectively. Darker colors show higher identity values. Genes and
transposons are represented by gray and red boxes, respectively. € Presence/absence variation of accessory chromosomes. The isolate from Yemen
(YEQ92) carries a hybrid chromosome following a fusion between chromosomes 15 and 16. D Genome-wide synteny ratios along chromosomes of the 19
isolates. Synteny ratios are shown for each isolate as represented by the colored dots. E Variation in the total transposable element (TE) content per
chromosome. Core and accessory chromosomes are shown in green and brown, respectively. Length variation is expressed as the coefficient of variation.

Curves show the best logarithmic fit.
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Fig. 2 Structural variant heterogeneity across chromosomes and associations with genes. A \Whole-genome alignment-based structural variants per 10
kilobase pairs (kb) among isolates. Copy polymorphisms (CP), duplications (DUP), highly diverged regions (HDR), indels (INDEL), inversions (INV),
inverted duplications (INVDP), inverted translocations (INVTR), tandem repeats (TDM), and translocations (TRA). B Size distribution of the nine structural
variant types. C Minor allele frequency distribution. Curves show estimates of the exponential decay calculated for each variant type. D Proportion of each
type of variant overlapping with different gene category playing a role in fungal pathogenesis including secondary metabolite clusters, genes encoding for
predicted secreted proteins, effectors, and carbohydrate-active enzymes (CAZymes).

total number of variants identified (Supplementary Fig. 2). Z.
tritici is among the most polymorphic microbial eukaryotes
analyzed to date?®. The geographic breadth of the 19 included
isolates covers all major wheat-producing areas of the world.
Hence, despite covering only a fraction of the total structural
variation within the species, the detected variation should be
representative of the total diversity.

For the following analyses, we focus on variants identified
using the whole-genome alignment method given the higher
confidence and breadth of the variant discovery. Core chromo-
somes bear on average fewer structural variants compared to
accessory chromosomes but show a higher proportion of indels,
highly disordered regions, and translocation events relative to
other structural variant types (Fig. 2A). Most indels (~87%) are
short (<100 bp) and only 0.4% are larger than 10 kb (115 variants;
Fig. 2B). In contrast, most duplications and inverted duplications
(96%), copy polymorphisms (89%), highly diverged regions
(95%), translocations (96%), inverted translocations (94%) and
tandem repeats (97%) are larger than 100 bp. In particular, ~34%
of inversions are longer than 10 kb. We found that all types of
rearrangements show a pronounced shift towards low allele

frequencies compared to genome-wide SNPs consistent with
purifying selection (Fig. 2C).

Structural variation underpinning fitness-related trait expres-
sion. Major phenotypic innovations originate from chromosomal
rearrangements! %2027, Duplications and deletions affecting cod-
ing sequences can promote phenotypic change. We show that
~30% of the genome is affected by structural variation and that
~21% of the rearrangements overlap with coding sequences
(Supplementary Fig. 3). Inversions are balanced rearrangements
that preserve sequences and thus gene content. Consistent with
this, we find that inversions are more likely to contain coding
sequences (~57%; Supplementary Fig. 3). Genes encoding effector
proteins with likely functions in host manipulation and genes
encoding carbohydrate-degrading enzymes are overall less affec-
ted by structural variation (Fig. 2D). Nevertheless, the telomeric
effector gene AvrStb6 known as the major genetic factor con-
trolling disease development on a broad range of wheat cultivars
is affected by a local inversion polymorphism (Supplementary
Fig. 3)?8. The subtelomeric region harboring AvrStb6 shows a
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length variation of 30-250kb and is one of the top 5% most
rearranged chromosomal niches (Supplementary Fig. 4).

To quantify the contribution of structural variation to
phenotypic trait variation, we performed genome-wide associa-
tion analyses on 24 traits representative of the life cycle of the
pathogen (Supplementary Data 3). The phenotypes included
virulence on different wheat cultivars, temperature resilience, and

Expression in counts per million

fungicide resistance. The mapping population consisted of 106
isolates from all major wheat-producing areas®® (Fig. 3A). The
analyzed polymorphisms explained between 0 and 26% of the
phenotypic trait variation (for growth at 14 days after treatment
with propiconazole and growth at 22°C after 14 days, respec-
tively; Supplementary Table 1). We identified 16 traits with
significant SNPs located in regions affected by structural
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Fig. 3 Structural variation drives phenotypic trait evolution. A Unrooted phylogeny of 106 isolates used for genome-wide association mapping of 24
traits resulting from the unweighted pair grouping method based on the arithmetic mean. B Number of significantly associated single-nucleotide
polymorphisms (SNPs) across phenotypic traits (5% false discovery rate; FDR). C Percentage of significantly associated SNPs overlapping with structural
variants across different phenotypes. D Odds ratio of associated SNPs overlapping structural variants. Bars represent the 95% confidence interval of two-
sided Fisher's exact tests (n=779,178 SNPs). Ratios are shown for five phenotypic traits associated with fungicide resistance including colony
melanization. E Synteny plot of a locus associated with fungicide resistance on chromosome 13. Higher synteny between genomes is depicted by darker
colored links. Two genes encoding major facilitator superfamily (MFS) genes are colored in brown and green. Nearby transposable elements are annotated
according to their superfamily (shown in white). F Relative expression, expressed as counts per million of reads from one RNA sequencing experiment, of

the two major facilitator superfamily (MFS) genes, coloration as in E.

variation. For melanin production, >10% of the associated SNPs
overlap with regions with duplications, inversions, copy poly-
morphisms, highly diverged regions, indels, and tandem repeat
variation (Fig. 3B, C). Additionally, we identified 1822 SNPs
associated with tolerance to propiconazole, a widely used
fungicide of the demethylation inhibiting (DMI) family. A total
of ~14% of fungicide tolerance SNPs overlap with regions with
indel variation, translocations, inversions, and highly disordered
regions. Significantly associated SNPs were over-represented at
sequence inversions, translocations, and inverted translocations
for propiconazole tolerance and melanization-related traits (odds
ratio > 2; Fig. 3D). Two fungicide tolerance SNPs were near major
facilitator superfamily (MFS) genes. One of the MFS genes was
also affected by a transposable element insertion and a loss of
expression (Fig. 3F). Multiple additional insertions near the two
MES genes are associated with transcriptional variation (Fig. 3E,
F). Taken together, regions underlying major phenotypic trait
variation undergo high rates of structural variation.

Chromosomal niches of structural variation hotspots. Struc-
tural variation shows a highly heterogeneous distribution along
chromosomes. Hence, specific sequence features may contribute
disproportionally to the likelihood of rearrangements. In order to
systematically identify associations across the genome, we ana-
lyzed variation in gene and transposable element densities, loca-
tions of core and accessory genes, isochores (i.e., AT-rich
regions), recombination rates, and histone methylation marks for
a total of 35 different sequence metrics available for the IPO323
reference genome across 10 kb non-overlapping windows. Gene
and transposon coverage are strongly negatively correlated and
underlie strong genome compartmentalization (Fig. 4A and
Supplementary Data 4). The highly abundant transposable ele-
ment superfamily Gypsy shows the strongest correlation with
transposable element regions. Transposable elements co-localize
both with repressive and facultative heterochromatin marks
(H3K9 et and H3K27 3, respectively). We find that all types of
structural variation (except indels) are over-represented near
(<10kb distance) of transposable elements. The strongest over-
representation was found for translocations and inverted trans-
locations (Fig. 4A and Supplementary Fig. 5). This shows that
transposable elements are drivers of structural variation in spe-
cific compartments of the genome. Indels show no preferential
associations across the genome but tend to be more abundant
near (<10 kb distance) accessory genes and depleted near (<10 kb
distance) transposons. Repressive heterochromatin marks and
transposable element density (Gypsy elements in particular) are
strongly predictive of translocations, inverted translocations,
duplications, and inverted duplications. Overall, chromosomal
rearrangement hotspots are associated with H3K9 and H3K27
histone methylation marks, specific transposable elements, and
low gene density.

