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Ferroptosis and pyroptosis are two new programmed cell death (PCD) modes discovered in recent years. However, the potential
value of ferroptosis and pyroptosis-related genes (FPRGs) in prognosis prediction and the tumor immune microenvironment of
head and neck squamous cell carcinoma (HNSCC) is still unclear. We obtained 21 significant FPRGs based on the training dataset
(TCGA- HNSC) using the univariate Cox and differential expression analysis. The TCGA- HNSC (n = 502) dataset was clustered
into two group (clusters A and B) based on the 21 significant FPRGs. 1467 differentially expressed genes (DEGs) between cluster A
and B were put into univariate Cox and Least absolute shrinkage and selection operator (LASSO) analysis to build a risk model.
The predictive capability of the risk model was successfully confirmed by internal validation, external validation, and clinical
sample validation. To improve the clinical applicability, a nomogram model combined risk score and clinical information were
constructed. Moreover, the patients with lower risk score were characterized by increased immune response and tumor
mutation burden (TMB), while the patients with higher risk score were characterized by increased TP53 mutation rate. In
conclusion, our comprehensive analysis of the FPRGs revealed their significant role in prognosis prediction and the tumor
immune microenvironment. The risk model containing 9 FPRGs could be a potential prognostic markers and effective
immunotherapy targets for HNSCC.

1. Background

Cell death is closely related to the basic processes of life and
is an important way of growth and development, disease
progression, and homeostasis of multicellular organisms
[1]. In 2015, the Nomenclature Committee on Cell Death
(NCCD) classified cell death into programmed cell death
(PCD) and un-programmed cell death according to whether
the process of death was regulated by procedures [2]. PCD is
an active and orderly way of cell death to maintain the sta-
bility of internal environment. Specifically, it refers to the
suicide protection measures initiated by gene regulation
when cells are stimulated by internal and external environ-
mental factors [3]. PCD contains apoptosis, necroptosis,

autophagy, pyroptosis, ferroptosis, and other cell death
modes, which play an important role in pathogen immunity
and cancer cell clearance [4]. Among them, ferroptosis and
pyroptosis are two new PCD modes discovered in recent
years [5]. Cell pyroptosis is a novel pro-inflammatory pro-
grammed cell death mode, which depends on the activation
of cysteinyl aspartate specific proteinase (caspase) and its
mediated gasdermin D (GSDMD). Activated caspase medi-
ates the hydrolysis of GSDMD into bioactive GSDMD-N,
which embedded into the cytoplasmic membrane to form
membrane perforation with a diameter of 10~15nm. This
causes increased cell permeability, imbalance of ion com-
pensation, and water inflow into cells from the intercellular
substance, resulting in cell swelling, and large release of
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lactate dehydrogenase and pro-inflammatory cytokines,
such as IL-1β and IL-18 [6, 7]. Ferroptosis is an iron-
dependent regulatory form of cell death, including activation
of reactive oxygen species (ROS), iron aggregation, activa-
tion of the mitogen-activated protein kinase (MAPK) sys-
tem, reduced cysteine uptake, and glutathione depletion
[8]. Ferroptosis is characterized by excessive accumulation
of iron-dependent lipid peroxidation (LPO) on cell mem-
branes, leading to cell necrosis, which can be inhibited by
glutathione peroxidase 4 (Gpx4). Morphology of ferroptosis
showed a loss of membrane integrity, accompanied by
nuclear swelling and mitochondrial shrinkage, increased
membrane density and mitochondrial outer membrane rup-
ture [9].

Head and neck squamous cell carcinoma (HNSCC) is an
immunosuppressive disease characterized by molecular het-
erogeneity and tumor-host interaction. Its morbidity and
mortality are increasing year by year, and it is now the sixth
most common cancer and the eighth leading cause of cancer
death worldwide [10]. The treatment of early HNSCC is
mainly surgery and radiotherapy, but the 5-year survival rate
is less than 40% because most of patients have locally
advanced disease at first diagnosis [11]. Platinum-based che-
motherapy for advanced HNSCC has a poor prognosis, with
a median survival less than 1 year [12]. Therefore, the treat-
ment of HNSCC is in urgent need of new drug break-
through. Exogenous activation of ferroptosis and
pyroptosis has recently been shown to trigger powerful anti-
tumor effects [13]. Some chemotherapy drugs can switch
caspase-3-mediated apoptosis to pyroptosis by cleaving
GSDME into GSDME-N in GSDME-expressing tumor cells
[14, 15]. GSDME, as a tumor suppressor, can improve the
antitumor immunity by activation of pyroptosis, while
inflammasome activation induced by pyroptosis further
enhances the therapeutic efficacy of some immune check-
point blockers [16, 17]. Ferroptosis can improve the cytotox-
icity of cisplatin of resistant HNC cells [18] and the efficacy
of radiotherapy [19]. Ferroptosis can be induced by sorafe-
nib, a kinase inhibitor, which has been reported that it can
increase the radiosensitivity and antiproliferative effect of
cisplatin in HNSCC cells [13, 20]. Therefore, induction of
ferroptosis and pyroptosis may provide an effective treat-
ment strategy of HNSCC.

In this study, we systematically investigated the role of
ferroptosis and pyroptosis- related genes in prognosis pre-
diction and the tumor immune landscape of HNSCC. We
first constructed and validated a risk model based on the fer-
roptosis and pyroptosis-related genes (FPRGs). The HNSCC
patients were clustered into high- and low-risk group based
on the median cut-off of risk score. Then, we assessed the
clinical features, tumor mutation burden (TMB), cancer
stem cell (CSC) characteristics, and immune infiltration in
the two groups. This study paves a novel road for prognosis
prediction and treatment strategy of HNSCC.

