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Abstract
Sepsis severity has been positively correlated with platelet dysfunction, which may be due

to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and

AKT modulate platelet activity in physiological conditions, but no studies evaluated the role

of these enzymes in platelet aggregation in sepsis. In the present study we tested the

hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP path-

way resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/

kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10

μM). Western blotting assays were carried out to analyze c-Src and AKT activation in plate-

lets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphoryla-

tion of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group.

Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggrega-

tion of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with

control group, which was accompanied by 76% of reduction in ADP-induced platelet aggre-

gation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-

cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise,

the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation

and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly

higher in platelets of LPS compared with control group, which was not reduced by PI3K inhi-

bition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced

cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and

LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of

ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-depen-

dent mechanisms, and PKC and AKT act upstream upregulating this pathway.
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Introduction
Platelets are important blood elements responsible for homeostasis maintenance and forma-
tion of pathological thrombus. Platelets can be activated by different agonists, including ADP
that activates P2Y1 and P2Y12 receptors coupled to Gq and Gi proteins, respectively [1]. Stim-
ulation of P2Y1 receptor leads to increase in cytosolic Ca++ concentration and PKC activation
[2]. PKC in turn increases platelet secretion [3,4] and activates fibrinogen receptor (integrin
αIIbβ3) that mediates the outside-in signaling, triggering a series of intracellular events that lead
to platelet spreading, stabilization of platelet aggregate and cytoskeletal reorganization [5,6].
On the other hand, stimulation of P2Y12 receptors activates PI3K, which is important for sus-
tained αIIbβ3 integrin activation [2,7]. Besides PI3K, other enzymes take part in the outside-in
signaling, including c-Src, a member of Src family kinases (SFKs), which is bound to the cyto-
plasmic domain of the β3 integrin subunit [8,9]. Platelet activation can be inhibited by different
mechanisms, including nitric oxide (NO) synthesis. Most of the effects of NO in platelets are
mediated by activation of soluble guanylyl cyclase (sGC) and cGMP formation, which activates
cGMP-dependent protein kinase (PKG) leading to inhibition of platelet aggregation through
phosphorylation of different targets [10,11].

Studies showing the involvement of platelets in sepsis have been growing over the past few
years. A positive correlation between platelet dysfunction and sepsis severity has been
described [12–15]. Previous studies have shown that patients with sepsis exhibit reduced plate-
let aggregation to ADP, collagen and arachidonic acid [14,16]. Lipopolysaccharide (LPS) is
postulated to play an important role in sepsis syndrome, and is frequently used to induce
experimental sepsis. Similarly to septic patients, platelet aggregation is decreased in rats after
intraperitoneal or intravenous LPS administration [17–19].

Despite of works showing the inhibitory effects of LPS on platelets, the intracellular mecha-
nisms have not yet been elucidated. In the present work, we have investigated the role of SFKs,
PI3K, AKT and PKC and sGC on platelet aggregation inhibition in experimental sepsis using
specific inhibitors of these enzymes. Immunoblotting assays to determine the activation of c-
Src and AKT, as well as measurements of intraplatelet cGMP levels were also performed.

Material and Methods

Reagents
Lipopolysaccharide from Escherichia coli (type 0111:B4), adenosine diphosphate (ADP), 2’,7’-
dichlorofluorescein diacetate (DCFH-DA), wortmannin, 4-Amino-5-(4-chlorophenyl)-7-(t-
butyl)pyrazolo[3,4-d]pyrimidine (PP2); bisindolilmaleimida I (GF 109203X), 1H-[1,2,4]oxa-
diazolo[4,3,-a]quinoxalin-1-one (ODQ), LY294002 and 3-isobutyl-l-methyl-xanthine (IBMX)
were purchased from Sigma Chem. Co. (St. Louis, MO, USA). 4-Amino-5,8-dihydro-5-oxo-8-
β-D-ribofuranosyl-pyrido[2,3-d]pyrimidine-6-carboxamide (API-1) and 2-Bromo-3,4-dihy-
dro-3-[3,5-O-[(R)-mercaptophosphinylidene]-β-D-ribofuranosyl]-6-phenyl-9H-Imidazo
[1,2-a]purin-9-one (Rp-8-Br-PET-cGMPS) were purchased from Tocris Bioscience House
(Bristol, UK). Mouse monoclonal anti-cSrc, anti-cSrc phosho-Tyr416, anti-AKT1/PKBα and
anti-AKT1/PKBα phospho-Thr308 antibodies were purchased fromMillipore (Billerica, MA,
USA). Horseradish peroxidase-conjugated secondary antibody was purchased from GE
Healthcare Life Sciences (St Giles, Buckinghamshire, UK).

