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A B S T R A C T   

A highly efficient and robust multiple scales in silico protocol, consisting of atomistic Molecular Dynamics (MD), 
coarse-grain (CG) MD, and constant-pH CG Monte Carlo (MC), has been developed and used to study the binding 
affinities of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 and several of its 
here optimized versions against 11 SARS-CoV-2 variants including the wild type. Totally 235,000 mAbs struc-
tures were initially generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-like- 
RBD complexes with critical mutations and compared to the native one, all having the potential to block virus- 
host cell interaction. Of these 10 finalists, two candidates were further identified in the CG simulations to be the 
best against all SARS-CoV-2 variants. Surprisingly, all 10 candidates and the native CR3022 exhibited a higher 
affinity for the Omicron variant despite its highest number of mutations. The multiscale protocol gives us a 
powerful rational tool to design efficient mAbs. The electrostatic interactions play a crucial role and appear to be 
controlling the affinity and complex building. Studied mAbs carrying a more negative total net charge show a 
higher affinity. Structural determinants could be identified in atomistic simulations and their roles are discussed 
in detail to further hint at a strategy for designing the best RBD binder. Although the SARS-CoV-2 was specifically 
targeted in this work, our approach is generally suitable for many diseases and viral and bacterial pathogens, 
leukemia, cancer, multiple sclerosis, rheumatoid, arthritis, lupus, and more.   

1. Introduction 

The world has been in the grip of the COVID-19 pandemic, caused by 
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for 
roughly two years and a half with no corner on Earth being saved. To 
date, more than 603 million cases and 6.5 million deaths are reported 
with no end in sight [https://www.who.int/] at the time of writing. 

Vaccines have been developed in the shortest possible time and manu-
factured in large quantities on a global scale [1]. Yet, the number of 
people to be vaccinated remains quite large giving time for new muta-
tions of the virus to develop with a relatively high potential for break-
through cases [2]. 

Understanding the structural features of viruses is important in 
developing new therapeutic strategies. Coronaviruses have four types of 
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glycoproteins all taking part in the pathogenesis: spike (S), membrane, 
nucleocapsid, and envelope. At the top of the S protein is the receptor- 
binding domain (RBD), which binds to the angiotensin-converting 
enzyme 2 (ACE2) receptor of the host cell to promote an entry to 
infect the human cells. 

In developing the vaccines, the main choices space from mRNA 
vaccines releasing a synthetic mRNA sequence encoding the virus S 
protein from a nano-particle to viral vector vaccines continuing DNA 
encoding the S protein [1,3]. Despite some promising medicines [4] 
including PAXLOVID, there is still no effective drug against COVID-19 
and neutralizing monoclonal antibodies (mAbs) are currently the most 
attractive alternative. One successful approach in the past to treat 
various infectious diseases is convalescent plasma therapy (CPT) [5]. 
This treatment administered antibody-containing plasma, collected 
from COVID-19 recovering patients to recipient patients that still did not 
develop a protective immune response, reducing thus the viral load in 
the recipient. One important limitation of CPT in the treatment of 
COVID-19 is the diversity of virus variants found in the population 
which makes the selection of donors difficult. On the other hand, mAbs 
or polyclonal antibody cocktails can be specifically engineered and 
biotechnologically produced to fight SARS-CoV-2. Spike protein is the 
primary target of these mAbs with four classes of them being described 
to date depending on the location of their target epitope on the S protein 
[6]. Regardless of their source, either from convalescent blood or 
industrially produced, human mAbs are safe therapeutic tools and can 
be produced quickly. There are already more than 50 commercially 
available mAbs approved for the treatment of other inflammatory and 
immune disorders and other infectious pathogens. Several candidates 
against SARS-CoV-2 are by now in different trial phases [7,8]. Patents 
have already been deposited (e.g., US 2021/0292393, 
US20210388066A1), and some mAbs are approved by regulatory 
agencies such as the FDA [9,10]. 

Among available mAbs, CR3022 is a class IV mAb that does not bind 
to an RBD epitope that overlaps the ACE2 binding site, but to a 
conserved region in RBD when the spike homotrimer is in an “up” (or 
open) configuration exposing the RBD to interact with either ACE2 or 
binder molecules [11–13]. Exploiting such conserved regions in RBD 
(despite requiring the S protein to be at the upstate), class IV mAbs have 
broad neutralizing activity against SARS-CoV-2, its variants, and other 
related coronaviruses [11]. The broad sarbecovirus neutralizing activity 
from CR3022 has already been confirmed even for the Omicron variant 
[14,15]. Due to the abrupt appearance of new variants of concerns 
(VOCs) [16] in a short time, improving a mAb that has its epitope on a 
conserved region of the RBD may constitute an advantage for developing 
biopharmaceuticals broadly effective against different variants of the 
virus. Moreover, attention has recently been turned again to CR3022 as 
a promising candidate for COVID-19 treatment and prevention as new 
experimental and computational evidence became available. Recent 
studies [16–19] show that CR3022 binds RBD of SARS-CoV-2 with 
relatively high affinity (KD ~ 3–115 nM), although the tendency for 
stronger complexes formed with RBD SARS-CoV-1 is still dominant. 
These new data suggest that CR3022 is an appealing candidate to be 
subjected to affinity maturation, especially due to its cross-reactivity. 
Therefore, CR3022 has been chosen for this study and will be the cen-
tral part of our discussions. 