2. Materials and Methods

2.1. Data Acquisition. The workflow of this study was shown
in Figure 1. The mRNAs-seq data, somatic mutation data,

copy number variation (CNV) data, and corresponding clin-
ical information of TCGA-HNSC dataset including 44 nor-
mal samples and 502 HNSCC samples were downloaded
from The Cancer Genome Atlas (TCGA) database. The
mRNAs-seq data and clinical information of GSE65858
dataset (270 HNSCC samples) based on the platform
GPL10558 (Illumina HumanHT-12V4.0 expression bead-
chip, Illumina Inc., San Diego, CA, USA) were obtained
from the Gene Expression Omnibus (GEO) database. It
was generated from samples of peripheral blood mononu-
clear cells (PBMCs) of patients. The “limma” package was
used to normalized the expression profiles data. The baseline
information is shown in table 1.

2.2. Unsupervised Clustering for FPRGs.We downloaded 313
FPRGs from the predecessors’ study [21] and extracted the
mRNAs-seq data of the 313 genes from the TCGA-HNSC
dataset. The differentially expressed (DE) FPRGs between
normal and HNSCC samples were screened using the
“limma” package based on the selection criteria of log jFCj
≥ 1 and p < 0:05 [5]. The FPRGs with prognostic value
(p < 0:05) was selected by univariate Cox regression analysis.
Then, the DE FPRGs with prognostic value were subjected
to consensus clustering algorithm. The “ConsensuCluster-
Plus” package was performed with 1000 times repetitions
to guarantee the stability of classification [22].

2.3. GSVA and GO Functional Enrichment Analysis. Gene
set variation analysis (GSVA) was used to investigate the
differentially activity of molecular pathways between differ-
ent subtypes using the “GSVA” packages in R software
[23]. The gene file of “c2.cp.kegg.v7.4.symbols.gmt” was
downloaded from MSigDB database for GSVA analysis,
and p < 0:05 was considered as statistically significance.
The differentially expressed genes (DEGs) between differ-
ent subtypes were screened using the “limma” package
based on the selection criteria of log jFCj ≥ 1 and p <
0:05. Then, the DEGs were subjected to univariate Cox
regression analysis. The DEGs meet the screening criteria
p < 0:05 and were considered as significant DEGs for sub-
sequent analysis. Gene Ontology (GO) functional enrich-
ment analysis was performed using the “clusterProfiler”
package to explore the potential molecular function of sig-
nificant DEGs [24].

2.4. Construction and Validation of a Prognostic Risk Model.
The significant DEGs were included in Least Absolute
Shrinkage and Selection Operator (LASSO) regression
analysis using the “glmnet” package in R software, and a
10-fold cross-validation/leave-one-out was performed to
avoid model overfitting [25]. The significant DEGs with
nonzero regression coefficients obtained by LASSO regres-
sion analysis were subjected to multivariate Cox regression
analysis to further narrow down the genes and build a risk
model. The risk score of each patient is calculated using
the following formula: risk score = Σ ðexpression value of
each gene × and its coefficientÞ. The HNSCC patients were
clustered into high- and low-risk group based on the
median cut-off of risk score. The Kaplan–Meier (KM)
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curve was plotted to evaluate the prognosis of the risk
model using the “survminer” R package. The receiver
operating characteristic (ROC) curves at 1, 3, and 5 years
were drawn to assess the prognostic predictive perfor-
mance of the risk model using the “survival ROC” R pack-
age. Univariate and multivariate Cox regression analyses
was used to identify whether the risk model is an indepen-
dent prognostic factor for HNSCC. The TCGA-HNSC
dataset was randomly divided into TCGA-training dataset
(n = 250) and TCGA-testing dataset (n = 249) to confirm
the performance of the risk model by internal validation.
External validation was performed in GSE65858 dataset
(n = 270). The prognostic predictive performance of the
risk model was validated in internal and external valida-
tion using the same methods mentioned above.

2.5. Tissue Collection. Forty healthy samples and sixty-eight
HNSCC samples were collected from Tissue specimen Bank
of Shengjing Hospital between 2015 and 2021. None of the
selected patients received any radiotherapy, chemotherapy,
or other antitumor therapy within 3 months before surgery.
The clinical information of the patient is complete (Table 1).
This study was approved by the Ethics Committee of Shengj-
ing Hospital of the China Medical University, and informed
consent was obtained from all patients. In addition, all
methods were performed in accordance with relevant guide-
lines and regulations.

2.6. Quantitative Real-Time RT-PCR. Total RNA from
healthy samples and HNSCC samples was extracted by TRI-
zol (Invitrogen, USA) and reverse-transcribed to cDNA.

Expression data of 313 ferroptosis and pyroptosis-related
mRNAs from TCGA-HNSX dataset

Tumor samples (502)Normal samples (n = 44)

91 DE ferroptosis pyroptosis-
related mRNAs

48 prognostic ferroptosis and
pyroptosis-related mRNAs

21 significant ferroptosis and
pyroptosis-related mRNAs

Tumor classification using consensus clustering

1467 DE mRNAs between
cluster A and cluster B

165 prognostic DE mRNAs

9 prognostic DE mRNAs were identified to build the risk model

Internal validation External validation Clinical sample validation

Analysis of immune cells infiltration and immune correlation

Nomogram model

Figure 1: Workflow to construct the ferroptosis and pyroptosis-related risk model in HNSCC patients. TCGA: The Cancer Genome Atlas;
HNSCC: head and neck squamous cell carcinoma; DE: differentially expressed.
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Table 1: The clinical information of the patient in TCGA-HNSC dataset, GSE65858 dataset and clinical specimens.