Experimental protocols
All animal procedures and experimental protocols are in accordance with the Ethical Principles
in Animal Research adopted by the Brazilian College for Animal Experimentation (COBEA)
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and were approved by the institutional Committee for Ethics in Animal Research/State Univer-
sity of Campinas (CEEA-UNICAMP, protocol 2097–1). Male Wistar rats (250–320 g) were
housed in temperature-controlled rooms and received water and food ad libitum. Rats were
treated with a single intraperitoneal (i.p) injection of saline (300 μl) or LPS (1 mg/kg). At 6 h
thereafter the animals were anaesthetized with isoflurane, and blood was collected from
abdominal aorta [19]. Washed platelet samples were separated to three independent experi-
mental procedures, that is, (i) platelet aggregation in response to ADP, (ii) measurement of
cGMP levels in IBMX-treated platelets and (iii) western blotting analysis for non-phosphory-
lated and phosphorylated Src, and non-phosphorylated and phosphorylated AKT. These
experimental protocols are detailed below.

Washed platelet preparation
Arterial blood was collected in 1:9 (v/v) of ACD-C (12.4 mM sodium citrate, 13 mM citric acid,
11 mM glucose). First, platelet-rich plasma (PRP) was obtained by centrifugation of whole
blood at 200 g for 15 min at room temperature. Five milliliters of PRP were added to 7 ml of
washing buffer (140 mMNaCl, 0.5 mM KCl, 12 mM trisodium citrate, 10 mM glucose, 12.5
mM saccharose, pH 6), and centrifuged (800 g, 13 min). The pellet was resuspended in washing
buffer, and the procedure was repeated once. The platelets were suspended in Krebs solution
(118 mMNaCl, 25 mMNaHCO3, 1.2 mM KH2PO4, 1.7 mMMgSO4, 5.6 mM glucose, pH 7.4).
The platelet number was adjusted to 1.2 x 108 platelets/ml in the presence of 1 mM CaCl2.

Platelet aggregation
Platelet aggregation was measured in a two channel aggregometer (Chronolog Lumi-Aggreg-
ometer model 560-Ca, Havertown, PA, USA) at 37°C with stirring (1 000 rpm). Platelet aggre-
gation assays were carried out using ADP (10 μM) and in some experiments the platelets were
pre-incubated for 3 min with inhibitors of SFKs (PP2, 10 μM), PI3K (wortmannin, 100 nM;
and LY294002, 10 μM), AKT (API-1, 20 μM), sGC (ODQ, 25 μM), PKG (Rp-8-Br-PET-
cGMPS, 25 μM) or PKC (GF109203X, 10 μM). The concentrations of these inhibitors were
used accordingly to previously published studies [20–24]. The same volume of DMSO (1%)
was used as vehicle control for all the inhibitors, except for Rp-8-Br-PET-cGMPS that was dis-
solved in saline. Platelet aggregation data were obtained at an end-point of 5 min after ADP
addition.

Extraction and Measurement of cGMP from Platelets
Platelets (1.2 x 108 platelets/ml) were incubated with the phosphodiesterase inhibitor IBMX (2
mM) for 15 min. Non-activated or ADP (10 μM)-activated platelets were incubated with PKC
inhibitor GF109203X (10 μM), AKT inhibitor API-1 (20 μM) or the same volume of DMSO
(0.1%) for 15 min. The reaction was interrupted by the addition of cold acidified absolute etha-
nol (67%, v/v), and samples were vigorously agitated for 30 s. Cell samples were centrifuged at
4,000 g (30 min, 4°C). Supernatants were dried at 55–60°C under a stream of nitrogen. Cyclic
GMP was measured using a kit from Cayman Chemical Co. (Ann Arbor, MI).