A pangenome-informed model accurately predicts structural
variation. The species-wide structural variation is the joint

product of intrinsic instability of specific sequence features and
selection acting on structural variants. To build a predictive
model accounting for these different forces, we integrated
30 sequence features available for all complete genomes including
the progeny dataset. Features included the density and identity of
transposable elements, the presence of virulence factors, local
recombination rates, GC content as well as information on gene
dispensability (see Supplementary Data 5 for metric details). Even
though gene dispensability is itself potentially an indicator of
structural variation, the majority of dispensable genes in Z. tritici
were generated by loss-of-function mutations’®. We evaluated
four different machine-learning algorithms with three times 10-
fold cross-validations. We selected the best models based on
accuracy and maximized the percentage of correctly classified
instances overall. Overall, the four algorithms performed simi-
larly, yielding 0.84 average accuracy across the nine types of
rearrangements (Fig. 4B, C). The random forest method yielded
slightly higher precision (0.64) while the generalized boosted
regression method achieved better recall and F1 statistics on
average (0.64 and 0.77, respectively) (Supplementary Fig. 6 and
Supplementary Data 6). For all types of rearrangements and the
random forest method, the best predictors included GC content,
recombination rate, the presence of core genes, and transposable
elements (Supplementary Fig. 7). Weaker predictors included the
presence of retrotransposons for duplications, inversions, and
translocations (Supplementary Fig. 7). Models for inversions and
tandem duplications, the two rarest type of variants yielded high
accuracy (due to true negative detection) but had low precision
and recall (no true positives detected). Given the measures of area
under the receiver operating characteristic (auc-ROC) curve and
precision-recall (auc-PROC), the best predictions were achieved
for indels (auc-roc = 0.69; auc-proc = 0.99) and highly diverged
regions (auc-ROC =0.69; auc-PROC=0.74) (Fig. 4B, C and
Supplementary Data 7). Both indels and highly diverged regions
also yielded the highest number of true positives (Fig. 4E; Sup-
plementary Data 8). However, the final models for highly
diverged regions tended to call both false positive and false
negative variants (~15% and 18%, respectively).

We replicated our approach to predict structural variation in
the model plant Arabidopsis thaliana. The pangenome shows
hotspots of rearrangements associated with transposable elements
and depleted for recombination3!. We parametrized the random
forests model based on Col-0 reference sequence metrics
including transposable elements, core, and accessory gene
coverage, recombination rate, and nucleotide-binding and
leucine-rich repeats (NLRs) gene coverage31:32. Over the total
of 3974 sequence windows, we correctly predicted 100% of the
indel polymorphism (n = 3,947) with an accuracy of 0.99 and a
recall of 1 (Fig. 4F and Supplementary Table 2). Additionally, we
correctly predicted 26% of the highly diverged regions, 20% of the
duplications and copy polymorphisms, 17% of the inverted
duplications and translocations, and 16% of the inverted
translocations (Supplementary Table 3). The models were not
able to predict the two rarest variants present in the species,
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Fig. 4 A pangenome-informed model predicts the occurrence of structural variation. A Correlation analyses of 35 genome-wide metrics available for the
reference genome IPO323 with types of structural rearrangements. Correlations were assessed from pairwise complete observations. B Receiving
operating characteristics and precision-recall curves of the final models trained using highly diverged regions (upper part) and indels (lower part). Four
algorithms were analyzed including random forests, logistic regression (GLM), stochastic gradient boosting (ADA), and generalized boosted regression
(GBM). Numbers in parentheses indicate the area under the curve for each of the four models. € Summary statistics of the final models for translocations
and indels using the four algorithms. Accuracy describes the model capacity at only detecting true variants. Precision measures the ability to predict true
variants. Recall measures the ability to detect all true variants and the F1 score considers the harmonic mean of both precision and recall. D Relative
importance of each of the 30 sequence features used in the training of the random forests model. The importance of individual sequence features is shown
as the unscaled averages of the class-specific scores. E Confusion matrix resulting from highly diverged regions and indel predictions using the two
respective models trained with the random forests algorithm. F Confusion matrix of the highly diverged regions and indel predictions performed for the
Arabidopsis thaliana pangenome.
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namely inversions and tandem duplications (122 and 536 for A.
thaliana, respectively). The successful application of machine
learning to predict structural variation suggests that eukaryotic
genomes rearrange based on identifiable patterns in genome
sequences.

The predictive power of the species-wide model in an experi-
mental pedigree. Structural variation within species is likely
produced de novo during meiosis or accumulate in somatic tissue.
Nearly all observed variants are expected to be neutral or nearly
neutral because of purifying selection. To experimentally inves-
tigate mechanisms underlying the formation of new rearrange-
ments, we produced a haploid pedigree of four generations of
experimentally crossed isolates (Fig. 5A). The parental isolates
were collected from Swiss wheat fields and are included in the
species pangenome analyses. We crossed the isolates using an
established protocol to produce sexual progeny on inoculated
wheat leaves. Sexual progenies were harvested and sub-cultured
as single genotypes for further experiments. The haploid stage is
dominant in Z. tritici meaning that any progeny has already
undergone meiotic recombination of the two haploid parental
genomes. Hence, chromosomal rearrangements triggered by
sexual reproduction can be scored directly in an F1. We used
progeny and parental strains to generate a total of five crosses
with the first one being between the two parents and four sub-
sequent backcrosses with one of the two parents (Fig. 5A). The
total of 9 progeny was separated each by one to four rounds of
meiosis from the parents (see “Methods” section). We produced
gapless, chromosome-scale assemblies using PacBio sequencing.
The genome assemblies revealed that the accessory chromosome
17 displayed significant instability undergoing large segmental
duplications (Supplementary Fig. 8). Four accessory chromo-
somes were lost after the third and fourth round of meiosis likely
due to non-disjunction events (Fig. 5C). Progeny genomes
showed large drops in synteny compared to parental isolate 1A5
consistent with the large inversions segregating among the par-
ental genomes (Supplementary Figs. 9 and 10). Regions of low
synteny among progeny genomes were largely congruent with
low synteny regions in the species pangenome, suggesting that the
same sequences promote recurring structural rearrangements.
Following the procedures for structural variant calling to train the
species-wide model, we identified rearrangements in progeny
genomes by aligning the nine progeny whole-genomes against
one parental genome (i.e., 1A5). We filtered out any structural
variant segregating between the two parental genomes. This
ensured that we focused on structural variants that have origi-
nated within the pedigree. We identified a total of 1464 de novo
rearrangements including 363 indels, 106 highly diverged regions,
380 inverted duplications, 283 duplications, 100 copy poly-
morphisms, 111 inverted translocations, 77 translocations, 38
tandem repeats, and 6 inversions matching the distribution and
size observed in the species-wide genome collection (Fig. 5B and
Supplementary Data 9). We found that the initial cross 1A5 x 1E4
(first meiotic event, M1) has a higher rate of new rearrangements
when compared to the three other meiotic rounds in the pedigree
(interaction test for meiotic round and variant type; two-way
analysis of variance, p-value < le~©). These observations are
consistent with a role for parental genome dissimilarity in pro-
moting rearrangements. We conclude that the few rounds of
meiosis in the pedigree were sufficient to reproduce major aspects
of the species-wide set of chromosomal rearrangements.

