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Metabolite-mediated protein posttranslational modifications (PTM) represent highly
evolutionarily conserved mechanisms by which metabolic networks participate in fine-
tuning diverse cellular biological activities. Modification of proteins with the metabolite
UDP-N-acetylglucosamine (UDP-GlcNAc), known as protein O-GlcNAcylation, is one
well-defined form of PTM that is catalyzed by a single pair of enzymes, O-GlcNAc
transferase (OGT) and O-GlcNAcase (OGA). Previous studies have discovered critical
roles of protein O-GlcNAcylation in many fundamental biological activities via modifying
numerous nuclear and cytoplasmic proteins. A common mechanism by which O-GlcNAc
affects protein function is through the cross-regulation between protein O-GlcNAcylation
and phosphorylation. This is of particular importance to innate immune cell functions due
to the essential role of protein phosphorylation in regulating many aspects of innate
immune signaling. Indeed, as an integral component of cellular metabolic network,
profound alteration in protein O-GlcNAcylation has been documented following the
activation of innate immune cells. Accumulating evidence suggests that O-
GlcNAcylation of proteins involved in the NF-kB pathway and other inflammation-
associated signaling pathways plays an essential role in regulating the functionality of
innate immune cells. Here, we summarize recent studies focusing on the role of proteinO-
GlcNAcylation in regulating the NF-kB pathway, other innate immune signaling responses
and its disease relevance.

Keywords: OGT, O-GlcNAcylation, innate immunity, NF-kB signaling, acute inflammation, antiviral
immune response
INTRODUCTION

Increased glucose uptake and utilization in immune cells represents a hallmark feature of many
inflammatory diseases (1, 2). When immune cells become activated in response to a diverse array of
stimuli, glucose serves a major nutrient to fuel increased metabolic demand and support immune
cell functions (3–5). Those functions, including phagocytosis, cell migration and cytokine
production, etc., are critical for host defense against invading pathogens and tissue injury. After
uptake through the glucose transporter, glucose fluxes through three major pathways with distinct
destinations and functions, including glycolysis, the pentose phosphate pathway (PPP), and the
hexosamine biosynthesis pathway (HBP). The end product of HBP is a monosaccharide uridine
org February 2022 | Volume 13 | Article 8050181
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diphosphate N-acetylglucosamine (UDP-GlcNAc) (6). The O-
linked N-acetylglucosamine (O-GlcNAc) transferase (OGT)
catalyzes the modification of nuclear and cytoplasmic proteins
with UDP-GlcNAc on their serine or threonine residue, known
as protein O-GlcNAcylation (7–10). Meanwhile, O-GlcNAcase
(OGA) catalyzes the hydrolysis of this sugar modification. Thus,
as a dynamic and reversible modification, protein O-
GlcNAcylation is tightly controlled by this single pair of
enzymes OGT and OGA (9, 10).

Since the initial identification of protein O-GlcNAcylation in
murine lymphocytes by Hart and Torres in 1984 (11), studies
over the past four decades have identified numerous proteins as
O-GlcNAcylation targets. Those proteins, such as kinases,
transcription factors, and signaling mediators, are involved in
many fundamental biological activities, including gene
transcription, protein translation, signal transduction and cell
metabolism, etc (6, 12). Since the O-GlcNAc moiety can be
added to particular serine or threonine residues which act as
phosphoryl group acceptor sites, cross-regulation between O-
GlcNAcylation and phosphorylation has been well documented
for many proteins (9). Therefore, it is expected that protein O-
GlcNAcylation plays a pivotal role in regulating innate immune
signaling and inflammatory response through affecting
phosphorylation-driving signaling cascades. Indeed, many
previous studies have documented the changes in HBP activity
and in the level of protein O-GlcNAcylation when innate
immune cells are activated under inflammatory conditions
(13–16). Numerous signaling molecules involved in the NF-kB
pathway and other immune pathways have been identified as O-
GlcNAcylation targets (17–20), highlighting a critical role of
protein O-GlcNAcylation in modulating innate immune cell
function. The underlying mechanisms include, but are not
limited to, altered kinase activities, transcription activities and
adaptor molecule functions, which are discussed below.
PROTEIN O-GlcNAcylation REGULATES
NF-ΚB SIGNALING