Characteristic TCGA-HNSC (502) GSE65858 (270) Clinical specimens (68)

Age(years)

≤ 60 245 158 38

> 60 256 112 30

None 1 0 0

Sex

Female 134 47 7

Male 368 223 61

None 0 0 0

OS_Event

Alive 283 176 51

Dead 218 94 17

None 1 0 0

PFS_Event

FALSE 137

TRUE 133

None 0

Grade

1 62

2 300

3 119

4 2

None 19

Stage

I 25 18 6

II 81 37 12

III 90 37 6

IV 306 178 44

None 0 0 0

Alcohol_history

Yes 333 239 59

No 158 31 9

None 11 0 0

Hpv16_status

Positive 31 60 11

Negative 72 209 57

None 399 1 0

Perineural_invasion

Yes 165

No 188

None 149

New tumor event after initiative treatment

Tumor free 275

With tumor 107

None 120

Smoking_history

Yes 222 53

No 48 15

None 0 0
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Real time quantitative polymerase chain reaction (RT-
qPCR) was performed based on SYBR Premix Exaq (Takara,
Japan). GAPDH was used as an internal reference to calcu-
late the relative expression levels of genes in healthy samples
and HNSCC samples according to the 2-ΔΔCt method. Sup-
plementary Table 1 presents the primer sequences of the
genes. We then compared the differential expression level
of genes between healthy samples and HNSCC samples.
Finally, we validated the prognostic predictive performance
of the risk model based on the 68 clinical specimens using
the same methods mentioned above.

2.7. Construction of a Nomogram Model. To improve the
clinical applicability, we constructed a nomogram model
combined risk score and clinical information to predict the
survival of HNSCC patients at 1, 3, and 5 years using the
“rms” R package [26]. Calibration curve was used to assess
the differential predicted OS probability between the actual
and the nomogram model. Decision curve analysis (DCA)
curve and ROC curve were used to compare the differential
performance of the nomogram to risk score and clinical
information.

2.8. Exploration of the Clinicopathological Features and
Stemness Characteristics of the Prognostic Risk Model. The
“compare” R package was used to compare the risk score
in different cluster and clinicopathological features including
age, sex, stage, grade, hpv16 status, and alcohol history. Gene
mutation rate and tumor mutation burden (TMB) between
high- and low-risk groups was compared by Wilcox test.
The “maftools” R package was used to visualize the differen-
tial gene mutation in high- and low-risk groups [21]. The
correlation between TMB and risk score was identified by
Spearman correlation analysis. The statistical significance
was set at P < 0:05.

2.9. Tumor Immune Characteristics Analysis. The abundance
of tumor immune cell infiltration in HNSCC samples was
calculated by single sample gene set enrichment analysis
(ssGSEA) algorithm [21]. The “estimate” R package was
used to calculate the stromalscore, immunescore, and ESTI-
MATEScore of the HNSCC samples. Wilcox test was used to
compare the differential immune cell infiltration, immune
checkpoint genes expression, stromalscore, immunescore,
and ESTIMATEScore in different groups (high- vs low-risk
group). Spearman correlation analysis was used to analyze
the correlation between immune cell infiltration abundance
and genes and risk score.

2.10. Statistical Analysis. One-way ANOVA and Kruskal-
Wallis tests were used to compare differences between
groups. Kaplan–Meier (K-M) curve was plotted for prognos-
tic analysis in high- and low-risk groups. The “RCircos” R
package was used to present the CNV of the DE FPRGs with
prognostic value in chromosomes [27]. The “forestplot” R
package was performed to calculate and visualize the hazard
ratios (HR) of the DE FPRGs in TCGA-HNSC dataset [22].
All parametric analyses were based on two-tailed tests, the
statistical significance of which was set at P < 0:05. All statis-
tical analyses were performed using R 4.0.0.

3. Results

3.1. Landscape of 21 FPRGs in TCGA-HNSC Dataset. We
obtained 91 DE FPRGs between normal and HNSCC sam-
ples through differential expression analysis (Figure 2(a),
Supplementary table 2) and 48 prognostic related
ferroptosis and pyroptosis by univariate Cox regression
analysis (Supplementary table 3). Then, 21 integrated
FPRGs were required and visualized by Venn diagram
(Figure 2(b)). Principal component analysis (PCA) revealed
that we can completely distinguished HNSCC samples
from the normal samples based on the expression level of
the 21 FPRGs (Figure 2(c)). The heat map and histogram
showed that the 21 FPRGs were highly expressed in
HNSCC samples compared with normal samples
(Figures 2(d) and 2(e)). CNV alteration frequency showed
that CNV alterations were common in the 21 FPRGs, with
maximum frequency CNV amplification in SLC3A2 and
maximum frequency CNV deletion in CDKN2A
(Figure 2(f)). Figure 2(g) presented the CNV alteration of
the 21 FPRGs in chromosomes. Oncoplots of the 21
FPRGs indicated that the CDKN2A with mutation
frequency 20% was highest, while the other 20 FPRGs have
fewer mutation frequency (Figure 2(h)). The network
depicted the interactions, regulator connection, and
prognostic value of the 21 FPRGs in TCGA-HNSC dataset
(Figure 2(i)). It was found that there was a general positive
correlation between the 21 genes, among which G6PD had
the strongest positive correlation with SRXN1. Forest map
presented the prognostic values of 21 FPRGs in HNSCC
patients (Figure 2(j)). Except to the genes SOCS1, NLRP1,
GZMB, and CDKN2A, the other 17 FPRGs play a role as
risk factors in the prognosis of HNSCC.