Western Blotting
Washed platelets (1.2 x 108 platelets/ml) from saline- or LPS-injected rats were stimulated or
not with ADP (10 μM) for 5 min with stirring. In some experiments, platelets were pre-incu-
bated with the Src inhibitor PP2 (10 μM) or PI3K inhibitor LY29004 (10 μM) for 3 min before
ADP addition. The platelet suspension was sonicated for 30 sec and centrifuged at 10,000 g for
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10 min at 4°C. Protein concentrations of the supernatants were determined by the Lowry assay,
and an equal amount of protein from each sample (25 μg or 50 μg) was treated with Laemmli
buffer. Samples were resolved by SDS-PAGE (10%). After separation, proteins were electro-
phoretically transferred to PVDF membranes (90 min, 100 mA) and blocked for 30 min at
room temperature in solution containing 1% of BSA in Tris-buffered saline-tween (TBS-T, 20
mM Tris-HCl pH7.2, 0.3 M NaCl with 0.1% Tween-20). The membrane was incubated over-
night in blocking buffer containing mouse monoclonal anti-cSrc or anti-AKT (1:2000, Milli-
pore, Billerica, MA, USA) at 4°C. After washing with TBS-T, immunoreactive proteins were
detected by using horseradish peroxidase-conjugated secondary antibodies (GE Healthcare
Life Sciences, St Giles, Buckinghamshire, UK) and enhanced chemiluminescence. Membranes
were stripped and re-probed for anti-cSrc phospho-Tyr416 and anti-AKT phospho-Thr308
antibodies (1:2000, Millipore, Billerica, MA, USA). Densitometry was performed using the
UN-SCAN-IT-gel 6.1 Software. The levels of phosphorylated c-Src or AKT were normalized to
the total c-Src or AKT, respectively.

Statistical analysis
Data are expressed as means ± SEM of n animals. The statistical significance between groups
was determined by using ANOVA followed by the Tukey test. A p value of less than 0.05 was
considered statistically significant.

Results

Effect of Src-family kinases (SFKs) inhibition on washed platelet
aggregation of LPS-treated rats
Addition of ADP (10 μM) to washed platelet suspension (1.2 x108 platelets/ml) of saline-
injected rats induced a significant aggregation (Fig 1A and 1B, S1 Table). In vivo pre-treatment
with LPS (1 mg/kg, i.p.) caused a significant reduction of ADP-induced platelet aggregation at
6 h post-LPS administration (Fig 1A and 1B, S1 Table). In saline-injected rats, incubation of
platelets with the SFKs inhibitor PP2 (10μM, 3 min) significantly reduced the ADP-induced
platelet aggregation (P<0.05). However, in LPS-treated rats, incubation of platelets with PP2
did not modify the ADP-induced aggregation (Fig 1A and 1B, S1 Table).

Western blot analysis of ADP-activated platelets detected an intense immunoreactive band
corresponding to c-Src kinase with the same magnitude in saline- and LPS-injected rats (Fig
1C, S2 Table). In addition, phosphorylation of c-Src on tyrosine 416 residue (that indicates c-
Src activation) was similar in platelets of saline- and LPS-injected rats, as showed by densitome-
try analysis when phosphorylated c-Src levels were normalized to total c-Src (Fig 1C, S2 Table).

Inhibition of protein kinase C (PKC) prevents the reduced platelet
aggregation of LPS-treated rats
In saline-injected rats, the levels of cGMP did not change significantly between non-stimulated
and ADP-stimulated platelets (Fig 2A, S3 Table). In contrast, in LPS group, the cGMP levels
were markedly greater in ADP-stimulated compared with non-stimulated platelets (Fig 2A, S3
Table).