Modern virology, immunology, and related fields are expanding 
their achievements by incorporating theoretical approaches in their 
daily practice [17–19]. Attempts to computationally optimize existing 
Abs for SARS-CoV-2 were already reported in the literature [20,21] 
following the work of Giron and co-authors that provided an optimized 
CR3022 [20]. A large number of such studies emphasize how compu-
tational tools are being routinely used for complementing experiments 
in the Ab design process. A large diversity of algorithms for computa-
tional Ab studies are available, from those that predict the structure of 
an Ab based on its primary sequence only (i.e., antibody modeling) [22], 
to the ones that make use of detailed structural information from X-ray 

diffraction data to design improved antibodies from existent ones (i.e., 
antibody design) [23]. Experimental structural data regarding the 
complex between the Ab to be improved and its antigen (Ag) greatly 
improves the prediction accuracy although antibody-antigen (Ab-Ag) 
computationally modeled structures could be used as well [24]. In short, 
the general workflow of computational design of novel paratopes in-
cludes: (i) generation of new complementarity-determining regions 
(CDRs) sequences (the part of the variable chains in immunoglobulins) 
from experimental antibody databases and their grafting/modeling on 
the antibody framework, (ii) CDRs sequence redesign introducing mu-
tations, (iii) Ab-Ag docking according to the known epitope and relative 
orientation of the partners, (iv) binding energy evaluation using a 
scoring function. These steps should be repeated to find a better binding 
antibody. Common algorithms include: RosettaAntibodyDesign [25], 
AbDesign [26], OptCDR [27], and OptMAVEn [28]. In addition to this 
general protocol, other molecular modeling techniques can be applied to 
improve the accuracy of predictions. Molecular dynamics (MD) simu-
lations [29,30], represent a well-established methodology in biological 
sciences [31–34]. Atomistic MD has been successfully used in the past in 
Ab design studies for affinity maturation of camelid nanobodies against 
alpha-synuclein, a weak immunogenic antigen [35], of bevacizumab 
antibody for an increased affinity to vascular endothelial growth factor 
A) [36], and of a toll-like receptor targeting Ab [37], to mention just a 
few examples. However, different steps of Ab-Ag interaction take place 
on different time scales, which cannot be effectively covered by con-
ventional atomistic simulations only. 

In this paper, we propose a novel multiscale approach for in silico 
affinity maturation of CR3022 against RBD of SARS-CoV-2 in order not 
only to improve binding but also to understand the molecular de-
terminants at different times/length scales which can be exploited to 
further modify and modulate the binding affinity. Our approach in-
cludes an initial conventional Ab design stage, followed by compli-
mentary evaluations of the best candidates using constant-pH (CpH) 
Monte Carlo (MC) calculations, constant-charge coarse-grain (CG) MD 
calculations, and constant-charge atomistic MD simulations. We then 
selected, as the result of the affinity maturation process, the candidates 
that showed improved affinity in all four types of evaluations. The 
strength of our approach is the use of complementary methods for 
binding affinity estimation, with different physical bases ranging from 
rigid-body long-range interaction assessment to local conformational 
rearrangements upon intimate Ab-Ag binding. Furthermore, our multi-
scale approach allowed us to test our candidates against 11 different 
strains of the SARS-CoV-2 virus. We identified key residues of the 6 CDRs 
in the light (L) and heavy (H) chains important for binding, located 
either at the interaction interface or distant to it, together with muta-
tions that improve binding like S35K (CDR-L1), S72E (CDR-L1), Y110R 
(CDR-L3), and Y39W (CDR-H1). Also, the total net charge of the mAb 
proved to be an important parameter that should be considered when 
aiming to design better binders for the RBD of SARS-CoV-2. 

2. Theoretical methods 

2.1. Proposed framework for the current study 

The methods combined in this work (see Fig. 1), are (steps 1–2) a 
structural-bioinformatics-based methodology to explore macromole-
cules as potential candidates with higher RBD affinity using an existing 
experimental RBD-CR3022 complex as a template, (step 3) classical MD 
simulations with an enhanced sampling to precisely quantify the free 
energy of interactions for the RBD-binder complexation, and (steps 4, 
7–8) a quicker MC sampling of a more simplified protein-protein model 
to investigate a larger number of complexes and search towards an 
optimal binder. Additional atomistic simulations were also performed to 
explore more details of the Ab-Ag interface (step 9 in Fig. 1). These tools’ 
combination allows us to explore different aspects of the complex 
physical interactions involved in the Ab-Ag complexation process. The 
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pros and cons of these approaches, together with the procedure in which 
they were combined here, are detailed in the Supplementary material 
(SM) in Section S1. 