The NF-kB family of transcription factors, including RelA, RelB,
c-Rel, NF-kB1 and NF-kB2, plays a central role in regulating
functions in all types of immune cells (21). They are central
mediators for pro-inflammatory gene expression and
inflammatory response (22). Recent studies have provided
compelling evidence to suggest an important function of O-
GlcNAc modification in the regulation of NF-kB signaling.

In line with the notion that glucose metabolism is critical to
maintain the transcription activity of NF-kB family members,
several previous studies showed that O-GlcNAc modification in
NF-kB molecules positively regulated their gene transcription
functions. One study reported that activation of HBP pathway
by either pharmacological (high glucose or glucosamine
treatment) or genetic (overexpression of GFPT gene encoding
glutamine-fructose-6-phosphate transaminase, a rate-limiting
enzyme for HBP pathway) strategy resulted in increased
expression of NF-kB target genes, which was accompanied with
Frontiers in Immunology | www.frontiersin.org 2
enhanced RelA O-GlcNAcylation (23). Yang et al. observed a
similarly increased NF-kB activity under hyperglycemic
conditions and further identified threonine-322 (T322) and
T352 as O-GlcNAcylation sites on RelA (19). Genetic mutation
of T352 to alanine (T352A) caused a diminished transcriptional
activity of RelA due to an increased sequestration of RelA by its
inhibitor IkBa. In agreement with the above observation (19), one
study using a heterozygous Oga gene-deletion (Oga+/−) mouse
model demonstrated that enhanced O-GlcNAcylation of RelA on
T322 and T352 led to an increased binding of RelA to its target
promoter regions, resulting in the hyperactivation of NF-kB
signaling and increased cytokine production. This in vitro
immune phenotype was recapitulated by hyperinflammatory
response and exacerbated inflammation-driving tumor growth
in the dextran sodium sulfate (DSS)-induced colitis and
azoxymethane (AOM)/DSS-induced colitis-associated cancer
(CAC) animal models (24). Another study discovered a critical
role of RelA O-GlcNAcylation in promoting its transcriptional
activity with a distinct mechanism. They found that O-
GlcNAcylation of RelA on T305 was a required step for RelA
acetylation on lysine-310 (K310), a necessary modification for its
transcriptional activity (20). In addition to immune cells, it was
reported that O-GlcNAcylation could also promote RelA function
in cancer cells. For example, Ma et al. showed that short hairpin
RNA (shRNA)-mediated OGT gene-knockdown caused a reduced
RelA phosphorylation, nuclear translocation, NF-kB
transcriptional activity, as well as target gene expression in
human pancreatic ductal adenocarcinoma cells (25). These
activating effects of OGT-mediated protein O-GlcNAcylation on
NF-kB signaling were attributed to elevated RelA phosphorylation
and acetylation (26). Collectively, those studies suggest a
promoting effect of RelA O-GlcNAcylation on its transcriptional
activity in multiple cell types.