Our design of crosses and backcrosses enables us to retrace the
emergence of structural variants through individual rounds of
meiosis (Fig. 5D). To dissect the history of new rearrangements
along the crosses, we assigned each variant to one of the four

categories. (1) New variants that were generated in the most
recent round of meiosis. Overall, isolates resulting from a
backcross with the 1E4 parent tend to show higher numbers of
new variants (Fig. 5B-D). The progeny isolates from the first
meiosis cross with the 1A5 and 1E4 parents show the highest
number of new structural variants (A2.2 and A66.2). (2) Lost
variants compared to the parental genomes were most frequent in
the first backcross as expected. (3) Retained variants shared by all
progeny of a cross are rare and accumulate in the pedigree. (4)
We detected recurring mutations in nearly all progeny beyond the
second round of meiosis (ie., identical variants generated
multiple times independently). A total of 189 of the new progeny
variants (including all types of rearrangements except inversions)
are also present in the pangenome. New and lost variants tend to
occur in distinct regions of the chromosome as expected from
crossovers re-introducing parental sequences (Supplementary
Fig. 11). We dissected the mechanism by which new and
recurrent rearrangements are generated. For this, we identified
crossovers from whole-genome alignments between each progeny
and the two respective parental genomes (Fig. 5E). As expected,
segments inherited from the backcrossed parental isolate were
depleted of structural variants (Fig. 5E). The two transposable
element superfamilies (RLG and RII elements) driving structural
variation across the species showed no clear association with
crossover events and new rearrangements in the pedigree.
Interestingly, we accurately predicted an indel and a translocation
event that occurred in the progeny near the two MES genes
associated with fungicide resistance in our genome-wide associa-
tion study. New structural variants overall tend to be generated
near crossover breakpoints (Fig. 5E). To retrace how crossover
generates new rearrangements, we used synteny to localize
crossover breakpoints on chromosome 1 through the 4 meiotic
cycles (n= 18 breakpoints). We show that indels and inverted
duplications are enriched in proximity to crossover breakpoints
consistent with recombination-mediated double-strand breaks
causing sequence rearrangements (Fig. 5F).

Sequence rearrangements generated through meiosis can
impact fitness and therefore challenge the analyses of structural
variation in natural populations. Progeny from our pedigree was
minimally cultured on a nutrient-rich medium likely reducing the
strength of selection on slightly deleterious rearrangements. To
test the predictive power of the species-wide model of structural
variation, we re-parametrized the input metrics for the one
parental genome (i.e., 1A5) in the pedigree. Using the same set of
sequence features across windows, we analyzed the occurrence of
a total of 1464 newly generated rearrangements across 3994
genomic windows. As for the species-wide model, no algorithm
clearly outperformed others in terms of accuracy, precision, and
recall metrics (Supplementary Fig. 12). The highest F1 score
metric was achieved for duplications and inverted duplications
(0.29 < F1 <0.37) with an accuracy ranging from 0.80-0.84. Both
indels and highly diverged regions yielded lower accuracy
compared to the species-wide model and the Arabidopsis model
(Supplementary Fig. 12). However, using the random forests
model, we were able to accurately predict 100% of the indels and
74% of the highly disordered regions generated in the pedigree
(Fig. 5G). Results for duplications, copy polymorphisms,
translocations together with inverted duplications and inverted
translocation also yielded high proportions of accurately
predicted events (79%, 77%, 94%, 81%, and 89%, respectively)
(Supplementary Data 10). The lower accuracy of the model
applied to the pedigree compared to the species-wide model
stems from an over-prediction of structural rearrangements
(Fig. 5G and Supplementary Table 4). We investigated the
genomic context of the over-predictions using synteny ratios
between the parental genomes. We find that true negatives tend
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to be in regions of high synteny (Supplementary Fig. 13). On the
contrary, true positives tend to be in regions of low synteny
compared to false positives in particular for inverted duplications
(Wilcoxon rank-sum test, p-value < 0.05). This suggests that
model over-predictions are caused by variation in synteny
between the two parental genomes (Supplementary Fig. 13).
False positives are found in regions of higher recombination rate

compared to true positives (Wilcoxon rank-sum test, p-value <
0.0001). Consistent with this, we find that the model predicts less
false positive within 5 kb of crossover events except for indels and
highly diverged regions. In addition, the ratio of false and true
discovery rates among progeny is independent of the round of
meiosis in the pedigree (Supplementary Fig. 14). In general,
model performance is lowest for the second round of meiosis with
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Fig. 5 Predictions of structural variation generated by meiosis throughout a pedigree. A Pedigree chart showing the relationship between the 9 progeny
isolates retrieved across four rounds of meiosis. Colored rounds and squares indicate the parental isolate used for backcrosses. B Number of newly
emerged variants detected in each of the progeny isolates. Isolates are ordered as in the pedigree chart and colored rounds and squares indicate the
parental isolate used for backcrosses. Copy polymorphisms (CP), duplications (DUP), highly diverged regions (HDR), indels (INDEL), inversions (INV),
inverted duplications (INVDP), inverted translocations (INVTR), tandem repeats (TDM), and translocations (TRA). € Presence/absence of accessory
chromosomes across the progeny set and the parental isolates. Chromosome 17 is absent in the 1E4 parent and shows complex segregation in the pedigree
including truncations and duplications. D Classification of variants according to their origin and persistence in the pedigree. Variants present in a focal
progeny and the direct parents were defined as “retained” variants. Variants present in a focal progeny but in none of its ancestors in the pedigree were
called “new” variants. Variants present in a progeny, absent in its direct parents but present already in an ancestor were defined as “recurrent” variants.
Finally, variants absent from a progeny but present in both parents were called “lost” variants. E Chromosome 1 synteny plot of the progeny ZtprogO1 and
its two parental isolates (lower panel). Regions of maximal pairwise identity (i.e., 100%) are colored in blue and highlight the three recombination events
(green stars). Chromosome density of new and recurrent as opposed to lost structural variants (second panel from bottom). The number of new indels and
translocations (second panel). The density of the two transposable elements contributing most to structural variation based on machine learning. RII: LINE |
retrotransposons, RLG: Gypsy retrotransposons. F Density plot of new structural variants related to the closest crossover breakpoints on chromosome 1
expressed in kilobase pairs (kb). G Confusion matrix resulting from indel and highly diverged region model predictions using the two respective models

trained with the random forests algorithm.

the 1A5 parent and increases towards the last round of meiosis
(i.e., with an increase in detected variants). Altogether, we show
that meiosis contributes significantly to the formation of
structural variation in the species, and that machine learning
enables the precise prediction of indel events across rounds of
meiosis.

Discussion

We show that integrating sequence data into an optimized model
enables us to make powerful predictions where structural varia-
tion is generated along chromosomes. Similar sequence features
underpin the likelihood of rearrangements both in the sets of
species-wide genomes of Z. tritici and A. thaliana. The major
factors leading to higher rates of sequence rearrangements are low
GC and gene content. Low GC content is associated with a variety
of sequence features including short repeats and inactivated
transposable elements. The higher rate of sequence rearrange-
ments triggered by these regions is likely a combined effect of
relaxed selection and higher degrees of homology along the
genome. Indeed, AT-rich regions are more likely to form sec-
ondary structures that disturb DNA replication®3. Structural
variation occurring in gene-dense regions is more likely to be
deleterious. Here, we show that recent adaptation to resist pes-
ticide applications has been primarily driven by structural var-
iation. We identified rearrangements near two major facilitator
superfamily (MFS) encoding transporters of xenobiotics. This
shows that strong positive selection on individual rearrangements
can exceed purifying selection acting on gene-rich, conserved
regions.

Germline sequence rearrangements are mainly generated
during meiosis. However, selection on deleterious rearrangements
can potentially skew how population-level structural variation
relates to underlying sequence features. The haploid fungus Z.
tritici enables observing rearrangements generated by meiosis
already at the F1 stage and growth on a rich medium minimizes
the breadth of selection compared to natural environments.
Meiotically induced structural variants are often the result of non-
allelic homologous recombination!®. Genome-wide structural
variation breakpoints in the human genome revealed that such
NAHR events are associated with higher recombination rates, but
also higher GC content and open chromatin, suggesting con-
served mechanisms across eukaryotes'®. In A. thaliana, structural
variation is negatively correlated with recombination rates likely
due to structural variation being able to suppress crossover
formation®. Here, we show that new variants are preferentially
generated near crossovers showing that breakpoints can act as

hotspots for creating structural variation including recurring
variants.