3.2. Unsupervised Clustering Based on 21 FPRGs. The “Con-
sensusClusterPlus” R package was performed to cluster
the HNSCC patients in TCGA-HNSC dataset into two
different subtypes based on the expression of the 21
FPRGs (cluster A and cluster B, Figure 3(a)). PCA
revealed that we can completely distinguished cluster A
and cluster B based on the expression level of the 21
FPRGs (Figure 3(b)). K-M analysis for the two different
subtypes revealed that the patients in cluster B group
have poor outcome than the patients in cluster A group
(Figure 3(c)). In addition to the gene GZMB, the other
20 FPRGs were higher expressed in cluster B group than
in cluster A group (Figures 3(d) and 3(e)). To compare
the different biological behaviors between the two sub-
types, GSVA analysis was performed. As shown in
Figure 3(f), we found that cluster B mainly enriched in
pathways associated with malignant progression of cancer
such as _MAPK_SIGNALING_PATHWAY, P53_SIG-
NALING_PATHWAY, and CHEMOKINE_SIGNALING_
PATHWAY, which verifies the poor prognosis of cluster
B patients (Figure 3(f)). To further explore the biological
function of each subtype, we identified 165 prognostic
DEGs through differential expression analysis (Supple-
mentary Table 4) and univariate Cox regression analysis
(Supplementary Table 5). GO enrichment analysis was
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performed based on the 165 prognostic DEGs using
the “clusterProfiler” R package. The results indicated
that the 165 prognostic DEGsmainly enriched in GO:0005198~
structural molecule activity, GO:0005882~intermediate
filament, GO:0005615~extracellular space, etc. (Figure 3(g),
Supplementary table 6).

3.3. Construction and Validation of a Prognostic Risk Model.
The 165 prognostic DEGs was subjected to the LASSO regres-
sion analysis to avoid overfitting (Figure 4(a)), and a risk
model with 9 prognostic DEGs was built by multivariate Cox
regression analysis. Each patient in TCGA-HNSC dataset
obtained a risk score according to the following formula: risk
score=0.5145 × expAC006159.1+0.6966 × expAC117422.1
+0.8599 × expAC128687.2+0.0032 × expAL161431.1
-0.2028 × expFCRL1 - 0.0106 × expLRATD1+0.1715 × exp
PDCL2 - 0.0223 × exp PLA2G3+0.0002 × exp SPRR3. The
HNSCC patients was clustered into high- and low-risk group

based on the median cut-off of risk score (Figure 4(c)). PCA
analysis revealed that the patients in high- and low-risk group
can be separated completely based on the expression level of
the 9 prognostic DEGs (Figure 4(b)). The patients in high-
risk group had more deaths (Figure 4(d)). The heat maps
which presented the expression level of AC117422.1,
AC117422.1, AC128687.2, AL161431.1, PDCL2, and SPRR3
were increased with the increase of risk score, whereas the
expression levels of FCRL1, LRATD1 and PLA2G3 were
decreased (Figure 4(e)). K-M curve demonstrated that the
patients in low-risk group have longer overall survival (OS)
time than the patients in high-risk group (Figure 4(f)). ROC
curve indicated that the prognostic predictive performance
of the risk model was robustly and the AUC values at 1, 3,
and 5 years were 0.645, 0.707, and 0.765, respectively
(Figure 4(g)). The risk score was an independent prognostic
predictor for OS according to the univariate and multivariate
Cox regression analysis (Figures 4(h) and 4(i)). We also found
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Figure 2: Genetic and transcriptional alterations of FPRGs in HNSCC. (a) Volcano plot of the DEFPRGs. (b) The Venn plot of intersection
DEFPRGs and prognostic FPRGs. (c) PCA plot of the HNSCC and normal samples based on 21 FPRGs. (d) Expression heat map of the 21
FPRGs between the HNSCC and normal samples. (e) Differential expression histogram of the 21 FPRGs between HNSCC and normal
samples. (f) Frequencies of CNV gain, loss, and non-CNV among the 21 FPRGs. (g) Locations of CNV alterations in the 21 FPRGs on
23 chromosomes. (h) Mutation frequencies of the 21 FPRGs. (i) The correlation network among the 21 FPRGs (the circle size indicates
the p value of the log-rank test, and the lines linking the 21 FPRGs indicate their interactions). (j) The univariate Cox regression
analysis–based forest plot in 21 FPRGs. DEFPRGs: differentially expressed ferroptosis and pyroptosis-related genes; TCGA: The Cancer
Genome Atlas; HNSCC: head and neck squamous cell carcinoma; CNV: copy number variant; PCA: principal component analysis.
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Figure 3: Unsupervised clustering based on 21 FPRGs. (a) The HNSCC patients were stratified into 2 clusters based on the 21 FPRGs using
consensus clustering matrix (k = 2). (b) PCA plot of the cluster A and cluster B groups based on 21 FPRGs. (c) The K–M analysis of the
overall survival in cluster A and cluster B groups. (d) Expression heat map of the 21 FPRGs between cluster A and cluster B groups. (e)
Differential expression histogram of the 21 FPRGs between cluster A and cluster B groups. (f) GSVA enrichment analysis showing the
activation states of biological pathways in cluster A and cluster B groups. The heat map was used to visualize these biological processes,
and red represented activated pathways and green represented inhibited pathways. (g) GO functional enrichment analysis visualized with
an enrichment circle diagram. FPRGs: ferroptosis and pyroptosis-related genes; HNSCC: Head and neck squamous cell carcinoma; PCA:
principal component analysis; K-M: Kaplan–Meier.
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that FCRL1, LRATD1, and PLA2G3 were prognostic protec-
tive factors for the OS of the HNSCC patients, whereas the
AC117422.1, AC117422.1, AC128687.2, AL161431.1, PDCL2,
and SPRR3 were prognostic risk factors according to the uni-
variate Cox regression analysis and K-M analysis
(Figures 4(j)–4(r)). Stratified prognostic analysis based on
the clinical characteristics showed that patients in the high-
risk group continued to have poor outcomes except for the
HPV+ group (Figure 5).