Several NF-kB signaling molecules other than RelA have also
been documented to be the targets ofO-GlcNAcmodification with
functional consequences. Ramakrishnan et al. discovered O-
GlcNAcylation of c-Rel on serine-350 (S350) as an important
modification to promote its DNA-binding capacity and
transcriptional activity (18). The IkB kinase (IKK) is a core
enzyme complex of the NF-kB signaling, which is composed of
two kinases IKKa and IKKb and a regulatory scaffolding subunit,
IKKg/NEMO. IKKb promotes IkBa degradation and induce the
activation of NF-kB signaling (21, 27). One study reported that O-
GlcNAcylation of IKKb at S733 counteracted its phosphorylation
at the same site. Since S733 is an inactivating phosphorylation site
(28, 29), O-GlcNAcylation of IKKb at S733 consequently
promoted its kinase activity, leading to enhanced NF-kB activity
(30). Transforming growth factor (TGF) b-activated kinase 1
(TAK1) is an essential kinase for the generation of inflammatory
cytokines in response to the engagement of Toll-like receptors
(TLRs), which can form the complex with TGF-b-activated kinase
1 binding protein 1 (TAB1), TAB2 and TAB3 (31). TAK1
activation is regulated by the phosphorylation and
ubiquitination of TABs. One recent study revealed that IL-1 and
osmotic stress induce the O-GlcNAcylation of TAB1 on S395,
which in turn promotes TAK1 activation and NF-kB-dependent
February 2022 | Volume 13 | Article 805018
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cytokine release (17). Recently, a whole-body TAB1 knock-in
mouse model has been successfully generated in which the
single O-GlcNAcylation site at TAB1 S393 (mouse S393
corresponding to human S395) was mutated to alanine
(Tab1S393A) (32). No obvious abnormality was observed in
homozygous mutant mice. This strain will provide a valuable
genetic tool to investigate the function of TAB1 O-GlcNAcylation
in the regulation of inflammatory response.
PROTEIN O-GlcNAcylation REGULATES
ACUTE INFLAMMATION

In addition to promoting proinflammatory TLR-NF-kB
signaling, OGT-mediated O-GlcNAcylation has been shown to
exaggerate inflammatory response by counteracting anti-
inflammatory signaling such as STAT3 (signal transducer and
activator of transcription 3) signaling in innate immune cells.
One study discovered that OGT-mediated O-GlcNAcylation of
STAT3 at T717 negatively regulates phosphorylation of STAT3
at tyrosine-705 (Y705) (33). STAT3 is a well-established anti-
inflammatory factor by promoting the transcription of
regulatory cytokines such as IL-10 in myeloid cells (34–36). It
was shown that O-GlcNAcylation of STAT3 attenuated its
phosphorylation and IL-10 production in LPS-challenged
macrophages, eventually leading to enhanced cytokine
production in vitro , as well as exacerbated colonic
inflammation and inflammation-driven tumorigenesis in vivo
(33). O-GlcNAcylation of STAT3 is not limited to innate
immune cells. Whelan et al. observed that insulin stimulation
of adipocytes induced cytosolic translocation of a fraction of
nuclear OGT and caused STAT3 O-GlcNAcylation (37). Based
on the critical functions of STAT3 in regulating multiple
pathological processes such as tumorigenesis and insulin
resistance, investigation of the functional consequence of
STAT3 O-GlcNAcylation in non-immune systems may provide
novel molecular mechanisms of these diseases and facilitate the
development of new therapeutics.