Our species-wide model of structural variation enables pow-
erful predictions about the occurrence of sequence rearrange-
ments during meiosis. Our pedigree analyses additionally
revealed a significant number of recurrent rearrangements at
relatively short distances, which were generated independently
multiple times. This shows that chromosomal instability can be
mapped precisely in regard to chromosomal sequence features.
Recurrent and nonrecurrent structural rearrangements in
humans are thought to be generated by different mechanisms.
NAHR between low-copy repeats is a major factor for the
recurrent mutations underlying genetic disorders in humans34.
Similarly, recurrent deletions and insertions influence develop-
mental processes in sticklebacks®® and cell aggregation in
yeasts30, respectively. The ability to predict the likelihood and
nature of structural variants from sequence features alone pro-
vides a conceptual ground for the growing evidence of parallel
evolution at the molecular level®”38. Here, we show that indels
and duplications are most likely generated through retro-
transposon activity. Similarly, inversions are generated near low-
copy LINE retrotransposons. In the progeny, these transposable
elements showed no close association to the newly generated
rearrangements but rather with crossover breakpoints. This sug-
gests that ongoing lineage-specific repeat expansions are the
primary driver of sequence rearrangements. Genomic models
trained on species-wide structural variation will have powerful
applications in research on genetic disorders, assessing the per-
sistence of genetic engineering in crop breeding and the devel-
opment of evolutionarily stable antimicrobials.

Methods

Experimental crossings. We generated a four-generation pedigree started from a
cross of the isolates 1A5 with 1E4 (PRJEB15648 and PRJEB20900, respectively)
initially described in3. One haploid progeny was selected for further sexual crosses.
The isolate A66.2 was subjected to further crosses and backcrosses with the par-
ental isolates following the protocol described by*. The full pedigree is described in
Fig. 5A. Crosses were made by co-inoculating spores of the parental pairs on wheat
plants and incubated until the development of pseudothecia (sexual structures of
the fungus). Ascospores ejected from pseudothecia were isolated on water agar
plates. Germinating ascospores were transferred for clonal propagation and further
DNA extraction.

Species pangenome and pedigree analyses based on complete genomes. The
19 isolate pangenome was first reported by Badet et al.#l. Briefly, isolates were
collected from six different continents on multiple wheat cultivars and span the
climatic gradient of the species. High-molecular-weight DNA was extracted from
cultured spores using a phenol-chloroform-isoamyl alcohol solution®’. Libraries
were prepared from at least 15 pg of DNA and the sequencing was performed using
P6/C4 chemistry on a PacBio RSII or Sequel instrument at the Functional
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Genomics Center, Zurich, Switzerland. PacBio reads were assembled to chromo-
some level using Canu v1.7.1 and Ragout v2.1.1 and polished twice using Arrow
v2.2.24243 Genes were predicted using BRAKER v2.1 pipeline with RNA-seq and
protein data for intron calling*->!. Orthogroups were defined based on protein
homology using Orthofinder v2.1.2°2°3. Transposable elements consensus
sequences were identified de novo using RepeatModeler open-1.0.11 and annotated
using RepeatMasker after manual curation®®. We used the consensus sequences
from Badet et al. 4! for repeat annotation. Briefly, repeats were identified de novo
with RepeatModeler software using the 19 pangenome isolates together with the
genome from the closest sister species Z. pseudotritici. Consensus sequences were
manually curated and classified according to the GIRI Repbase®. Transposon
superfamilies were named based on the three-letter classification system®®. The
genome assemblies from the 19 pangenome isolates and the 9 progeny isolates were
annotated using the curated consensus sequences with RepeatMasker

v4.1.0 software. The cut-off value was set to 250 and simple repeats, as well as low
complexity regions, were ignored. We filtered out all the elements that were shorter
than 100 bp. Adjacent identical elements that were overlapping by more than 100
bp were merged. Elements that were different and overlapping by more than 100
bp were considered as nested insertions and renamed accordingly. Interrupted
elements were grouped into a single element using minimal start and maximal stop
positions if separated by less than 200 bp. The world map presented in Fig. 1 was
created with the R package rworldmap v_1.3-6.

The 9 progeny from the pedigree selected for genome sequencing were
subjected to the same procedure as described above for DNA extraction and
sequencing. Libraries were prepared from 15 to 31 ug of DNA after size selection
with an 8 kb cut-off on a BluePippin system (Sage Science). The average fragment
length was ~15 kb and further sequencing was performed using either P4/C2 or P6/
C4 chemistry on a PacBio RSII or Sequel instrument at the Functional Genomics
Center, Zurich, Switzerland. PacBio read assembly was performed using HGAP
version 4 of the SMRTanalysis suite (version 6, release 6.0.0.47841)>7. HGAP was
run with the default parameters, except for the minimum seed read length, to
initiate the self-correction. First, we produced assemblies for all chromosomes
except chromosome 17 using the cutoffs automatically chosen by HGAP. In order
to improve the contiguity of the assembly, we tested minimum seed read lengths of
8000, 10,000, 12,000, 15,000, 20,000. Chromosomes that could not be assembled
into a single contig were scaffolded into chromosomes using Ragout (Reference-
Assisted Genome Ordering UTility) version 2.2 with default parameters and Sibelia
for synteny block decomposition>8, Unusual assemblies were analyzed using
Quiver 6.0.0.47835 with default settings as implemented in the SMRTanalysis suite
and mapped reads were inspected visually in IGV (2.4.10). The synteny of
assembled progenies was compared to the parent isolate 1A5 using Nucmer
(mummer 3.23) with the parameter’s delta-filter -i 80 -1 1000 -1 -q. A mummerplot
was generated with the parameters—filter-large—fat-layout-t postscript to visually
inspect assembly contiguity (Supplementary Fig. 8).

Chromosome-wide synteny ratios. To estimate the sequence collinearity between
multiple chromosome-level assemblies, we adapted the method by Jiao et al.3l.
Briefly, we performed all-against-all whole-genome alignments of the 19 pangen-
ome isolates using nucmer v4.0.0beta2 allowing for multiple matches (-maxmatch
option). We filtered the alignments for a minimal identity of 90% and a minimal
single match length 100 bp using the delta-filter in MUMmer v4.0.0beta2. We then
extracted the alignment coordinates using show-coords with the -THrd options
and mapped the position of syntenic and rearranged regions using the SyRi

v1.3 software?4. We calculated the intersect between the syntenic and rearranged
regions given by SyRi and 10 kb windows along the 19 reference genomes using
bedtools intersect (v2.29.2). The synteny ratio was then calculated as the number of
syntenic blocks (named “SYN” and “SYNAL” in the SyRi output) over the number
of total syntenic and non-syntenic blocks in each 10 kb window. For accessory
chromosomes not shared by all isolates, the total number of chromosomes included
in the synteny ratio was lower than for core chromosomes. For the pedigree
analyses, we applied the same method to calculate the synteny ratio of the 9
progeny genomes with the exception that chromosome 17 was excluded from the
analysis together with chromosomes 12 and 6 in the isolate Ztprog08. These
chromosomes underwent major fusion events rendering the one-against-one
alignments impossible.

Whole-genome-based variant analysis. To map structural variation across the 19
chromosome-level assemblies, we applied the method developed by Goel et al.?4.
Briefly, we performed whole-genome alignments of 18 genomes against the IPO323
reference genome using nucmer v4.0.0beta2 allowing for multiple matches
(-maxmatch option). We filtered the alignments for a minimal identity of 90% and
a minimal single match length of 100 bp using the delta-filter in MUMmer
v4.0.0beta2. We then extracted the alignment coordinates using show-coords with
the -THrd options and mapped the position of syntenic and rearranged regions
using the SyRi v1.3 software?*. For accessory chromosomes not shared by all
isolates, the total number of chromosomes included for analysis was lower than for
core chromosomes. We considered for further analysis the focal rearrangements
(i.e., variants called for alignments between homologous chromosome pairs)
annotated by SyRi as inverted (INV), translocated (TRA), inverted translocated
(INVTR), duplicated (DUP), inverted duplicated (INVDP) and highly diverged

regions (HDR), together with insertions and deletions considered here as indels
(INDEL); as well as copy gain and loss considered as copy polymorphisms (CP).
Each variant location was given by the breakpoint positions in the IPO323 refer-
ence genome. The variant length was calculated as the difference between the two
breakpoint positions in the IPO323 reference genome except for insertions, for
which we considered the distance between the two breakpoint positions in the
other genome. For all further analysis, we considered all individual variants larger
than 10 bp but shorter than 100,000 bp.