The HNSCC patients in TCGA-HNSC dataset were ran-
domly divided into TCGA-training dataset and TCGA-

testing dataset to confirm the performance of the risk model
by internal validation. In the TCGA-training dataset, the
patients in low-risk group have longer OS than in high-
risk group (Figure 6(a)). The AUC values at 1-, 3-, and 5-
year OS predicted by the risk model were 0.741, 0.768, and
0.811, respectively (Figure 6(b)). PCA analysis indicated that
the expression level of the 9 prognostic DEGs can separate
the patients in high- risk group from the low-risk group
completely (Figure 6(c)). The risk score, survival state, and
heat map of the 9 prognostic DEGs in the TCGA-training
dataset are presented in Figure 6(d). Univariate and
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Figure 4: Establishing process of the prognostic model based on the TCGA-all dataset. (a) LASSO Cox regression analysis. (b) PCA plot of
the high- and low-risk groups based on 9 FPRGs. (c–e) The heat map, risk score distribution, and survival status of patients. (f, g) The K-M
survival curve and ROC curve for the risk score in predicting the OS of HNSCC patients. (h, i) Univariate and multivariate Cox analysis to
assess the independence of the risk score. (j) The univariate Cox regression analysis based forest plot in 9 FPRGs. (k-r) The K-M survival
analysis of the 9 FPRGs. LASSO: least absolute shrinkage and selection operator; PCA: principal component analysis; K-M: Kaplan–
Meier; ROC: receiver operating characteristic.
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multivariate Cox regression analysis indicated that the risk
score was an independent prognostic predictor for OS
(Figure 6(e)). In the TCGA-testing dataset, the OS in the
high-risk group was shorter than the low-risk group
(Figure 6(f)). The AUC values at 1-, 3-, and 5-year OS pre-
dicted by the risk model were 0.562, 0.638, and 0.707,
respectively (Figure 6(g)). The high-risk group can be sepa-
rated from the low-risk group based on the 9 prognostic
DEGs (Figure 6(h)). Figure 6(i) showed the risk score, sur-

vival state, and heat map of the 9 prognostic DEGs in the
TCGA-testing dataset. The risk score was an independent
prognostic predictor for OS, as revealed by univariate and
multivariate Cox regression analysis (Figure 6(j)).

The HNSCC patients in GSE65858 dataset was used to
confirm the performance of the risk model by external vali-
dation. The OS and relapse-free survival (RFS) in the low-
risk group was longer than in the high-risk group
(Figures 7(a) and 7(f)). The AUC values at 1-, 3-, and 5-
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Figure 5: Stratified survival analysis in the TCGA-all dataset. (a) Age. (b) Gender. (C) TNM stage. (d) Histology grade. (e) Alcohol_history.
(f) Hpv16_status. (g) New tumor event after initiative treatment. (h) Perineural_invasion.
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year OS predicted by the risk model were 0.783, 0.725, and
0.675, respectively (Figure 7(b)). The AUC values at 1-, 3-,
and 5-year RFS predicted by the risk model were 0.719,
0.687, and 0.695, respectively (Figure 7(g)). The patients in
high-risk group can be distinguished from the low-risk
group based on the 9 prognostic DEGs (Figures 7(c) and

7(h)). Figures 7(d) and 7(i) showed the risk score, survival
state and heat map of the 9 prognostic DEGs. Figures 7(e)
and 7(j) demonstrated that the risk score was an indepen-
dent prognostic indicator for OS and RFS.

The qRT-PCR was operated to examine the expression
of the 9 prognostic DEGs in 40 healthy samples and 68
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Figure 6: Internal validation of the prognostic model. (a, b) The K-M survival curve and ROC curve for the risk score in predicting the OS
of HNSCC patients in the TCGA- training dataset. (c) PCA plot of the high-and low-risk groups based on 9 FPRGs in the TCGA- training
dataset. (d) The heat map, risk score distribution, and survival status of patients in the TCGA-training dataset. (e) Univariate and
multivariate Cox analysis to assess the independence of the risk score in the TCGA- training dataset. (f, g) The K-M survival curve and
ROC curve for the risk score in predicting the OS of HNSCC patients in the TCGA-testing dataset. (h) PCA plot of the high-and low-
risk groups based on 9 FPRGs in the TCGA- testing dataset. (i) The heat map, risk score distribution, and survival status of patients in
the TCGA-testing dataset. (j) Univariate and multivariate Cox analysis to assess the independence of the risk score in the TCGA-testing
dataset. HNSCC: head and neck squamous cell carcinoma; PCA: principal component analysis; K-M: Kaplan–Meier; ROC: receiver
operating characteristic.
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HNSCC samples. We then built a risk model based on the 9
prognostic DEGs using the same methods mentioned in
TCGA-HNSC dataset. We successfully verified the favorable
prognostic predictive performance of the risk model accord-
ing to the Figures 8(a)–8(e). We also compared the differen-
tial expression of the 9 prognostic DEGs between healthy
samples and HNSCC samples. The results suggested that
AC117422.1, AC117422.1, AC128687.2, AL161431.1, and
FCRL1 were elevated and LRADT1, PDCL2, PLA2G3, and
SPRR3 were declined in the HNSCC samples (Figure 8(f)).
Finally, univariate and multivariate Cox analysis indicated

that the risk score was the independent factor for the prog-
nosis of the HNSCC patients (Table 2).