2.2. Structural-bioinformatics-based RAbD approach 

The RosettaAntibodyDesign (RAbD) [25] tool was employed as the 
first step to suggest potential binder candidates for the next phases (see 
Fig. 1). Considering that any antibody has 6 CDRs (i.e., L1–3 on the light 
chain and H1–3 on the heavy chain) one has to decide which of these 
CDRs should be modified concerning the original structure (CR3022 as 
given by PDB id 6w41, an X-ray data with a resolution of 3.08 Å, pH 4.6 
[38]). We ran 3 sets of calculations: (A) all CDR’s CDRs considered for 
full design (using the GraftDesign and SeqDesign procedures of RAbD) 
[25]; (B) all CDR’s CDRst L1 were considered for full design (GraftDe-
sign and SeqDesign). (C) all CCDRs except L1 and H3 were considered 
for full design (GraftDesign and SeqDesign). 

In total, we generated several 91,800 candidates for (A), 72,000 
candidates for (B), and 72,000 candidates for (C) scenarios. From the 
entire pool of candidates, we have selected the best-improved mAbs 
using two criteria: (I) the complex must have an Ab-Ag interface score 
below − 150 REU (ROSETTA Energy Units) (the native interface score is 
− 65 REU), and (II) an Ab-Ag interface surface area larger than 1900 Å2 

(the native complex interface surface area is 2060 Å2). All RAbD- 
generated candidates were first ordered based on their ROSETTA score 
in ascending order. All candidates that did not fulfilled the above criteria 
were excluded. The remaining candidates were manually (visually) 
evaluated excluding the unrealistic ones. For the sake of clarity, more 
explanations on the choice of the above thresholds can be found in the 
SM files. From this final list, the first 10 best candidates (P01 to P10) 
from the final RAbD list plus the native complex were considered for the 
next analyses. 

2.3. CG molecular dynamics (MD) with an enhanced sampling approach 
for free energy calculations 

Umbrella sampling (US) constant-protonation state MD simulations 
were employed to evaluate the free energy of binding of CR3022 and the 
top ten Ab-Ag complexes selected from the above described RAbD cal-
culations (Step 3 in Fig. 1). In these constant-charge simulations, the 
protonation states of titratable groups are set at the beginning of the 
simulation (at pH 7 here) and remain constant [31,39]. For the effi-
ciency of calculations, a reduced representation of the interacting 
partners and solvent was adopted, using the SIRAH 2.2 CG force field 
(FF) [40], an approach successfully used in the past for Ab-Ag complexes 
free energy calculations [41]. A total number of 36 windows were used 
for US simulations which ensured a sufficient histogram overlapping 
using a force constant of 1500 kJ mol− 1 nm− 2 applied to the center of 
the mass of the RBD. Ab-Ag complexes were simulated for 16 ns in each 
US window (the first 2 ns were discarded). US simulations were repeated 
10 times. The Potentials of Mean Force (PMF) profiles were constructed 
using Weighted Histogram Analysis Method [42]. All simulations have 
been performed with the RBD with the wild-type (wt/Wuhan) sequence 
(NCBI sequence NC_045512) at constant temperature (300 K) and 
pressure (1 atm) using GROMACS 2019.3 suite [43,44] on Beskow su-
percomputer at PDC Stockholm, Sweden. 

2.4. A fast constant-pH coarse-grained simulation approach for free 
energy calculations on a large scale 

The ten selected fragments of mAbs candidates obtained from the 
RAbD analysis were also submitted to exhaustive investigations utilizing 
a fast CpH CG biophysical model specially designed for protein-protein 
complexation [45–48] – see step 4 in Fig. 1. With “constant-pH” we refer 
to methods where the amino acid charge is allowed to change during the 
simulation run as a function of the variable surrounding at a given pH 
(given as input parameter) [31,49]. These CG simulations are less 