Many effector proteins from one single signaling pathway can
be modified simultaneously for any given type of PTM.
Therefore, it is not surprising that one PTM such as protein
O-GlcNAcylation exerts both positive and negative impact on
immune signaling at diverse molecular levels. Indeed, several
recent studies discovered an anti-inflammatory role of OGT-
mediated protein O-GlcNAcylation, which is opposite to the
observations showing increased NF-kB activation and
inflammatory response induced by protein O-GlcNAcylation.
One study defined a transcriptional repression protein complex
containing OGT, the transcriptional corepressor mammalian
Sin3A (mSin3A), and histone deacetylase 1 (HDAC1) (38). It
was shown that OGT repressed basal and Sp1-driving gene
transcription in synergy with mSin3A. In macrophages, LPS
stimulation promoted the interaction between OGT and mSin3A
and treatment with HBP intermediate metabolite glucosamine
attenuated LPS-induced Nos2 gene expression (39). A follow-up
study further characterized that glucosamine-inhibited LPS-NF-
Frontiers in Immunology | www.frontiersin.org 3
kB signaling was dependent on high glucose level in cell culture
medium, suggesting that OGT might modulate immune
signaling via a nutrient-sensing mechanism (40). To examine
the overall effect of OGT in the innate immune function, one
recent study generated a myeloid-specific Ogt gene-deletion
mouse strain and observed an inhibitory effect of OGT on
innate immune activation through O-GlcNAcylation of RIPK3
(receptor-interacting serine/threonine kinase 3). As one of seven
members of the RIP serine/threonine kinase family, RIPK3 forms
a complex with RIPK1 and plays an essential role in
inflammatory cytokine production (41–43) and the execution
of necroptosis, an inflammatory form of cell death (41). It was
shown that OGT-mediated O-GlcNAcylation of RIPK3 at T467
blocked RIPK3-RIPK1 interaction and inhibited downstream
immune activation and necroptosis (16). This altered
macrophage immune phenotype was recapitulated by an
exaggerated inflammatory response in an experimental sepsis
model. Another study utilized a hepatocyte-conditional Ogt
gene-deletion model and revealed OGT as a key suppressor of
RIPK3-mediated hepatocyte necroptosis and liver fibrosis (44).
Higher protein level of RIPK3 was observed in Ogt-deficient
hepatocytes, causing excessive necroptosis. O-GlcNAcylation of
RIPK3 was associated with reduced RIPK3 protein stability (44).
Thus, O-GlcNAcylation of RIPK3 provides an intrinsic
regulatory function to limit excessive inflammation and tissue
damage in multiple cell types. Using a high-fat diet (HFD)-
induced obesity model, Yang et al. observed an elevated
inflammatory cytokine production in Ogt-deficient
macrophages, which subsequently exacerbates HFD-induced
metabol ic dys funct ions in l iver and musc le (45) .
Mechanistically, OGT-mediated O-GlcNAcylation of ribosomal
S6 kinase beta-1 (S6K1) antagonized its phosphorylation and
mTORC1 signaling, thus downregulating macrophage
inflammation. Collectively, genetic evidence with Ogt knockout
suggests that OGT-mediated protein O-GlcNAcylation
negatively regulates myeloid cell immune activation and
inflammatory response. Consistent with this concept, several
studies observed that administration of glucosamine or OGA
inhibitor thiamet G (TMG) reduced the levels of inflammatory
cytokines such as IL-6 and TNF-a and improved organ function
in multiple inflammation-associated animal models such as
sepsis (46–48), trauma-hemorrhage (49) and stroke (50).

Genetic studies with the use of Oga knockout (24) and Ogt
knockout (16, 45) models seem to provide contradictory findings.
Both the increase and decrease in protein O-GlcNAcylation
somehow results in a similar hyperinflammatory response. The
overall effect of OGT-mediated O-GlcNAc signaling in the
immune system and inflammation seems to be multifaceted due
to targeting a wide range of proteins in different immune signaling
pathways (Figure 1). When the HBP activity is increased, elevated
O-GlcNAc signaling promotes activation of the innate immune
cells by increasing TLR-NF-kB signaling, as well as counteracting
the anti-inflammatory STAT3-IL-10 signaling (33). When HBP
activity is decreased, loss of O-GlcNAc modification removes the
inhibitory mechanisms for proinflammatory mediators such as
RIPK3 (16, 44) and mTORC1 (45), and consequently leads to
February 2022 | Volume 13 | Article 805018
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enhanced inflammatory response and organ dysfunction.
Therefore, it appears that the loss of homeostasis in the O-
GlcNAc signaling, instead of a simple one-way increase or
decrease, is an important metabolic mechanism to drive the
overwhelming immune activation and contribute to the
pathogenesis of inflammatory diseases such as sepsis and colitis.
It is worth noting that in previous colitis and CAC studies using
Oga gene-deletion model (24), only cancer cell lines and mouse
embryonic fibroblasts (MEFs) with Oga gene knockdown or
knockout were examined for immune activation, while primary
macrophages were not available for tests due to a perinatal lethality
of Oga whole-body knockout mice. With the recent development
of conditional Oga gene-deletion model (51) and Oga gene knock-
in model with null enzymatic activity (D285A) (52), it will
be informative to re-examine the function of OGA and
its enzyme activity in regulating myeloid cell-mediated
inflammatory response.
PROTEIN O-GlcNAcylation REGULATES
ANTIVIRAL IMMUNE RESPONSE