3.4. Construction of a Nomogram Model. To improve the
clinical applicability, a nomogram model combined risk
score and clinical information was constructed
(Figure 9(a)). Calibration curve at 1-, 3-, and 5-year indi-
cated that the predicted OS probability of the nomogram
model was close to the actual (Figure 9(b)). DCA curve sug-
gested that the nomogram model has the highest net benefit
compared with the individual features (Figure 9(c)). ROC
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Figure 7: External validation of the prognostic model in the GSE65858 dataset. (a, b) The K-M survival curve and ROC curve for the risk
score in predicting the OS of HNSCC patients in the GSE65858-OS dataset. (c) PCA plot of the high- and low-risk groups based on 9 FPRGs
in the GSE65858-OS dataset. (d) The heat map, risk score distribution, and survival status of patients in the GSE65858-OS dataset. (e)
Univariate and multivariate Cox analysis to assess the independence of the risk score in the GSE65858-OS dataset. (f, g) The K-M
survival curve and ROC curve for the risk score in predicting the OS of HNSCC patients in the GSE65858-PFS dataset. (h) PCA plot of
the high-and low-risk groups based on 9 FPRGs in in the GSE65858-PFS dataset. (i) The heat map, risk score distribution, and survival
status of patients in the GSE65858-PFS dataset. (j) Univariate and multivariate Cox analysis to assess the independence of the risk score
in the GSE65858-PFS dataset. HNSCC: head and neck squamous cell carcinoma; PCA: principal component analysis; K-M: Kaplan–
Meier; ROC: receiver operating characteristic.
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curve indicated that the nomogram model has the optimum
sensitivity and specificity in prognostic prediction than the
individual features (Figure 9(d)).

3.5. Exploration of the Clinicopathological Features and
Stemness Characteristics of the Prognostic Risk Model. The
mutation frequency of the TP53 associated with adverse out-
come of cancer was found higher in high-risk group (67%,
Figure 10(a)), compared with the low-risk group (58%,
Figure 10(b)). To investigate the relationship between risk
score and clinicopathological features, the “compare” R
package was performed. We observed that the patients with
age≤60 had higher risk score than the patients with age>60,
whereas the risk score has no statistic difference in other
stratified clinicopathological features (Figures 10(c)–10(h)).
The patients in cluster A group corresponds to higher risk
score (Figure 10(i)) and the relationship of cluster, risk,
and fustat was showed in Sankey diagram (Figure 10(l)).
Increasing evidence revealed that the patients with higher
TMB can more benefit from immunotherapy [28].
Figures 10(j) and 10(k) showed that the risk score has nega-
tive correlation with TMB, suggesting that the patients in
low-risk group were more sensitive to immunotherapy.

3.6. Tumor Immune Characteristics Analysis. The abundance
of immune cells was calculated using the ssGSEA algorithm,
and the different levels of immune cell infiltration between
high- and low-risk group was compared, finding that the
HNSCC samples in low-risk group has increased immune
response (Figure 11(a)). We also investigated the differential
expression levels of immune checkpoints, finding that there
were 19 immune checkpoints overexpressed in the low-risk
group than that in the high-risk group (Figure 11(b)). In addi-

tion, the HNSCC samples in low-risk group were related to
higher immune score and ESTIMATEScore (Figure 11(c)).
The network presented the interactions, regulator connection,
and prognostic value of the 23 types of immune cells
(Figure 11(d)). We found that there were strong positive cor-
relation and mutual regulation between the 22 types of
immune cells (except CD56dim natural killer cells, Supple-
mentary table 7). Combined with the network graph and K-
M curve (Supplement Figure 1), 17 types of immune cells
were associated with the prognosis of the HNSCC patients.
Among them, 16 types of immune cells were protective
factors, and neutrophilia was a risk factor. Spearman
correlation analysis was performed to evaluate the
correlation between the 9 prognostic DEGs in risk model
and the 23 types of immune cells. We observed that FCRL1
has the strongest positive correlation with the 23 types of
immune cells, while the AC128687.2 has the strongest
negative correlation with the 23 types of immune cells
(Figure 12(a)). Figure 12(b) revealed that the infiltration
abundance of 17 immune cells was reduced as the risk score.

4. Discussion

Head and neck tumors commonly occur in the oral cavity,
nasopharynx, oropharynx, hypopharynx, and larynx [29].
As the most common pathologic type, HNSCC ranks 6th
in the incidence rate of malignant tumors worldwide, and
more than 800,000 new cases are diagnosed every year
[30]. At present, surgery is the main treatment, supple-
mented by radiotherapy and chemotherapy, but the 5-year
survival rate is still not ideal [31]. Especially, local recurrence
and distal organ metastasis often occur in advanced HNSCC
after treatment, with higher mortality [32]. Targeted therapy
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Figure 8: External validation of the prognostic model in the clinical specimens. (a, b) The K-M survival curve and ROC curve for the risk
score in predicting the OS of HNSCC patients. (c) PCA plot of the high- and low-risk groups based on 9 FPRGs. (d) The heat map, risk score
distribution, and survival status of patients. (e) Univariate and multivariate Cox analysis to assess the independence of the risk score. (f)
Differential expression histogram of the 9 FPRGs between HNSCC and normal samples. HNSCC: head and neck squamous cell
carcinoma; PCA: principal component analysis; K-M: Kaplan–Meier; ROC: receiver operating characteristic.
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Table 2: Univariate and multivariate Cox analysis to assess the independence of the risk score.