Fig. 1. Scheme for the multiple scales in silico protocol, consisting of an initial structural-bioinformatics-based methodology to explore macromolecules as potential 
candidates (steps 1 and 2), constant protonation state CG MD (steps 3), constant-pH (variable protonation state) CG MC simulations (steps 4, 6–8), and an atomistic 
constant charge MD simulation (step 9). At the end of this cycle, an optimized mAb with a higher binding affinity is obtained. See the text and the SM for more details. 
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expensive than the US calculations with the CG SIRAH FF described 
above and have the benefit to allow the description of amino-acid pro-
tonation state variations occurring at constant pH. This implies that 
important electrostatic interactions as the charge regulation mechanism 
are properly included in the model [50–54]. This electrostatic model is 
called “FORTE” (Fast cOarse-grained pRotein-proTein modEl). [55–57] 
The core of such a model is the fast proton titration scheme [58,59] 
combined with the possibility to translate and rotate the macromole-
cules using the Metropolis MC method [60]. The great advantage of 
FORTE is the proper modeling of the electrostatic and pH features with a 
reduced number of sites and a smoother energy landscape. This provides 
an optimal cost-benefit ratio for longer runs for several systems, espe-
cially for semi-quantitative comparisons. Conversely, it is less appealing 
to quantitatively reproduce experimental Kd values. All calculations 
with FORTE were performed at pH 7, 150 mM of NaCl, and 298 K. After 
equilibration, at least 3 × 109 MC steps were run during the production 
phases. Three replicate runs were carried out for each simulated system. 

The free energies of interactions (binding free energies), or PMF [w 
(r)/KBT], as a function of the macromolecule’s separation distances (r) 
were of primary interest. They were directly calculated from their 
center-center pair radial distribution functions [βw(r)= -ln g(r)] and 
sampled using histograms during the production phase of the MC runs. 
For long enough simulations, βw(r) is typically obtained with good ac-
curacy and able to reproduce experimental trends [20]. 

Different sets of calculations were carried out with FORTE. Initially 
(see step 4 in Fig. 1), the binding properties of the 10 top candidates 
(protein P01 to P10) that were obtained from the structural- 
bioinformatics-based analysis (using RAbD) were tested to form com-
plexes with the RBD from the SARS-CoV-2 wt: RBDwt+Px → RBDwtPx, 
where x ranges from 1 to 10. βw(r) was calculated for all systems. 
Simulations with the fragment of the original mAbs CR3022 were also 
performed for comparison [38]. All these simulations were repeated for 
RBDs built up with sequences with different mutations (see step 7 in 
Fig. 1) present in some relevant VOCs and variants of interest (VOI) (see 
Section 1 in SM for extended details). 

After confirming the outcome from the US calculations with FORTE, 
an optimization procedure was invoked to explore the possibility of 
further improving the binding features of the fragment of mAbs given by 
RAbD (step 6 in Fig. 1). The two best binders classified as Pbest and Pbest-1 
by FORTE with a higher chance to block the RBDwt were further sub-
mitted to a “theoretical alanine scanning” (TAS) [20], a technique used 
here to determine the contribution of a specific amino acid to the 
RBD-binding (see Fig. S2). 

2.5. Atomistic MD simulations 

To enhance our understanding of the close interactions of our best 
candidate with RBDwt, and to allow for local conformational re- 
arrangements at the interaction interface, we used high-resolution 
models, based on all-atom classical force fields, to simulate Ab-RBDwt 
complexes. Constraint-free MD simulations of the wild-type CR3022- 
RBD and Pbest-RBDwt (Pbest is generically used here to refer to the best 
mAb identified with Rosetta score and in the previous CG simulations) 
complexes have been performed using the Amber99SB-ILDN FF [61] for 
protein description and the TIP3P [62] water model (step 9 in Fig. 1). 
The Ab-RBDwt models have been solvated with enough solvent mole-
cules to ensure a minimum distance between periodic images of 2.2 nm. 
Ions have been added to neutralize the solvated systems. The length of 
the simulations was 50 ns at constant pressure (1 bar) and temperature 
(298 K). The GROMACS 2019.3 suite [44] has been used for all atomistic 
MD simulations. 

3. Results and discussion 

3.1. ROSETTA-designed antibody structure: Identifying the top best 
binder candidates 

The general workflow of the antibody design procedure consisted of 
generating a large number of Ab-Ag structures using RAbD [25], fol-
lowed by ranking of the generated models according to the ROSETTA 
scoring function. In short, the RAbD algorithm is meant to sample the 
diverse sequence, structure, and binding space of an antibody-antigen 
complex. We have generated 235,000 candidates who were ranked ac-
cording to the ROSETTA scoring function. From the total number of 
designed candidates, only 383 showed better affinities compared with 
the native CR3022-RBDwt complex (Fig. 2). From this list, we choose 10 
complexes (according to the criteria described in the “Theoretical 
Methods” section) that were further evaluated by free energy (ΔG) 
calculations using both umbrella sampling (US) and FORTE (CDRs pri-
mary sequences are presented in Fig. 3). We then considered, as the most 
promising mAbs candidates, the structures that give consensus results in 
all three types of evaluations. 

All computational methods have their limitations. Evaluating the Ab- 
Ag complexes with different computational approaches, and selecting 
the ones that are consistent in all evaluations, strongly increase the 
reliability of predictions. Thus, the observed improved affinity of the 
models could be considered to result from the real physics/chemistry of 
the complex interactions in the systems and not from any particular 
algorithm-related issues. 