In saline-injected rats, pre-incubation of ADP-stimulated platelets with the PKC inhibitor
GF109203X (10 μM, 3 min) elevated by 4.5-fold the cGMP levels (Fig 2A,S3 Table) and signifi-
cantly inhibited ADP-induced aggregation (Fig 2B and 2C). In LPS-treated rats, GF109203X
prevented the inhibition of platelet aggregation (Fig 2B and 2C, S4 Table), which was accompa-
nied by lower intraplatelet cGMP levels (Fig 2A).
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Inhibition of soluble guanylyl cyclase (sGC) and protein kinase G (PKG)
prevents the reduced platelet aggregation of LPS-treated rats
Prior incubation of platelets with either the sGC inhibitor ODQ (25 μM, 3 min) or the PKG
inhibitor Rp-8-Br-PET-cGMPS (25 μM, 3 min) fully prevented the reduction of ADP-induced
platelet aggregation by LPS (Fig 3A and 3B, S5 Table). In saline-treated rats, ODQ and Rp-
8-Br-PET-cGMPS had no significant effect on platelet aggregation (Fig 3A and 3B).

Effect of PI3K and AKT inhibition on washed platelet aggregation of
LPS-treated rats
Prior incubation (3 min) of washed platelets from saline-injected rats with the PI3K inhibitors
wortmannin (100 nM) and LY294002 (10 μM) significantly reduced ADP-induced platelet

Fig 1. Inhibition of SFKs does not affect ADP-induced platelet aggregation of LPS-treated rats.Rats were injected with LPS (1 mg/kg) and after 6 h
blood was collected. (Panels A and B) Washed platelets (1.2 x 108 platelets/ml) were incubated with the SFK inhibitor PP2 (10 μM) or its vehicle (1% DMSO)
for 3 min before addition of ADP (10 μM). (Panel C) Samples (25 μg of protein/well) were loaded on SDS-PAGE 10% and analyzed byWestern blot using
anti-cSrc or anti-phospho(Tyr 416)-Src antibodies. Graph shows densitometric analysis of immunoreactive bands. Results are shown as mean ± SEM values
(n = 3–4 different animals). *P<0.05 compared with DMSO values in saline group.

doi:10.1371/journal.pone.0137901.g001
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aggregation (Fig 4A and 4B, S6 Table). The AKT inhibitor API-1 (20 μM, 3 min) did not affect
the platelet aggregation in saline group (Fig 4A and 4B).

In LPS-treated rats, wortmannin and LY294002 did not change the ADP-induced aggrega-
tion. However, AKT inhibition by API-1 fully prevented the inhibitory effect of LPS treatment
on platelet aggregation (Fig 4A and 4B).

The levels of cGMP did not change significantly between non-stimulated and ADP-stimu-
lated platelets (treated or not with API-1). In contrast, the increases in cGMP levels in ADP-
stimulated of LPS group were prevented by API-1 (Fig 5A, S7 Table).

The densitometry analysis showed that the phosphorylation of AKT in Thr308 residue was
significantly higher in ADP-stimulated platelets in platelets of LPS-treated rats compared with
saline group. Pre-incubation of ADP-stimulated platelets with LY29004 affected AKT phos-
phorylation neither in saline- nor in LPS-group (Fig 5B and 5C, S8 Table).

Fig 2. PKC inhibition decreases intraplatelet cGMP levels and increases ADP-induced platelet aggregation of LPS-treated rats.Washed platelets
(1.2 x 108 platelets/ml) were incubated with GF109203X (GF; 10 μM) or its vehicle (1% DMSO) for 3 min before addition of ADP (10 μM). (Panel A)
Intraplatelet cGMP concentration (pmol/ml) in saline and LPS-treated rats. (Panel B) Typical aggregation curves from saline- or LPS-injected rats in absence
or presence of GF109203X. (Panel C) ADP-induced platelet aggregation. Results are shown as mean ± SEM values (n = 4–6 different animals). *P<0.05
compared with ADP-stimulated platelets of saline-injected rats. #P<0.05 compared with ADP-stimulated platelets of LPS-injected rats.