Variables
Univariate analysis Multivariate analysis

P HR 95% CI P HR 95% CI

TCGA-HNSC-all

Age 0.9966 1.0000 0.9878-1.0121 0.2351 0.9804 0.9488-1.0129

Sex 0.7151 0.9454 0.6991-1.2782 0.9880 0.9928 0.3894-2.5311

Stage 0.0312 1.1840 1.0153-1.3805 0.2991 1.2603 0.8143-1.9504

Grade 0.1654 1.1592 0.9408-1.4281 0.3882 1.2888 0.7242-2.29345

Alcohol_history 0.9108 0.9839 0.7399-1.3081 0.3565 1.5259 0.6214-3.7465

Hpv16_status 0.0613 1.8848 0.9704-3.6608 0.0675 1.9798 0.9519-4.1174

Risk score 0.0002 1.0310 1.01465-1.0755 0.0031 1.1110 1.04-1.185

TCGA-HNSC-train

Age 0.9649 1.0004 0.9827-1.0183 0.3963 0.9706 0.9058-1.0398

Sex 0.7824 0.9400 0.6058-1.4583 0.5445 0.6641 0.1767-2.4956

Stage 0.2480 1.1429 0.9111-1.4334 0.9922 1.0032 0.5265-1.9112

Grade 0.1152 1.2773 0.9419-1.7320 0.9626 1.0222 0.4084-2.5582

Alcohol_history 0.5488 1.1364 0.7482-1.7257 0.2686 2.2157 0.5413-9.0695

Hpv16_status 0.0357 2.8341 1.0719-7.4930 0.0184 3.5167 1.2364-10.0017

Risk score 0.0000 1.1546 1.1139-1.1966 0.0107 1.1605 1.0351-1.3010

TCGA-HNSC-test

Age 0.9848 0.9998 0.9832-1.0167 0.4098 0.9819 0.9401-1.0254

Sex 0.5866 0.8898 0.5842-1.3552 0.6305 1.4541 0.3162-6.6852

Stage 0.0589 1.2252 0.9924-1.5126 0.1725 1.7161 0.7899-3.7281

Grade 0.9604 1.0075 0.7514-1.3506 0.3151 1.5884 0.6439-3.9177

Alcohol_history 0.3601 0.8328 0.5628-1.2322 0.4273 1.6790 0.4670-6.0353

Hpv16_status 0.6570 1.2422 0.4769-3.2352 0.8114 0.8586 0.2454-3.0034

Risk score 0.0001 1.0076 1.0036-1.0115 0.0045 1.2171 1.0627-1.3938

GSE65858-OS

Alcohol_history 0.4138 1.0850 0.8922-1.3192 0.5154 1.0748 0.8647-1.3359

Stage 0.0014 1.6154 1.2039-2.1675 0.0003 1.7431 1.2855-2.3633

Hpv16_status 0.0093 0.4567 0.2529-0.8246 0.0036 0.3920 0.2088-0.7358

Smoking_history 0.8211 0.9409 0.5549-1.5953 0.6200 0.8600 0.4736-1.5611

Sex 0.8683 1.0456 0.6174-1.7705 0.9977 1.0008 0.5738-1.7454

Age 0.0126 1.0266 1.0056-1.0479 0.0123 1.0296 1.0063-1.0533

Risk score 0.0000 1.0055 1.0036-1.0073 0.0000 1.0049 1.0029-1.0068

GSE65858-PFS

Alcohol_history 0.0287 1.2055 1.0196-1.4250 0.0711 1.1893 0.9851-1.4356

Stage 0.0502 1.2255 0.9998-1.5021 0.0463 1.2350 1.0034-1.5199

Hpv16_status 0.0101 0.5460 0.3443-0.8657 0.0209 0.5629 0.3457-0.9164

Smoking_history 0.7890 1.0646 0.6731-1.6835 0.4950 0.8370 0.5023-1.3954

Sex 0.2860 1.2897 0.80816-2.0581 0.5836 1.1459 0.7041-1.8647

Age 0.2760 1.0095 0.9924-1.0269 0.1240 1.0145 0.9960-1.0333

Risk score 0.0000 1.1503 1.1025-1.2001 0.0000 1.1292 1.0808-1.17983

Clinical specimens

Alcohol_history 0.8873 1.0219 0.7570-1.3794 0.4936 1.1385 0.7852-1.6506

Stage 0.0524 1.5243 0.9957-2.3334 0.0485 1.7069 1.00352.9031

Hpv16_status 0.7925 0.8999 0.4099-1.9751 0.1896 0.5390 0.2140-1.3572

Smoking_history 0.1699 0.6207 0.3141-1.2265 0.0221 0.3706 0.1583-0.8671

Sex 0.8696 1.0648 0.5031-2.2532 0.2728 1.5868 0.6952-3.6218

Age 0.1003 1.0279 0.9947-1.0620 0.6625 1.0086 0.9704-1.0482

Risk score 0.0000 1.0565 1.0373-1.0759 0.0000 1.0683 1.0453-1.0918
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and immunotherapy are promising for patients with
advanced HNSCC. Currently, cetuximab is the only
molecular-targeted drug approved for clinical treatment of
HNSCC. Combined with platinum-based chemotherapy,
cetuximab is the standard treatment for patients with
advanced HNSCC [33, 34]. Nivolumab and pembrolizumab
are two immunocheckpoint inhibitors permitted for immu-

notherapy in HNSCC patients [33, 35]. However, drug resis-
tance and immune escape are major problems faced by
targeted and immunotherapy. Induction of apoptosis to halt
tumor growth is the aim of many HNSCC treatment strate-
gies [13]. Ferroptosis and pyroptosis are two new PCD
modes discovered in recent years and play important roles
in the malignant processes and immune microenvironment
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Figure 9: Establishing process of the nomogram model. (a) Nomogram for predicting the 1-, 3-, and 5-year overall survival of HNSCC
patients in the TCGA-dataset. (b) Calibration curves of the nomogram model of 1, 3, and 5 years. (c) DCA curves for predicting the
overall survival of different parameters. (d) ROC curves for predicting the overall survival of different parameters. HNSCC: head and
neck squamous cell carcinoma; DCA: clinical decision curve; ROC: receiver operating characteristic.
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of HNSCC. Therefore, target ferroptosis and pyroptosis-
related genes may be improved the prognosis of HNSCC.