3.2. RBDwt-mAb free energy of interactions explored with umbrella 
sampling CG simulations 

Free energy calculations using US MD calculations revealed that 
from the list of the top 10 best RAbD candidates only P01, P05, P06, P09, 
and P10 showed statistically significant better binding affinities to 
RBDwt compared with the native CR3022 (see Fig. 4 for their PMF 
profiles). However, the errors in estimating the binding free energies for 
P05, P06, P09, and P10 did not allow us to distinguish between them in 
terms of affinity. Among the candidates P01 seems the best, giving 
statistically significant better affinity of binding compared with both the 
native CR3022 and P05, P06, P09, and P10. 

However, caution must be taken when considering absolute values 
obtained by US-CG SIRAH to compare with more rigorous atomistic or 
experimental data. As the results of Patel et al. (2017) showed, only the 
ΔΔG = ΔGmutant - ΔGwild-type should be regarded quantitatively, as the 

Fig. 2. The 2D plot of RAbD score against antibody-antigen interface SASA 
(solvent accessible surface area). The horizontal line corresponds to the 
CR3022/RBDwt complex RAbD score given in Rosetta Energy Units (REU). The 
green square indicates the area in the two-dimensional plot that corresponds to 
the mAb candidates’ selection criteria. The P01, i.e., the best candidate ac-
cording to the Rosetta score, is indicated in this plot with an arrow. 
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granularity of the SIRAH-CG model may affect the absolute values of the 
calculated ΔG from the PMF profiles. On the other hand, ΔΔG compu-
tations based on SIRAH-CG did fit well with experimental data [41] and 
are much more efficient than atomistic US approaches, which of course 
give more precise absolute values for ΔG [63]. Therefore, it is mean-
ingless to use the CG-US results for a direct comparison with experi-
mental data like Kd. 

The free energy evaluations based on CG-US showed ΔΔG values of 
− 18.3 kcal/mol for P01 and − 7.1 to − 10.8 kcal/mol for the P01-P05- 
P06-P09-P10 group relative to the CR3022 antibody. These values are 
comparable to experimental kinetic data found in the literature for 
stabilizing mutations induced in Ab-Ag complexes [64–66]. 

3.3. RBD-mAb free energy of interactions explored with FORTE 

The simplified CpH CG protein-protein model can reproduce the 
main trends obtained using the more elaborate models (see above).  
Fig. 5 shows the minimum values of the free energy of interactions for 
the complexation between the SARS-CoV-2 RBDwt with the fragment of 
CR3022 and with all engineered mAbs given by RAbD from P01 to P10. 
These new mAbs candidates all have a higher RBDwt affinity as observed 
for the simulations with SIRAH FF too (see Fig. 5). They can be ranked as 
P01/P06 > P02/P05/P08/P09/P10 > P04 > P03 > P05 in terms of 
their binding affinities. It is virtually impossible to distinguish the pro-
teins within the groups P01/P06 and P02/P05/P08/P09/P10 due to 

Fig. 3. Sequences of the CDRs (A) and the structures (B) of the 10 selected mAbs for evaluations using US/SIRAH and FORTE methods. Dots represent identities. 
Residue letters in (A) were colored according to similarity with their counterparts in the reference native CR3022 sequence. In (B) RBDwt (up) was colored in red and 
each candidate mAb (down) in a different color. 

Fig. 4. Averaged RBDwt-mAb PMF profiles for the candidates that give statis-
tically significantly better binding affinity than CR3022 in the constant- 
protonation state MD simulations with the SIRAH CG force field using the 
umbrella sampling method. The vertical bars represent the estimated standard 
deviations of the minimum of the PMF profiles. See the text for more details. 

Fig. 5. Minima free energy of interactions values [βwmin] measured for the 
SARS-CoV-2 RBDwt-mAbs complexation at pH 7 and 150 mM of NaCl by the 
CpH MC simulations (FORTE), CG-SIRAH Umbrella sampling (CG-SIRAH/US), 
and the RAbD scores, for the wildtype RBDwt and different fragments of mAbs 
candidates (P01 to P10). The data for the complexation with the native frag-
ment of CR3022 is indicated as WT. The error bars were calculated using the 
three replicates for each simulation system. We considered as a significant 
difference any value larger than the estimated standard deviations (see Fig. S8 
and Table S2). The minima values obtained by classical MD with SIRAH FF are 
included in the figure for the sake of comparison. Values from the RAbD in REU 
are also reported for comparison. 
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their estimated standard deviations. Conversely, there is no difficulty in 
determining that the two best candidates are P01 and P06. Both proteins 
have virtually identical free energy profiles for their complexation with 
the RBDwt [− 0.788(6) KBT and − 0.790(6) KBT for P01 and P06, 
respectively). Yet, the mAb P01 was selected as Pbest to follow the 
consensus with the best binder found in the previous biophysical sim-
ulations with the SIRAH FF (see Fig. 4). Since the physical description is 
not the same between the two models, this reinforces the conclusion that 
P01 has special features for a stronger binding with the RBDwt. 