Long-read structural variant analysis. Structural variants were identified fol-
lowing the pipeline described in ref. >°. Briefly, PacBio reads from 18 isolates were
aligned to the IPO323 reference genome using the NGMLR software v0.2.7 with
default parameters. Variants longer than 10 bp (-1 10 option) were called using
Sniffles v1.0.10 allowing for a maximum distance of 5 kb for grouping variants (-d
5000), a minimum mapping quality of 30 (-q 30) and a minimum read support of
80% (-f 0.8). Sniffles adds a tag to each variant reporting the confidence of the
breakpoints mapping. We only retained precisely mapped variants that are smaller
than 100 kb (translocation events have an unresolved length with the variant
calling method). All 18 individual variant files were merged using the SURVIVOR
v1.0.7 tool allowing a distance of 1kb to bin variants®’. Variants larger than
100,000 bp were filtered out for all further analyses. For comparisons between the
long-read mapping and the whole-genome alignment method against the same
IPO323 reference, we merged in both cases identical variant types separated by less
than 1000 bp.

Genome-wide association mapping. The genome-wide association study
(GWAS) was performed on 106 Z. tritici isolates collected from single wheat fields
in Australia, Israel, Switzerland, and USA (Oregon) as described in%’. The total
SNP dataset included 779,178 SNPs. We analyzed phylogenetic relationships using
the vk suite v0.2.8 (https://vcf-kit.readthedocs.io/en/latest/phylo/). We generated a
phylogenetic tree using the vk phylo tree function using the unweighted pair
grouping method based on the arithmetic mean. The phylogenetic tree was
visualized using the iTOL web interface (https:/itol.embl.de). We performed
GWAS for a set of 24 traits related to fungicide resistance, growth, and host
adaptation (for values see Supplementary Data 3). Virulence on two wheat cultivars
was measured as the percentage of leaf area covered by pycnidia (PLACP) and
described in ref. 2°. The other 22 traits were measured in vitro following methods
from earlier studies®!-64. Briefly, isolates were regenerated from —80 °C culture
stocks on yeast malt sucrose agar Petri dishes for 4-5 days at 18 °C (4 g/L yeast
extract, 4 g/L malt extract, 4 g/L sucrose, 50 mg/L kanamycin, 15 g/L agar). For
plate inoculations, blastospores were diluted in sterile water to 200 spores/mL final
concentration using KOVA counting slides and 500 pL spore suspensions were
then spread on potato dextrose agar Petri dishes (PDA, 4 g/L potato starch, 20 g/L
dextrose, 15 g/L agar). Control treatments were performed at 22 °C and cold
treatment at 15 °C, both at 70 relative humidity. Plate pictures were taken at 8, 11,
and 14 days post inoculation using a digital camera for five technical replicates.
Images were analyzed using Image] macros from ref. %! to measure colony area. For
each isolate, estimates of colony area are based on nine single spore colonies.
Growth rates (mm/day) were estimated from the average colony radius by fitting a
generalized linear model over the three time points. Melanisation was estimated
from the same images by calculating the average values of gray (colors ranging
from 0/black to 255/white). For fungicide treatments, 0.05 ppm of propiconazole
was added to the PDA plates to address its impact on growth at 15 and 22 °C.
Further formal testing of propiconazole resistance was carried on microtiter plates.
For that spores were grown on 100 uL Sabouraud-dextrose liquid media (inocu-
lated with 100 pL of spore suspension at 2.5e* spores/mL) with varying con-
centrations of propiconazole (0.00006, 0.00017, 0.0051, 0.0086, 0.015, 0.025, 0.042,
0.072, 0.20, 0.55, 1.5 mg/L including a control without propiconazole). Microtiter
plates were sealed and incubated at 22 °C for four days at dark with 80% relative
humidity. Growth was estimated given the optical density at 605 nm using an Elisa
plate reader (MR5000, Dynatech). Five technical replicates were performed, and
dose-response curves were used to estimate the concentration at which the growth
is reduced by half (ECs) using the drc v.3.0-1R package®. Prior to the association
study, we computed the genetic relatedness matrix (GRM) and conducted a
principal component analysis (PCA) to investigate the genetic structure in the
dataset using TASSEL v.20200220%. The genome-wide association studies
(GWAS) were then performed by applying a mixed linear model which included
the GRM as random factors using the GAPIT v3.0R package®”. We retrieved false
discovery rate (FDR) thresholds for each trait using the p.adjust function imple-
mented in R. The overlap between 5% FDR SNPs and structural variants were
assessed with bedtools intersect v2.29.298. We built a contingency table summar-
izing for each trait the number of 5% FDR SNPs overlapping with indels, trans-
locations, inversions, and duplications. Odds ratios were calculated using two-sided
Fisher tests in R.

Genome-wide sequence feature correlations. The IPO323 genome was divided
into 10 kb bins for which we retrieved sequence-based statistics using the EMBOSS
v6.6.0.0 suite and bedtools®®%. The dataset included a total of 35 sequence metrics
available for the reference genome and the presence of the nine types of
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rearrangements identified across the 18 worldwide isolates (summarized in Sup-
plementary Data 5). Population-level single-nucleotide polymorphisms (SNP) were
retrieved from 146 Z. tritici field isolates”0. Briefly, sequencing reads were trimmed
with trimmomatic (v 0.36) with parameters ILLUMINACLIP:TruSeq3-PE.
fa:2:30:10 LEADING:3 TRAILING:3 SLIDING WINDOW:4:15 MINLEN:36 then
aligned to the IPO323 reference genome using bowtie2 (-very-sensitive-local;
version 2.3.4.3). Variants were called using HaplotypeCaller v.4.0.11.0 and filtered
for QUAL > 1000, AN = 20, QD > 5.0, MQ > 20.0, ReadPosRankSum_lower=2.0,
ReadPosRankSum_upper=2.0, MQRankSum_lower=2.0, MQRankSu-
m_upper=2.0, BaseQRankSum_lower=2.0, BaseQRankSum_upper=2. Multiallelic
SNPs (>2 alleles) were filtered out using bcftools (-norm; version 1.9) and we only
retained SNPs with >0.9 genotyping rate and >0.05 allele frequency across the 146
isolates using VCFtools v0.1.15 and bcftools v1.9. The variant call file (VCF) is
available from Zenodo (https://zenodo.org/record/4725688)71. Data on histone
methylation marks (H3K9, H3K4, and H3K27) was previously generated by’? and
included the average read count for enriched domains as identified by RSEG73.
Recombination rates were calculated using 214 progenies from the cross between
isolates 1A5 and 1E474 (both included in the pangenome analyses). Pairwise
Spearman’s correlation values were computed in R using complete observations
(use = pairwise.complete.obs) and visualized using the ggcorr function from the
GGally v2.0.0 R package.