In this study, we successfully constructed and verified a
risk model based on the FPRGs. Firstly, we obtained 21 signif-
icant FPRGs differential expression analysis and univariate
Cox regression analysis. The patients in TCGA-HNSC dataset
were divided into two different subtypes based on the expres-
sion of the 21 FPRGs using the “ConsensusClusterPlus” R
package. Further, we acquired the 165 prognostic DEGs
between the two subtypes to explore the molecular differences

of the two subtypes. GO enrichment analysis indicated that the
165 prognostic DEGs mainly enriched in GO:0005198~struc-
tural molecule activity, GO:0005882~intermediate filament,
GO:0005615~extracellular space, etc. These extracellular com-
ponents were an important part of the immune microenviron-
ment [36]. Ferroptosis and pyroptosis have been widely
reported to have extremely complicated crosstalk with tumor
immune microenvironment [5]. The 165 DEGs with prognos-
tic significance was subjected into the LASSO-multivariate Cox
regression analysis to a built a risk model with 9 prognostic
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DEGs. K-M curve revealed that the patients with higher risk
score have poor outcome compared the patients with lower
risk score. ROC curve indicated that the sensitivity and speci-
ficity of the risk score for prognostic prediction in HNSCC
patients was favorable. More importantly, the risk model was

successfully verified with a stable prognostic value through
internal validation, external validation, and clinical sample val-
idation. In addition, the risk score was found to be indepen-
dent of other clinical information in predicting the prognosis
of HNSCC. Regardless of the clinical characteristics, stratified
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Figure 11: Comprehensive analysis of the TME and checkpoints between high- and low-risk groups. (a) Differential expression histogram
of the 23 types of immune cells between high- and low-risk groups. (b) Differential expression histogram of the immune checkpoints
between high- and low-risk groups. (c) Correlations between risk score and both immune and stromal scores. (d) The correlation
network among the 23 types of immune cells.
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Figure 12: Evaluation of the TME between high- and low-risk groups. (a) Correlations between the 23 types of immune cells and the 9
FPRGs in the risk model. (b) Correlations between risk score and 23 types of immune cells. TME: tumor microenvironment.
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prognostic analysis showed that the HNSCC patients in the
high-risk group continued to have poor outcomes except for
the HPV+ group. This result may be due to the small sample
size of HPV+ group (n = 31). Finally, a nomogram model
combined risk score and clinical information was constructed
to improve the clinical applicability. Reviewing previous stud-
ies, some of these 9 prognostic DEGs have been found to be
involved in the occurrence and progression of solid tumors.
For example, Lu Yu et al. [37] reported that the expression
level of SPRR3 was reduced as the malignant progression of
oral squamous cell carcinoma (OSCC), which was consistent
with our analysis results. AL161431.1 was found upregulated
in endometrial carcinoma, lung cancer, and pancreatic cancer
and associated with the immune microenvironment, prolifera-
tion, migration, epithelial-mesenchymal transformation, and
poor prognosis [38, 39]. Randall S. Davis [40] identified that
FCRL1 overexpressed in breast, melanoma, and lung cancer
may be a potential biomarker and therapeutic target. LRATD1
also named FAM84A has been revealed to be related to the
occurrence and development of papillary thyroid cancer, liver
tumor, and colon cancer [41–43]. PLA2G3 was upregulated
in ovarian cancer, melanoma, and colorectal cancer and
improved the poor prognosis and malignant progression of
cancer [44–46].

TP53 is one of the most frequently altered genes in
human cancers, which is present in about 50% of invasive
tumors [47]. Genomic data showed that TP53 was the most
common mutant gene in HNSCC and associated with
shorter survival outcome of HNSCC patients [48]. Our
research found that the patients in high-risk group with poor
survival outcome have higher TP53 mutation frequency
(67%) than the patients in low-risk group (58%), which
was consistent with the results of previous studies. TMB
refers to the number of nonsynonymous mutations in
somatic cells per mega base pair (Mb) in a specific genomic
region, which can indirectly reflect the ability of tumor to
produce neoantigens [49]. Patients with higher TMB are
more likely to benefit from immunotherapy [49]. In this
study, we found that the risk score has negative correlation
with TMB, suggesting that the patients in low-risk group
were more sensitive to immunotherapy.

To reveal the mechanism of risk model in tumor immune
microenvironment, we firstly calculated the abundance of
immune cells using the ssGSEA algorithm and compared the
differential immune cell infiltration among the high- and
low-risk group. The results identified that Activated.B.cellna,
Activated.CD8.T.cellna, Eosinophilna, Immature.B.cellna,
MDSCna, Macrophagena, Mast.cellna, Monocytena, Natur-
al.killer.cellna, T.follicular.helper.cellna, Type.1.T.helper.cellna,
and Type.17.T.helper.cellna had decreased infiltration as the
risk score increased. K-M curve revealed that the above 12 type
of immune cells except T.follicular.helper.cellna are the protec-
tive prognostic factor for HNSCC. B cells are the main effector
cells of humoral immunity, which can directly kill tumor cells
and inhibit tumor development by secreting immunoglobulin
[50]. Xin Feng et al. showed that the B cells act a favorable role
in the prognosis of HNSCC. The higher infiltration of B cell
and their subtypes may improve the prognosis of HPV+
HNSCC patients [51]. Activated CD8 T cells as the most

important antitumor effector cells can recognize tumor associ-
ated antigens by expressing T cell receptors and kill tumor
cells [52]. Many studies have shown that the HNSCC patients
can benefit from the increased infiltration of the activated CD8
T cells [53]. Eosinophils can kill tumors directly or indirectly
by releasing cytotoxic proteins or chemoattractants, which
may extend the prognosis of HNSCC patients [54]. As the first
line of defense against tumor, natural killer cells have been
reported to play an important role in antitumor immunity of
HNSCC [54]. T helper cells, as the most important helper cells
in tumor immunity, can promote the recruitment of natural
killer cells to the tumor and activate death receptors on the
surface of tumor cells and the CD8 T cells by releasing cyto-
kines [21]. Contrary to our analysis, monocytes, macrophages,
mast cells, and myeloid derived suppressor cells (MDSCs)
were considered to relate to the malignant progression and
poor prognosis of HNSCC [55–58].

5. Conclusions

Our research identified a favorable risk model containing 9
FPRGs, which could be potential prognostic markers and
effective immunotherapy targets for HNSCC.
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