Although P06 was not found equivalent to P01 according to the PMF 
obtained with the US SIRAH MD (see Figs. 4 and 5), FORTE calculations 
indicate that it could still be an interesting candidate since it scores as 
the best together with P01. Therefore, P06 was assumed as Pbest-1, i.e., 
the second-best binder. The fact that FORTE provided these two binders 
(P01 and P06) with equivalent binding affinities instead of a single one 
as seen in the previous approach could be due to a couple of reasons: (a) 
a smoother energetic landscape in this CG model eventually is not able 
to describe the same roughness of the phase space, (b) the presence of 
the charge regulation mechanism in the FORTE approach (absent in the 
constant-protonation state MD simulations) that give rise to an extra 
attraction, c) the lack of structural rearrangements in the FORTE 
approach. Nevertheless, even in the US/SIRAH FF approach, P06 is a 
better binder than the native CR3022 (see Fig. 4). 

Interestingly both CG simulations revealed some subgroups of 
binders with similar binding free energies among the member of each 
subgroup (within the error estimation). This suggests that Abs produced 
from previous infections or by the seroconversion of a given vaccine 
could have a chance to neutralize more than one strain in agreement 
with clinical reports [67]. It also illustrates that a weaker response can 
be obtained depending on the specific mutations as also expected. 
Equivalent reasoning can be done for therapeutic molecules designed to 
prevent the attachment of the spike protein via the RBD in the human 
cell. For instance, Wang and co-authors described a potent mAb from 
covalent patients that works well against 23 variants [68]. 

Using CG models it becomes difficult to quantitatively (not qualita-
tively) reproduce experimental Kd values and/or typically βw(r) values 
obtained by more detailed force field descriptions [20,45,46]. The 
problem described above for SIRAH FF might be more severe for FORTE 
due to its higher granularity. Yet, any ambiguity in the interpretation of 
the obtained data can be solved when results are interpreted in relative 
terms. For instance, comparing the measurements between a set of 
similar macromolecules under the same experimental conditions [20, 
45]. This is exactly the case for this comparison between different pairs 
of RBDs and a putative binder. Both CG approaches are useful for dis-
tinguishing between stabilizing and destabilizing CDR modifications, for 
ranking different candidates relative to the wild-type and in-between 
them. Qualitative comparison can still be made as shown in Fig. 5. 

After validating the theoretical predictions obtained with FORTE by 
comparison with the results from the US on CG simulations with the 
finer-grained SIRAH FF, we expanded its analysis and tested the binding 
affinities of these Rosetta-designed fragments of mAbs to the selected 
mutated form of SARS-CoV-2 RBDs. It is particularly interesting to assess 
if the engineered mAbs are good binders also for the past and present 
VOCs (Alpha [69], Beta [70], Gamma [71], Delta [72], and Omi-
cron/BA.1 [73]), VOIs (Epsilon, [74] Eta, [75] Iota, [76] Kappa [72]), 
and the so-called mink variant [77]. Such information would be vital for 
any practical therapeutic applications of these mAbs in the future. The 
free energy data at the same experimental conditions as in Fig. 5 for 
several pairs of RBDs and mAbs was compiled and displayed as a 
heatmap-style plot in Fig. 6. In this Figure, the darkest blue is the case 
with the highest binding affinity. Conversely, the darkest red is given to 
the system with the lowest binding affinity. This is observed for the 
native CR3022 interacting with any studied RBD. All putative 
Rosetta-designed mAbs improved the binding features in comparison 
with the native CR3022. The general behavior for all RBDs seems similar 
to what was observed for the interaction with the SARS-CoV-2 RBDwt 

(see Fig. 5). All molecules P01 to P10 have the potential to block the 
interaction between virus and host cell preventing the RBD to be 
available to anchor ACE2. The two best candidates for all these RBDs 
identified by FORTE were P01 and P06. This reinforces the conclusions 
concerning their potential ability to neutralize both the wild-type 
SARS-CoV-2 virus and the main present variants. Considering the esti-
mated error bars, all Rosetta-designed proteins follow the same trend 
seen in Fig. 5 for RBDwt. They also tend to respond with similar affinities 
to all studied RBDs, i.e., a good binder for one specific RBD is a good 
binder for another RBD too. However, there are interesting exceptions. 
For example, P03 has a relatively lower affinity for RBDDelta, RBDEta, 
RBDKappa, and RBDmink in comparison with the RBDwt. Surprisingly, 
both the native CR3022 and all Rosetta-designed binders show a higher 
affinity for RBDOmicron. This suggests that both CR3022 and its 
derived-mAbs have a good chance to neutralize the Omicron variant. 