Species-wide model of structural variant occurrence. We applied a supervised
machine-learning approach using 30 sequence features available for all complete
genomes with the aim of independently predicting the occurrence of the nine types
of structural variation. Full details on the analyzed sequence features are shown in
Supplementary Data 5. The training dataset was made of a random 80% subset of
the 3,980 10 kb windows. Subsampling different proportions for the train dataset
(ie., 0.2, 0.4, 0.6, and 0.8) and test datasets (i.e., 0.8, 0.6, 0.4 and 0.2, respectively)
did not have a meaningful impact on the final model performance (Supplementary
Fig. 15). We trained the models for each type of variant separately. To identify the
best-performing machine-learning method, we explored four different algorithms
based on regression and classification’5-77 (Logistic regression, Stochastic Gradient
Boosting, Random Forests, and Boosted Classification Tree methods). Regression
and classification methods mostly differ by their procedure to identify decision
boundaries. Regression methods implement binary decisions while classification
methods (e.g., decision trees) allow for more complex non-linear boundaries”8.
Decision trees can improve the assignment if the two classes follow a non-linear
separation, but these methods tend to overfit the training dataset when the two
classes are not well separated. Here all models were trained using the caret version
6.0-86 package in R (https://www.rdocumentation.org/packages/caret) with 10-fold
cross-validation repeated three times. For the logistic regression models, we used
the glm method implemented by the caret package using the binomial family
definition. For the random forest models, we implemented a random selection of 1
to 10 predictors with the rf method (version 4.6-14, including the mtry option). For
the boosted classification tree models, we applied the ada method (version 2.0-5)
using 100, 1000, or 3000 boosting iterations with a maximum tree depth of 1, 5, or
20 and a fixed learning rate of 0.01. For the stochastic gradient boosting models, we
used the gbm method with 50, 500, or 1000 boosting iterations with a maximum
tree depth of 1, 5, or 10. The stochastic gradient boosting models were trained with
two values of shrinkage (0.001 or 0.01) and a terminal node minimal size (1 or 5).
For all the models, the accuracy measure was used for the selection of the best
model during training (metric = “accuracy”). For the final random forest model,
we estimated the relative importance of predictors using the varImp function from
the caret package with the scale option set to false.

The eight final models (the 4 different methods using indels and translocations
as classifiers, respectively) were tested on a 20% validation subset of the pangenome
dataset using the predict function. To address the final model performance, we
investigated how the true and false positive rate were related using the receiver
operating characteristic (ROC) curve implemented in the ROCR R package”®. The
area under the ROC curve (AUC) was calculated with the performance function
from ROCR version 1.0-11 package. In addition, we quantified the relationship
between the model precision and recall using the precision-recall curves calculated
with the pr.curve function from the PRROC version 1.3.1 package®. Confusion
matrices and the evaluation metrics of each model were recovered using the
confusionMatrix function in the caret package.

Arabidopsis thaliana pangenome sequence metrics and indel model. For the
Arabidopsis thaliana dataset, we used the set of structural rearrangements identi-
fied across 8 chromosome-level assemblies! (https://1001genomes.org/data/
MPIPZ/MPIPZ]Jia02020/releases/current/). Orthogroups identified by Jiao et al.3!
were defined as core (orthogroup present in all 8 genomes), accessory (orthogroup
present in 1-7 genomes), and singletons (orthogroup present in one genome only).
Transposable elements and gene annotations were retrieved from the TAIR10
database (https://www.arabidopsis.org/download/index-auto.jsp?dir=%
2Fdownload_files%2FGenes%2FT AIR10_genome_release). The list of reference
NLRs (Col-0) was retrieved from Weyer et al.’2 (Supplementary Table S3a,
annotated genes under the Accession_Name = Col-0_Ref at https://ars.els-cdn.
com/content/image/1-52.0-50092867419308372-mmc3 xlsx). Transposons

annotation from TAIR10 database were renamed according to the three-letters
nomenclature>® (Supplementary Table 5). The recombination rate in 30 kb win-
dows was estimated from the position of crossover events established by Rowan
et al.. We counted the number of crossovers overlapping the sequence windows
(Supplementary Data 11). The recombination rate was then calculated as the
number of crossovers per 30 kb. GC coverage along the 30 kb windows was cal-
culated using bedtools nuc (v2.29.0). We applied the same four models as for the Z.
tritici pangenome using sequence metrics gathered along 3974 30 kb windows
using the predict function in R. Receiver operating characteristic and precision-
recall curves were also calculated identically as for the Z. tritici pangenome dataset
using the ROCR and PRROC R packages (version 1.0-11 and 1.3.1,
respectively)’80. The confusion matrices and model evaluation metrics were
recovered from the confusionMatrix function implemented in the caret package.

Identifying sequence rearrangements across the pedigree. We applied a
similar method applied to the pangenome to call variants in the progenies resulting
from the cross between the parental isolates 1A5x1E4%2, We performed whole-
genome alignments of the 9 progeny isolates against the 1A5 parent using nucmer
v4.0.0beta2 allowing for multiple matches (-maxmatch option). We filtered the
alignments for a minimal identity of 90% and a minimal single match length of
100 bp using the delta-filter in MUMmer v4.0.0beta2. We then extracted the
alignment coordinates using show-coords with the -THrd options and mapped the
position of syntenic and rearranged regions using the SyRi v1.3 software2%. Note
that the progeny isolate Ztprog08 (M3_08) harbors a fusion between core chro-
mosomes 6 and 12. For accessory chromosomes, the total number of chromosomes
included for analysis was lower than for core chromosomes (see Fig. 5C). We
focused on rearrangements identified by SyRi including inverted (INV), translo-
cated (TRA), inverted translocated (INVTR), duplicated (DUP), inverted dupli-
cated (INVDP), and highly diverged regions (HDR), together with insertions and
deletions considered here as indels (INDEL). Copy gain and loss were considered
as copy polymorphisms (CP). Each variant location was given by the breakpoint
positions in the 1A5 parental genome. The variant length was calculated as the
difference between the two breakpoint positions in the 1A5 parental genome except
for insertions, for which we considered the distance between the two breakpoint
positions in the progeny genome. For all further analysis, we considered all indi-
vidual variants larger than 10 bp but shorter than 100,000 bp and removed all
variants which were present in the second parent 1E4. We thus retained only the
variants generated during the different rounds of meiosis and removed variants
existing prior to this. To dissect the emergence and reshuffling of individual
rearrangements at each meiotic cycle, we defined four categories based on the
variant history in the pedigree (Fig. 5D). Variants present in a focal progeny and
the direct parents were defined as retained variants. Variants present in a focal
progeny but in none of its ancestors in the pedigree were called new variants.
Variants present in a progeny, absent in its direct parents but present already in an
ancestor were defined as recurrent variants. Finally, variants absent from a progeny
but present in both parents were called lost variants.

Identification of crossover breakpoints on chromosome 1. To identify the
crossover events on chromosome 1 over the 4 rounds of meiosis, we performed
whole-genome alignments of each progeny against its two immediate parents using
blastn®447 (v2.8.14). To visualize crossovers, we plotted chromosome-wide syn-
teny using the genoplotR v0.8.9 package in R8!. To recover the crossover break-
points, we manually inspected the blastn results (-outputfmt 6) and recovered the
approximate positions of shifts in sequence alignment identity between the two
parental genomes. We identified a total of 18 crossover breakpoints summarized in
Supplementary Table 6. To investigate the relative distance of structural variants to
crossover breakpoints and given the overall high synteny in the progeny, we
assigned the same breakpoint position to the 1A5 reference genome. We calculated
the distance between sequence rearrangements on chromosome 1 and crossovers
using the bedtools closest command®%:6°.

Evaluation of pangenome sequence rearrangement models for the pedigree.
We applied the four pangenome-trained models to predict indels and transloca-
tions to the nine progeny dataset using the predict function in the R package caret
(https://github.com/topepo/caret/). Receiver operating characteristic and precision-
recall curves were calculated for the pangenome dataset using the ROCR and
PRROC packages’?80. Similarly, the confusion matrices and model evaluation
metrics were recovered from the confusionMatrix function implemented in caret
package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Genome assemblies for the species-wide pangenome are available at the European
Nucleotide Archive (ENA) under the study PRJEB33986 and at https://github.com/
crolllab/datasets. The progeny genomes are available at the National Center for
Biotechnology Information (NCBI) under the BioProject PRINA645795. Variant calls for
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GWAS were retrieved from the variant call format (VCF) file deposited in the European
Nucleotide Archive (ENA) under the accession numbers PRJEB15502/ERP017268 and
the analysis number ERZ330467. Variant calls generated for the Swiss field-population’?
were deposited at Zenodo (https://zenodo.org/record/4725688)71. Source data are
provided with this paper.