doi:10.1371/journal.pone.0137901.g002
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Discussion
In the present work, we have demonstrated that PKC and AKT mediate the reduction of ADP-
induced rat platelet aggregation after LPS-injection by upregulating upstream the sGC/cGMP/

Fig 3. Effect of soluble guanylyl cyclase (sGC) and protein kinase G (PKG) inhibition on platelet aggregation of LPS-treated rats. (Panels A and B)
Washed platelets (1.2 x 108 platelets/ml) were incubated with ODQ (25 μM) or Rp-8-Br-PET-cGMPS (25 μM) for 3 min, and stimulated with ADP (10 μM).
Results are shown as mean ± SEM values (n = 4–6 different animals). *P<0.05 compared with control values of saline-injected rats. #P<0.05 compared with
control values of LPS-injected rats.

doi:10.1371/journal.pone.0137901.g003
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Fig 4. Effects of PI3K and AKT inhibitors on ADP-induced platelet aggregation.Washed platelets (1.2 x 108 platelets/ml) were incubated with
wortmannin (100 nM), LY29004 (10 μM), API-1 (20 μM) or its vehicle (1% DMSO) for 3 min before addition of ADP (10 μM). (Panels A) Typical aggregation
curves from saline- or LPS-injected rats in absence or presence of the enzyme inhibitors. (Panel B) ADP-induced platelet aggregation. Results are shown as
mean ± SEM values (n = 4–6 different animals). *P<0.05 compared with untreated platelets of saline-injected rats. #P<0.05 compared with untreated
platelets of LPS-injected rats.

doi:10.1371/journal.pone.0137901.g004
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PKG pathway. In addition, we have showed that SFKs are not involved in the inhibitory effect
of LPS on platelet aggregation.

Platelet activation is a complex and tightly coordinate event. Agonist binding to specific
receptor initiates a cascade of intracellular signals called inside-out that is responsible for con-
version of the fibrinogen receptor integrin αIIbβ3 from the low to the high affinity state [25].
The conformational change of integrin αIIbβ3 allows the ligation of fibrinogen, initiating a sec-
ond activation wave known as outside-in signaling, which is important for the stabilization of
platelet aggregates [5]. Activation of c-Src is a downstream event after fibrinogen binding that
takes part in granule release and cytoskeletal regulation in platelets [26,27]. Previous works
have demonstrated that increased cytokine production in macrophages [28, 29] and up-regula-
tion of VCAM-1 in human tracheal smooth muscle cells [30] by LPS are mediated by Src
kinase and PI3K activation. In our work, phosphorylation of c-Src at Tyr 416 residue, which
indicates activation of this kinase, was of the same magnitude in platelets from control and LPS

Fig 5. Effects of PI3K and AKT inhibitors on cGMP levels and AKT phosphorylation of LPS-injected rats.Washed platelets (1.2 x 108 platelets/ml)
were incubated with LY29004 (10 μM), API-1 (20 μM) or its vehicle (1% DMSO) for 3 min before addition of ADP (10 μM). (Panel A) Intraplatelet cGMP
concentration (pmol/ml) in saline and LPS-treated rats. (Panels B and C) Samples (50 μg of protein/well) were loaded on SDS-PAGE 10% and analyzed by
Western blot using anti-AKT or anti-phospho(Thr 308)-AKT antibodies. Graph shows densitometric analysis of immunoreactive bands. Results are shown as
mean ± SEM values (n = 4–6 different animals). *P<0.05 compared with respective groups of saline-injected rats. **P<0.05 compared with ADP-stimulated
platelets of LPS group. #P<0.05 compared with unstimulated platelets of LPS group.

doi:10.1371/journal.pone.0137901.g005
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group. Besides c-Src, other members of SFKs including Fyn, Lyn, Lck and Yes have been dem-
onstrated in platelets [31]. In physiological conditions, Lyn and Fyn negatively regulate the
platelet responses by inhibiting intracellular Ca++ mobilization, PKC activation and integrin
αIIbβ3 signaling [32,33]. In our study, the non-selective inhibition of SFKs by using PP2 did
not affect the inhibition of platelet aggregation by LPS. Therefore, our results indicate that
SFKs do not take part in the inhibitory effect of LPS on platelet aggregation.