3.4. RBD-Ab local interface interactions explored with atomistic MD 
simulations 

We have used atomistic MD simulations to comparatively evaluate 
P01 with the wild-type CR3022 in terms of different interaction con-
tributions to RBDwt-Ab binding. The simulations were first analyzed for 
obtaining the probability distribution functions of three interface 
interaction descriptors (see Fig. S4), namely the number of (i) Ab-Ag salt 
bridges, (ii) non-polar contacts and (iii) hydrogen bonds (between polar- 
polar and polar-charged residues). Visual analysis of the trajectories 
allowed us to evaluate the impact of the introduced mutations on the 
local molecular environment of the RBDwt-P01 complex. The results 
showed that the main interaction interface contributions to the 
increased affinity of P01 to RBDwt, compared with the wild-type 
CR3022, come from an increased number of salt bridges, hydrogen 
bonding, and a higher hydrophobic contact area to RBDwt (see SM 
Section 1 for a comprehensive discussion on the contribution of indi-
vidual mutated residues to the improved stability of the RBDwt-P01 
complex). 

3.5. Physical insights to design a more efficient monoclonal antibody for 
the RBD 

Individual residue electrostatic contributions to the complexation 
RBDwt-P01 were investigated through the TAS procedure described in 

Fig. 6. Heatmap with the minima free energy of interactions values (βwmin in 
KBT units) for the SARS-CoV-2 RBD-mAbs complexation at pH 7 and 150 mM of 
NaCl by the CpH MC simulations (FORTE) for the RBD of the main critical 
variants and different Rosetta-designer binder candidates (P01 to P10). The 
reference is the native fragment of CR3022. All values of. The maximum esti-
mate error is 0.01. See the text for a description of mutations considered in 
each case. 
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Section 2. All the ionizable residues of P01 were replaced by ALA one at 
a time, and we refer to the resulting set comprising all possible single, 
double, and triple mutations as {P01’}, {P01’’} and {P01’’’}, respec-
tively. The same holds for P06. The best candidates within each set were 
referenced without brackets. The corresponding βw(r) functions for the 
complexation RBDwt-P01´were estimated by the FORTE approach. The 
differences in the βwmin values observed for P01 and P01’ 
[ΔΔG=βwmin(P01’)-βwmin(P01)] are portrayed in Fig. S5. The purple 
lines indicate the maximum estimated errors (0.01 KBT). Free energy 
shifts larger than 0.01 KBT are considered significant. Positive shifts 
indicate mutations that negatively impact the complexation process. 
These amino acids (ASP-9. L, GLU-17. L, ASP-72. L, ASP-88. L, ASP-100. 
L, GLU-11. H, GLU-23. H, GLU-67. H, ASP-83. H, and ASP-137. H) are 
critical for this molecular mechanism, i.e., replacing one of them with a 
neutral residue reduces the RBDwt affinity which is not good to block the 
virus-cell interaction. For instance, the substitution of the ASP residue in 
position 88 at the light chain (“ASP-88. L” at L2) by ALA decreases the 
binding affinity by 0.03 KBT units. Conversely, negative values of ΔΔG 
correspond to mutations that can improve the capability of P01 to bind 
the RBDwt which is potentially useful to prevent viral entry into the Note 
that most of the key amino acids that favor the RBDwt-P01 complexation 
are acid residues (ASP and GLU). There are just a couple of exceptions (e. 
g., ARG-77 at the light chain) but always with smaller differences than 
the estimated standard deviations (ΔΔG<0.01 KBT). The neutralization 
of a basic ionizable group (e.g., LYS-13 at the heavy chain) implies a 
reduction of the total net charge of the binder and an improvement in its 
binding features (ΔΔGLYS-13. H = − 0.03 KBT). Indeed, it was noticed 
before that a decrease of the binder net charge gives a higher RBDwt 
affinity [20]. This information is a useful insight to designing a more 
efficient therapeutic binder that can avoid the attachment of the RBD to 
the human cell. 

The most important cases where the single ALA mutation in P01 has 
a stronger influence on the SARS-CoV-2 RBDwt-P01 complexation were 
mapped in the molecular structure. This can be seen in Fig. S6. Inter-
estingly not only amino acids at the antigen-antibody interface are 
critical for the complexation. In fact, amino acids buried inside the 
protein structure can also have an important influence on the 
complexation due to the long-range nature of the electrostatic in-
teractions and the electrostatic coupling between the titratable groups. 
This is in line with a broader view of epitopes (and paratopes) defined as 
“electrostatic epitopes” [78], where any ionizable group can affect the 
interactions and drive the complexation. It can also be seen that a more 
negatively charged mAbs tend to have a higher RBD affinity [34]. This is 

further discussed in Section 3 at the SM. 