Innate immune cells represent the front line of host defense
against viral infections (53). During virus infection, cytosolic
RNA or DNA species are recognized by retinoic-acid inducible
Frontiers in Immunology | www.frontiersin.org 4
gene I (RIG-I)-like receptors (RLRs) and cyclic GMP-AMP
synthase (cGAS), respectively, leading to a robust activation of
antiviral immune signaling and upregulation of numerous
interferon-stimulated genes (ISGs) in innate immune cells (54–
57). Recent studies have discovered an essential function of
OGT-mediated protein O-GlcNAcylation in promoting
antiviral immune responses against both RNA and DNA
viruses. One study observed that infection of macrophages
with an RNA virus, vesicular stomatitis virus (VSV), caused an
elevated HBP activity and protein O-GlcNAcylation. Deletion of
OGT in macrophages impaired activation of antiviral immune
signaling and reduced inflammatory cytokine expression (14).
Song et al. observed similar phenotypes of impaired antiviral
immune activation in OGT deficient macrophages in response to
the challenge with influenza A virus (IAV), Sendai virus and
VSV (58). Both studies revealed that OGT-mediated O-
GlcNAcylation of mitochondrial antiviral-signaling protein
(MAVS), a critical adaptor protein for downstream of RLR
activation, was a required step for K63-linked MAVS
ubiquitination and subsequent activation of antiviral immune
signaling. Moreover, myeloid cell-specific deletion of OGT
caused an enhanced susceptibility to VSV and IAV challenge
in vivo, highlighting the importance of OGT-mediated protein
O-GlcNAcylation in promoting host defense against RNA
viruses. Furthermore, Wang et al. reported that deletion of
FIGURE 1 | A model for how OGT-mediated protein O-GlcNAcylation modulates innate immune cell function. Activation of TLR by LPS induces the aggregation of
TAK1, TAB1, TAB2 and TAB3. IKKa and IKKb complex promotes IkBa degradation and regulates the activation of NF-kB. O-GlcNAcylation of TAB1/IKKb modulates
TAK1 activation and promotes IkBa degradation and then results in NF-kB activation and cytokine release. NF-kB subunits (such as RelA and c-Rel) have also been
modified with O-GlcNAc to regulate their activities. OGT also interacts with mSin3A to inhibit the NF-kB activation. O-GlcNAcylation of RIPK3 inhibits RIPK3-RIPK1
interaction and subsequent necroptosis. A cullin family E3 ubiquitin ligase, cullin 3, inhibits STAT3 O-GlcNAcylation and positively regulates STAT3 phosphorylation and its
targeted genes. For antiviral innate immunity, OGT-mediated O-GlcNAcylation of MAVS promotes its K63-linked ubiquitination, activation of downstream RLR antiviral
signaling after VSV infection. O-GlcNAcylation of IRF5 is required for its K63-linked ubiquitination and subsequent inflammatory cytokine production after IAV infection.
Increased O-GlcNAcylation inhibits HBV replication by blocking autophagy initiation through promotion of both mTORC1 signaling and autophagic degradation. OGT-
mediated O-GlcNAcylation of SAMHD1 promotes its antiviral effect. During the TCR activation and self-renewal, transcription factors NFAT and c-Myc are modified by O-
GlcNAc to regulate the expression of target genes. TLRs, toll-like receptors; TAK1, transforming growth factor (TGF) b-activated kinase 1; TAB1, TGF-b-activated kinase
1 binding protein 1; IKK, IkB kinase; RIPK3, receptor interacting serine/threonine kinase 3; STAT3, signal transducer and activator of transcription 3; MAVS, mitochondrial
antiviral-signaling protein; RLRs, retinoic acid-inducible gene I (RIG-I)-like receptors; VSV, vesicular stomatitis virus; IAV, influenza A virus; HBV, hepatitis B virus; SAMHD1,
sterile alpha motif and histidine acid domain-containing protein 1; TCR, T cell receptor.
February 2022 | Volume 13 | Article 805018
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OGT in myeloid cells attenuated IAV-induced cytokine storm
and identified O-GlcNAcylation of interferon regulatory factor-5
(IRF5) at S430 as an important mechanism promoting the
activation of antiviral immune response (59). Using an
unbiased microRNA screening strategy, Herzog et al.
discovered a potent inhibitory effect of OGT and O-
GlcNAcylation on the infectivity of hepatitis C virus (HCV),
another RNA virus, in human hepatocytes (60). Silencing of
OGT gene or pharmacological inhibition of OGT led to an
enhanced HCV infectivity.