Currently, the presence of NOS in platelets is controversial [34,35]. Recently, it was demon-
strated that inducible NOS (iNOS) or endothelial NOS (eNOS) are present neither in mouse
nor in human platelets [36]. However, various works have shown the presence of eNOS/NO/
sGC/cGMP signaling in platelets using by different experimental approaches including aggre-
gation assays in presence of sGC and eNOS inhibitors [37], western blotting for eNOS [38, 39],
[3H]L-citrulline [40] and cGMP production [37,38]. Therefore, in the present work we decided
to investigate the role of sGC/cGMP/PKG pathway in the inhibitory effect of LPS-injection on
platelet aggregation. Our results showed increased levels of cGMP in ADP-activated platelets
in LPS compared with saline group, indicating elevated NO formation in this condition. NO
has been shown to bind to the prosthetic group containing the reduced (Fe2+) haem moiety in
sGC, leading to the conversion of GTP to cGMP [41]. The compound ODQ inhibits sGC by
oxidizing its haem moiety, thus impairing the NO binding to the enzyme [42]. Therefore, we
have further used ODQ to explore the cGMP-dependent mechanisms mediating the inhibitory
effect of LPS on platelet aggregation. Our results clearly show that ODQ prevents the inhibitory
effect of LPS on platelet aggregation, indicating that this effect is mediated by cGMP-depen-
dent mechanisms. PKG inhibits platelet activity through phosphorylation of IP3 receptor on
dense tubular system, thus increasing Ca++ reuptake into the stores [10], reducing both fibrino-
gen receptor activation and actin polymerization [43,44]. In the present work, the PKG inhibi-
tor Rp-8-Br-PET-cGMPS prevented the inhibition of platelet aggregation by LPS, indicating a
major role for PKG activation.

Endothelial NO synthase (eNOS) is modulated by post-translational regulatory modifica-
tions, including multiple phosphorylations. The phosphorylation at Ser 1177, Ser 635 and Ser
617 stimulates eNOS activity while phosphorylations at Thr 495 and Ser 116 inhibit this
enzyme activity [45]. Typically, PKC has been described as an eNOS inhibitor [46,47], but
recently PKC has been shown to activate eNOS via Ser 1177 phosphorylation in endocannabi-
noid 2-arachidonoylglycerol-stimulated platelets [48].

The PKC family is composed of 10 members of serine/threonine protein kinases. Intracellu-
lar localization, expression and activation of PKC are dynamics processes tightly modulated by
different enzymes and conditions. In the present study, incubation of platelets from control
rats with the PKC inhibitor GF109203X increased the cGMP levels and inhibited aggregation,
suggesting that under physiological conditions eNOS is negatively modulated by PKC. Con-
versely, in platelets of LPS-treated rats, GF109203X reduced the levels of cGMP and prevented
the inhibition of platelet aggregation. In fact, in endothelial cells under oxidative stress condi-
tions, δPKC activation is accompanied by eNOS stimulation via Ser 1179 phosphorylation
[49]. Taken together, our results strongly suggest that different PKC isoforms positively or neg-
atively modulate platelet activity depending on the environment condition. In platelets of LPS-
injected rats, PKC increases cGMP levels, leading to inhibition of platelet aggregation through
PKG-dependent mechanisms. This contrasts with healthy conditions where PKC mediates
platelet activation and inhibition of cGMP production.