3.6. Additional optimization of the best RBD binder 

The two best candidates among the sets {P01’’’} (P01’’’: L.R18E, H. 
K20E, and H.K84A) and {P06’’’} (P06’’’: H.K20A, H.G61E, and H. 
K84A) obtained through the three cycles of electrostatic optimization 
pipeline (based on the TAS procedure) were tested against the most 
common SARS-CoV-2 VOCs and VOIs. This was done to assess if these 
macromolecules could have the potential to stop the virus from working 
efficiently targeting RBDs from common VOCs and VOIs. Fig. 7a and b 
show the βwmin values for the complexes RBD-P01’’’ and RBD-P06’’’, 
respectively. The new optimized binders P01’ and P06’ can form stable 
molecular complexes with all studied RBDs. Due to the additional 
electrostatic optimization, they have improved RBD binding affinities in 
comparison with the initial template (P01 or P06) provided by the RAbD 
approach. Consequently, they have more chances for a successful 
neutralization in vitro/in vivo of the virus. Moreover, this result indi-
cated that the integrated biophysical modeling multi-approach used 
here offers an efficient route to designing better macromolecular li-
gands. Intriguingly both putative mAbs P01’’’ and P06’’’ have a stron-
ger affinity for some RBDs from variants that are threatening the 
immune response. For instance, P01’’’ has the highest affinity observed 
for both RBDDelta and RBDOmicron. This is a promising result to deal with 
the present crisis offering two ideal candidates to treat the pathogenic 
threats from different SARS-CoV-2 variants. Quite recently, a pre-print 
work suggested cross-reactivity specifically between antibodies for 
Delta and Omicron variants [79]. P01’’’ is slightly better than P06’’’ due 
to its higher RBD affinity for all mutants in general (e.g., βwmin = − 0.96 
(1) KBT for RBDDelta-P01’’’, and βwmin = − 0.92(1) KBT for RBDDel-

ta-P06’’’). From a bioinformatics point of view, it is interesting to point 
out that an optimized mAb that is solely obtained by the three cycles 
electrostatic optimization pipeline (CR3022’) [20] is not as good as the 
one achieved by the present strategy. 

4. Conclusions 

A highly efficient and robust multiple scales in silico protocol 
combing the RosettaAntibodyDesign with MD and MC molecular sim-
ulations and an electrostatic optimization pipeline was proposed and 
applied to CR3022. Two more efficient binder candidates, P01 and P06, 
were obtained and show clearly the strongest interaction. 

In a closer analysis, we can find that amino acids both at the surface 

Fig. 7. Binding RBD affinities for optimized mAbs obtained through the three cycles electrostatic optimization pipelines. (a) Left panel: mAb P01’’’ based on the 
Rosetta-designed P01. (b) Right panel: mAb P06’’’ based on the Rosetta-designed P06. Data from the estimated βwmin values for the molecular complexation between 
RBDs from different variants with P01’’’ (P01 with three mutations L: R18E and H: K20E and K84A) and P06’’’ (P06 with three mutations H: K20A, G61E, and 
K84A), respectively, are shown in blue bars. Data for the complexes with the original Rosetta-designed mAbs (RBDwt-P01 and RBDwt-P06) before the electrostatic 
optimization process and CR3022´(RBDwt-CR3022 )́ are given in the purple and red bars, respectively, for comparison. The purple lines are drawn to guide the eyes 
for the comparison with the outcomes for the RBDwt. See the text for more details. 
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and also deeper inside the protein structure are critical for the 
complexation through electrostatic coupling between titratable groups 
and are characterized as “electrostatic epitopes”. 

Furthermore, we can observe that the net charge of the mAbs is one 
important determinant in binding affinity and there is a clear nearly 
linear tendency for lower charged mAbs to exhibit higher affinity to 
RBD. The Coulombic forces are driving the antigen-antibody associa-
tion, as also observed in previous studies [20,63], while other 
short-range interactions are important in the close-range association as 
well. 

Our combined multi-scale approach is found to be a fast, robust, and 
reliable tool to design better macromolecular ligands allowing us to 
identify the best candidates for the different variants of SARS-CoV-2 
including Omicron. It is a pragmatic approach for a short development 
cycle for SARS-CoV-2 diagnosis, treatment, and prevention. 

This multi-approach is a general theoretical framework towards high 
specific antibodies for SARS-CoV-2 and can be extended to other dis-
eases (e.g., other viral and bacterial pathogens, leukemia, cancer, mul-
tiple sclerosis, rheumatoid arthritis, lupus) both for diagnosis and 
therapeutic purposes. It requires only the knowledge of the target key 
macromolecule and an initial putative binder, in order to improve it by 
theoretical design before synthesis and testing. 
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