In addition to antiviral effects against RNA viruses, two recent
studies also reported the antiviral function of O-GlcNAc
signaling against a DNA virus, hepatitis B virus (HBV) (61,
62). HBV is a major human pathogen, causing the development
of chronic liver diseases, cirrhosis and hepatocellular carcinoma
(HCC) (63). Wang et al . reported that genetic or
pharmacological inhibition of OGT increased HBV replication
and hepatitis B surface antigen (HBsAg) production. This effect
was due to the blockade in the autophagosome-lysosome fusion
step when O-GlcNAc signaling was inhibited, thus causing
diminished autophagic degradation of HBV virions and
proteins (61). The critical role of OGT in driving autophagic
flux has also been recently documented in hepatocytes without
virus infection (64), suggesting a general requirement for O-
GlcNAc signaling to maintain autophagic activity. Another study
observed a similar phenotype of increased HBV replication when
OGT was inhibited with a distinct mechanism. It was shown that
OGT-mediated O-GlcNAcylation of sterile alpha motif and
histidine acid domain-containing protein 1 (SAMHD1) played
a critical role in promoting antiviral effects (62). SAMHD1 is a
deoxynucleotide triphosphate triphosphohydrolase (dNTPase)
and blocks viral DNA synthesis by reducing intracellular dNTP
pools. Therefore, SAMHD1 has been demonstrated as a critical
restriction factor limiting the replication of retroviruses and
certain DNA viruses including HBV (55). Wang et al. revealed
that O-GlcNAcylation of SAMHD1 at S93 enhanced SAMHD1
protein stability, thus improving its antiviral activity.
Collectively, recent studies provide strong genetic evidence
supporting OGT-mediated protein O-GlcNAcylation as a
critical host defense mechanism linking cellular metabolism to
antiviral immunity (Figure 1).

Since OGT-mediated protein O-GlcNAcylation provides
antiviral benefit against both RNA and DNA viruses, a
possibility is raised that protein O-GlcNAcylation may
function through some unified cellular mechanism(s) to
restrict virus replication. It has been well recognized that
profound metabolic changes occur during viral infection,
leading to an increased nutrient availability and permissive
intracellular environment that are beneficial for viruses to
accomplish their life cycles. For example, viral infection
reprograms lipid metabolism in host cells towards an enhanced
activity of the fatty acid biosynthesis pathway, causing increased
accumulation of neutral lipid species in lipid droplets (LDs) (65–
68). This enhanced fatty acid and LD biosynthesis is required for
virus replication due to the increased availability of free fatty
acids for virus membrane assembly, as well as generating
Frontiers in Immunology | www.frontiersin.org 5
membrane platform for virus genome replication (69). As a
result, pharmacological or genetic inhibition of the fatty acid
biosynthesis pathway and LD formation have been shown to
effectively inhibit virus replication across a wide range of virus
types (65, 70–72), including SARS-CoV-2 (73). It has been
known for a long time that O-GlcNAc signaling exerts a
significant impact on lipid metabolism (8, 74, 75). One more
recent study characterized O-GlcNAcylation of the TATA-box
binding protein (TBP) as an important mechanism affecting the
transcription of lipid metabolic enzymes (76). Deletion of O-
GlcNAcylation of TBP on T114 resulted in a significant lipid
metabolism reprogramming towards enhanced LD formation.
Whether or not OGT/O-GlcNAc signaling-mediated antiviral
response involves lipid metabolism reprogramming requires
further investigation.