Code availability

The scripts used to perform the synteny analysis, to map the structural rearrangements,
and to train the predictive models are available from Zenodo (https://doi.org/10.5281/
zenodo.4724074)71,

Received: 30 October 2020; Accepted: 11 May 2021;
Published online: 10 June 2021

References

1.  Quinlan, A. R. & Hall, I. M. Characterizing complex structural variation in
germline and somatic genomes. Trends Genet. 28, 43-53 (2012).

2. Fuentes, R. R et al. Structural variants in 3000 rice genomes. Genorme Res. 29,
870-880 (2019).

3. Catanach, A. et al. The genomic pool of standing structural variation
outnumbers single nucleotide polymorphism by threefold in the marine
teleost Chrysophrys auratus. Mol. Ecol. 28, 1210-1223 (2019).

4. Plaumann, P. L., Schmidpeter, J., Dahl, M., Taher, L. & Koch, C. A dispensable
chromosome is required for virulence in the hemibiotrophic plant pathogen
Colletotrichum higginsianum. Front. Microbiol. 9, 1005 (2018).

5. Langner, T. et al. Genomic rearrangements generate hypervariable mini-
chromosomes in host-specific isolates of the blast fungus. PLoS Genet. 17,
(2021).

6.  Schiessl, S. V., Katche, E., Thien, E., Chawla, H. S. & Mason, A. S. The role of
genomic structural variation in the genetic improvement of polyploid crops.
Crop J. 7, 127-140 (2019).

7. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of
genomic structural variation: insights from and for human disease. Nat. Rev.
Genet. 14, 125-138 (2013).

8. Sanseverino, W. et al. Transposon insertions, structural variations, and SNPs
contribute to the evolution of the melon genome. Mol. Biol. Evol. 32,
2760-2774 (2015).

9. Rowan, B. A. et al. An ultra high-density Arabidopsis thaliana crossover map
that refines the influences of structural variation and epigenetic features.
Genetics 213, 771-787 (2019).

10. Miles, A. et al. Indels, structural variation, and recombination drive genomic
diversity in Plasmodium falciparum. Genome Res. 26, 1288-1299 (2016).

11. Natri, H. M., Merili, J. & Shikano, T. The evolution of sex determination
associated with a chromosomal inversion. Nat. Commun. 10, 1-13 (2019).

12. Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution.
Heredity 113, 1-8 (2014).

13. McClintock, B. Mutable loci in maize. Carnegie Inst. Wash. Year B 47,
155-169 (1948).

14. Argueso, J. L. et al. Double-strand breaks associated with repetitive DNA can
reshape the genome. Proc. Natl Acad. Sci. USA 105, 11845-11850 (2008).

15. Alkan, C,, Coe, B. P. & Eichler, E. E. Genome structural variation discovery
and genotyping. Nat. Rev. Genet. 12, 363-376 (2011).

16. Carvalho, C. M. B. & Lupski, J. R. Mechanisms underlying structural variant
formation in genomic disorders. Nat. Rev. Genet. 17, 224-238 (2016).

17. Kidd, J. M. et al. A human genome structural variation sequencing resource
reveals insights into mutational mechanisms. Cell 143, 837-847 (2010).

18. Abyzov, A. et al. Analysis of deletion breakpoints from 1,092 humans reveals
details of mutation mechanisms. Nat. Commun. 6, 7256 (2015).

19. Weckselblatt, B. & Rudd, M. K. Human structural variation: mechanisms of
chromosome rearrangements. Trends Genet. 31, 587-599 (2015).

20. Moller, M. et al. Destabilization of chromosome structure by histone H3 lysine
27 methylation. PLoS Genet. 15, (2019).

21. Fudenberg, G. & Pollard, K. S. Chromatin features constrain structural variation
across evolutionary timescales. Proc. Natl Acad. Sci. USA 116, 2175-2180 (2019).

22. Morgan, A. P. et al. Structural variation shapes the landscape of
recombination in mouse. Genetics 206, 603-619 (2017).

23. Fones, H. & Gurr, S. The impact of Septoria tritici Blotch disease on wheat: an
EU perspective. Fungal Genet. Biol. 79, 3-7 (2015).

24. Goel, M., Sun, H,, Jiao, W. B. & Schneeberger, K. SyRI: finding genomic
rearrangements and local sequence differences from whole-genome
assemblies. Genome Biol. 20, 277 (2019).

25. Hartmann, F. E. & Croll, D. Distinct trajectories of massive recent gene gains
and losses in populations of a microbial eukaryotic pathogen. Mol. Biol. Evol.
127, 1-18 (2017).

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.
55.

56.

57.

Christmas, M. J. et al. Chromosomal inversions associated with environmental
adaptation in honeybees. Mol. Ecol. 28, 1358-1374 (2019).

Fuller, Z. L., Koury, S. A., Phadnis, N. & Schaeffer, S. W. How chromosomal
rearrangements shape adaptation and speciation: case studies in Drosophila
pseudoobscura and its sibling species Drosophila persimilis. Mol. Ecol. 28,
1283-1301 (2019).

Zhong, Z. et al. A small secreted protein in Zymoseptoria tritici is responsible
for avirulence on wheat cultivars carrying the Stb6 resistance gene. N. Phytol.
214, 619-631 (2017).

Hartmann, F. E.,, Sanchez-Vallet, A., McDonald, B. A. & Croll, D. A fungal
wheat pathogen evolved host specialization by extensive chromosomal
rearrangements. ISME J. 11, 1189-1204 (2017).

Plissonneau, C., Hartmann, F. E. & Croll, D. Pangenome analyses of the wheat
pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic
eukaryotic genome. BMC Biol. 16, 5 (2018).

Jiao, W. B. & Schneeberger, K. Chromosome-level assemblies of multiple
Arabidopsis genomes reveal hotspots of rearrangements with altered
evolutionary dynamics. Nat. Commun. 11, 1-10 (2020).

Van de Weyer, A.-L. et al. A species-wide inventory of NLR genes and alleles
in Arabidopsis thaliana. Cell 178, 1260-1272 (2019).

Zlotorynski, E. et al. Molecular basis for expression of common and rare
fragile sites. Mol. Cell. Biol. 23, 7143-7151 (2003).

Stankiewicz, P. & Lupski, J. R. Molecular-evolutionary mechanisms for
genomic disorders. Curr. Opin. Genet. Dev. 12, 312-319 (2002).

Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by
recurrent deletion of a pitxl enhancer. Science 327, 302-305 (2010).

Hope, E. A. et al. Experimental evolution reveals favored adaptive routes to
cell aggregation in yeast. Genetics 206, 1153-1167 (2017).

Sackton, T. B. & Clark, N. Convergent evolution in the genomics era: new
insights and directions. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190102 (2019).
Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic
hotspots of phenotypic variation. Evolution 67, 1235-1250 (2013).

Croll, D., Zala, M., McDonald, B. A., Smoot, M. & Shumway, M. Breakage-
fusion-bridge cycles and large insertions contribute to the rapid evolution of
accessory chromosomes in a fungal pathogen. PLoS Genet. 9, €1003567 (2013).
Kema, G. H. J., Verstappen, E. C. P., Todorova, M. & Waalwijk, C. Successful
crosses and molecular tetrad and progeny analyses demonstrate heterothallism
in Mycosphaerella graminicola. Curr. Genet. 30, 251-258 (1996).

Badet, T., Oggenfuss, U., Abraham, L., McDonald, B. A. & Croll, D. A 19-
isolate reference-quality global pangenome for the fungal wheat pathogen
Zymoseptoria tritici. BMC Biol. 18, 1-18 (2020).

Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-
mer weighting and repeat separation. Genome Res. 27, 722-736 (2017).
Kolmogorov, M., Raney, B., Paten, B. & Pham, S. Ragout-a reference-assisted
assembly tool for bacterial genomes. Bioinformatics 30, i302-9 (2014).
Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403-10
(1990).

Stanke, M., Schéffmann, O., Morgenstern, B. & Waack, S. Gene prediction in
eukaryotes with a generalized hidden Markov model that uses hints from
external sources. BMC Bioinformatics 7, 62 (2006).

Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and
syntenically mapped cDNA alignments to improve de novo gene finding.
Bioinformatics 24, 637-644 (2008).

Camacho, C. et al. BLAST+: architecture and applications. BMC
Bioinformatics 10, 421 (2009).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754-60 (2009).

Barnett, D. W., Garrison, E. K., Quinlan, A. R., Stromberg, M. P. & Marth, G.
T. BamTools: a C++ API and toolkit for analyzing and managing BAM files.
Bioinformatics 27, 1691-1692 (2011).

Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-
Seq reads into automatic training of eukaryotic gene finding algorithm.
Nucleic Acids Res. 42, e119-e119 (2014).

Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKERI1:
unsupervised RNA-seq-based genome annotation with GeneMark-ET and
AUGUSTUS: Table 1. Bioinformatics 32, 767-769 (2016).

Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole
genome comparisons dramatically improves orthogroup inference accuracy.
Genome Biol. 16, 157 (2015).

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for
comparative genomics. Genome Biol. 20, 238 (2019)

Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0 (2015).

Bao, W, Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive
elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

Wicker, T. et al. A unified classification system for eukaryotic transposable
elements. Nat. Rev. Genet. 8, 973-982 (2007).

Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-
read SMRT sequencing data. Nat. Methods 10, 563-569 (2013).

| (2021)12:3551] https://doi.org/10.1038/s41467-021-23862-x | www.nature.com/naturecommunications 13


https://www.ebi.ac.uk/ena/browser/view/ERZ330467
https://zenodo.org/record/4725688
https://doi.org/10.5281/zenodo.4724074
https://doi.org/10.5281/zenodo.4724074
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-
prone reads using repeat graphs. Nat. Biotechnol. 37, 540-546 (2019).
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using
single-molecule sequencing. Nat. Methods 15, 461-468 (2018).

Jeffares, D. C. et al. Transient structural variations have strong effects on
quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8,
14061 (2017).

Lendenmann, M. H., Croll, D., Stewart, E. L. & McDonald, B. A. Quantitative
trait locus mapping of melanization in the plant pathogenic fungus
Zymoseptoria tritici. G3 Genes Genomes Genet. 4, 2519-2533 (2014).
Lendenmann, M. H,, Croll, D. & McDonald, B. A. QTL mapping of fungicide
sensitivity reveals novel genes and pleiotropy with melanization in the
pathogen Zymoseptoria tritici. Fungal Genet. Biol. 80, 53-67 (2015).
Lendenmann, M. H,, Croll, D., Palma-Guerrero, ., Stewart, E. L. & Mcdonald,
B. A. QTL mapping of temperature sensitivity reveals candidate genes for
thermal adaptation and growth morphology in the plant pathogenic fungus
Zymoseptoria tritici. Heredity 116, 384-394 (2016).

Mohd-Assaad, N., McDonald, B. A. & Croll, D. Multilocus resistance
evolution to azole fungicides in fungal plant pathogen populations. Mol. Ecol.
25, 6124-6142 (2016).

Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R.
PLoS ONE 10, 0146021 (2015).

Bradbury, P. J. et al. TASSEL: Software for association mapping of complex
traits in diverse samples. Bioinformatics 23, 2633-2635 (2007).

Tang, Y. et al. GAPIT Version 2: an enhanced integrated tool for genomic
association and prediction. Plant Genome 9, plantgenome2015.11.0120 (2016).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841-842 (2010).

Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet. 16, 276-7 (2000).

Singh, N. K., Chanclud, E. & Croll, D. Population-level deep sequencing
reveals the interplay of clonal and sexual reproduction in the fungal wheat
pathogen Zymoseptoria tritici. Preprint at bioRxiv https://doi.org/10.1101/
2020.07.07.191510 (2020).

Badet, T. & Croll, D. Machine-learning predicts genomic determinants of
meiosis-driven structural variation in a eukaryotic pathogen. Nat. Commun.
https://doi.org/10.5281/ZENODO.4725688 (2021).

Schotanus, K. et al. Histone modifications rather than the novel regional
centromeres of Zymoseptoria tritici distinguish core and accessory
chromosomes. Epigenet. Chromatin. 8, 41 (2015).

Song, Q. & Smith, A. D. Identifying dispersed epigenomic domains from
ChIP-Seq data. Bioinformatics 27, 870-1 (2011).

Croll, D., Lendenmann, M. H., Stewart, E. & McDonald, B. A. The impact of
recombination hotspots on genome evolution of a fungal plant pathogen.
Genetics 201, 1213-1228 (2015).

Praveena, M. & Jaiganesh, V. A literature review on supervised machine learning
algorithms and boosting process. Int. J. Comput. Appl. 169, 32-35 (2017).
Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A. & Aljaaf, A. J. A
Systematic Review on Supervised and Unsupervised Machine Learning
Algorithms for Data Science 3-21 (Springer, 2020).

Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics
and genomics. Nat. Rev. Genet. 16, 321-332 (2015).

Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G. & Ziegler, A. Probability
machines: consistent probability estimation using nonparametric learning
machines. Methods Inf. Med. 51, 74-81 (2012).

79. Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing
classifier performance in R. Bioinformatics 21, 3940-3941 (2005).

80. Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing
precision-recall and receiver operating characteristic curves in R.
Bioinformatics 31, 2595-2597 (2015).

81. Guy, L, Roat Kultima, J. & Andersson, S. G. E. genoPlotR: comparative gene
and genome visualization in R. Bioinformatics 26, 2334-2335 (2010).

Acknowledgements

We are grateful to Leen Abraham, Nikhil Kumar Singh, Sylvain Raffaele, Sam Yeaman,
and Aurélien Tellier for critical feedback on a previous version of this manuscript. The
sequencing was performed at the Functional Genomics Center Zurich. D.C. was sup-
ported by the Fondation Pierre Mercier pour la science and the Swiss National Science
Foundation (grant number 31003A_173265).

Author contributions

T.B. and D.C. designed the study; T.B. performed analyses; S.F. and F.E.H. contributed
data sets; M.Z. conceived the progeny pedigree and performed laboratory experiments; T.
B. and D.C. wrote the manuscript with input from co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541467-021-23862-x.

Correspondence and requests for materials should be addressed to D.C.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons
BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

| (2021)12:3551 | https://doi.org/10.1038/s41467-021-23862-x | www.nature.com/naturecommunications


https://doi.org/10.1101/2020.07.07.191510
https://doi.org/10.1101/2020.07.07.191510
https://doi.org/10.5281/ZENODO.4725688
https://doi.org/10.1038/s41467-021-23862-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Machine-learning predicts genomic determinants of meiosis-driven structural variation in a eukaryotic pathogen
	Results
	Pangenome-wide collinearity analyses reveal hotspots of structural variation
	Long-read and whole-genome alignment-based structural variant analyses
	Structural variation underpinning fitness-related trait expression
	Chromosomal niches of structural variation hotspots
	A pangenome-informed model accurately predicts structural variation
	The predictive power of the species-wide model in an experimental pedigree

	Discussion
	Methods
	Experimental crossings
	Species pangenome and pedigree analyses based on complete genomes
	Chromosome-wide synteny ratios
	Whole-genome-based variant analysis
	Long-read structural variant analysis
	Genome-wide association mapping
	Genome-wide sequence feature correlations
	Species-wide model of structural variant occurrence
	Arabidopsis thaliana pangenome sequence metrics and indel model
	Identifying sequence rearrangements across the pedigree
	Identification of crossover breakpoints on chromosome 1
	Evaluation of pangenome sequence rearrangement models for the pedigree

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