It is well established that AKT may activate eNOS by phosphorylation at Ser 1177 residue
[46,47,50]. An increase of AKT activation through enhanced phosphorylation at Thr 318 was
observed in platelets of LPS-treated rats, even in the presence of the PI3K inhibitor LY294002.
Accordingly, AKT inhibition with API-1 prevented both the reduced platelet aggregation and
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the increased intraplatelet cGMP levels in LPS-treated rats. Nevertheless, incubation the plate-
lets with LY294002 (or the PI3K inhibitor wortmannin) did not affect platelet aggregation in
LPS group. Besides PI3K, reports have been shown that AKT may be phosphorylated by other
kinases, including PKC in platelets [51] and Ca++/calmodulin-dependent kinases in cultured
neurons [52]. Therefore, our results indicate that treatment of rats with LPS increases AKT
activation in platelets via PI3K-independent pathways, which enhances eNOS activity and
cGMP levels leading to inhibition of platelet aggregation.

In conclusion, our work shows that inhibition of rat platelet aggregation by LPS is medi-
ated by cGMP/PKG-dependent mechanisms. In addition, PKC and AKT take place in the
inhibitory effects of LPS in platelet aggregation by acting as upstream modulators of cGMP/
PKG pathway.

Supporting Information
S1 Table. Data of platelet aggregation of rats treated with saline or LPS (6 h). Platelets were
incubated with 1% DMSO (vehicle) or the Src inhibitor PP2 (10 μM) for 3 min before ADP
(10 μM) addition. Values are presented as means ± S.E.M. (n = 4 different animals in each
group)
(PDF)

S2 Table. Ratio of densitometric values of immunoreactive band of phosphorylated
(P-Tyr416) and non-phosphorylate forms of Src in platelets of rats treated with saline or
LPS (6 h).Washed platelets were stimulated or not with ADP (10 μM). Values are presented as
means ± S.E.M. (n = 3 different animals in each group)
(PDF)

S3 Table. Data of values of intraplatelet cGMP levels of rats treated with saline or LPS (6
h). Platelets were incubated with the non-selective PKC inhibitor GF109203X (10 μM) or 1%
DMSO (vehicle) for 3 min prior addition of or ADP (10 μM). Values are presented as
means ± S.E.M. (n = 4–6 different animals in each group)
(PDF)

S4 Table. Data of platelet aggregation of rats treated with saline or LPS (6 h). Platelets were
incubated with 1% DMSO (vehicle) or the PKC inhibitor GF109203X (10 μM) for 3 min before
ADP (10 μM) addition. Values are presented as means ± S.E.M. (n = 4–6 different animals in
each group)
(PDF)

S5 Table. Data of platelet aggregation of rats injected with saline or LPS (6 h). Platelets were
incubated or not with either the soluble guanylyl cyclase inhibitor ODQ (25 μM) or the protein
kinase G inhibitor Rp-8-Br-PET-cGMPS (25 μM) for 3 min before ADP (10 μM) addition. Val-
ues are presented as means ± S.E.M. (n = 4–6 different animals in each group)
(PDF)

S6 Table. Data of platelet aggregation of rats injected with saline or LPS (6 h). Platelets were
incubated with wortmannin (100 nM, PI3K inhibitor), LY29004 (10 μM, PI3K inhibitor), API-
1 (20 μM, AKT inhibitor) or 1% DMSO (vehicle) for 3 min before ADP (10 μM) addition. Val-
ues are presented as means ± S.E.M. (n = 4–6 different animals in in each group)
(PDF)

S7 Table. Data of intraplatelet cGMP levels of rats treated with saline or LPS (6 h). Platelets
were incubated with the AKT inhibitor API-1 (20 μM) for 3 min prior to addition of ADP
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(10 μM). Values are presented as means ± S.E.M. (n = 4–6 different animals in each group)
(PDF)

S8 Table. Ratio of densitometric values of immunoreactive band of phosphorylated
(P-Thr308) and non-phosphorylate forms of AKT in platelets of rats treated with saline or
LPS (6 h). Platelets were incubated with the PI3K inhibitor LY29004 (10 μM) or its vehicle
DMSO (1%) for 3 min prior addition of ADP (10 μM). Values are presented as means ± S.E.M.
(n = 3 different animals in each group)
(PDF)
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