Apart from antiviral innate immunity, the CD8+ T cell-
mediated immune response is another key host immune
strategy to eliminate virus in a more specific and efficient
manner. Of the two lymphocytes that carry out adaptive
immunity, T cells function as a versatile “player” in multiple
aspects, including pathogens killing, immunoregulation, and
homeostasis. Inevitably, such intensive immune activities are
associated with increased glucose consumption and protein
modification. UDP-GlcNAc has been reported to participate
in T cell activation, self-renewal and immunosuppression
through OGT-mediated protein O-GlcNAcylation (77, 78).
Emerging evidence has identified the extensive crosstalk of
O-GlcNAcylation with phosphorylation on a wide range of
signaling molecules in T cells (79). OGT-mediated protein
O-GlcNAcylation is necessary for T cell bioactivities (13).

In T cell, recognition of specific antigens via T cell receptors
(TCR) elicits the initiate signal for T cell activation. Following the
activation of TCR, multiple transcription factors, including NF-
kB and nuclear factor of activated T cells (NFAT), are activated
to regulate the expression of activation-associated genes. Golks et
al. have demonstrated that NFAT and NF-kB were modified by
O-GlcNAc during T cell activation (77). OGT deficiency
significantly impairs TCR-induced T cell activation and
inflammatory cytokine production (77). This finding was
consistent by another study using OGT inhibitor to treat
human T cells, resulting in decreased IL-2 production upon
TCR stimulation (15). Due to the dynamic and reversible feature
of protein O-GlcNAcylation, OGT-mediated protein
modification enables a T cell to adjust its activation process in
response to various pathogens.

It is increasingly recognized that OGT is involved in various T
cell activities. Apart from T cell activation and immunomodulation,
OGT-mediated protein O-GlcNAcylation was also demonstrated to
promote T cell self-renewal through interaction with Notch
signaling and metabolism in thymocytes via O-GlcNAcylated c-
Myc (78). Ablation of O-GlcNAc signaling disrupts T cell
development and leads to T cell apoptosis and malignant
transformation (80). Thus, the importance of OGT in T cells is to
link the metabolic processes with immune activities, facilitating T
cells to integrate these multi-aspects signals in response to different
stimuli (Figure 1).
February 2022 | Volume 13 | Article 805018
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CONCLUSIONS

A wealth of evidence therefore points to an intimate relationship
between protein O-GlcNAcylation, activation of immune
signaling and inflammatory responses. This occurs through the
O-GlcNAcylation of multiple effector proteins, such as kinases,
transcription factors, and metabolic enzymes, in response to a
diverse range of stimuli. Both positive and negative influences of
the O-GlcNAc signaling on immune activation and host defense
response have been characterized, which reflects the complexity
of this PTM in fine-turning immune signaling networks.
Significant progress has been recently achieved on the
development of small-molecule compounds targeting the
enzymatic activity of OGT (81, 82). The hope is that the
recent insights into the molecular basis of how protein
Frontiers in Immunology | www.frontiersin.org 6
O-GlcNAcylation affects immune signaling will help in the
design of new therapies.
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