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Introduction
The signal transducer and activator of transcription (STAT) 

family consists of seven members (STAT1–4, -5A, -5B, and -6). 

STATs are phosphorylated by cytokine stimulation, form homo- 

or heterodimers, and enter the nucleus, where they regulate 

 expression of their target genes (Darnell, 1996; Ihle, 1996). 

 Although STATs have a variety of functions under  physiological 

conditions, the pathological importance of STAT functions has 

also been reported in many studies. STAT3 and -5 were acti-

vated in a broad spectrum of human hematological malignan-

cies as well as in solid tumors (Darnell, 2002). A constitutively 

active form of STAT5 and -3 transformed IL-3–dependent 

Ba/F3 cells and fi broblasts, respectively (Onishi et al., 1998; 

Bromberg et al., 1999; Nosaka et al., 1999). An internal tandem 

duplication (ITD) mutant of receptor tyrosine kinase Flt3 (ITD-

Flt3), a causative mutation of acute myeloid leukemia (Yokota, 

et al., 1997; Hayakawa et al., 2000), induced phosphorylation of 

STAT5 on its tyrosine residues, thereby playing critical roles in 

cell transformation (Mizuki et al., 2000; Zhang et al., 2000; 

Murata et al., 2003).

The mechanisms by which STATs are phosphorylated by 

cytokines and the activated STATs regulate the expression of 

the target genes have been well characterized. How activated 

STATs are transported to the nucleus has also been investigated; 

activated STAT1 and -3 were reported to bind importin α5 and 

several importin αs, respectively, which mediated the nuclear 

transport of STATs (Sekimoto et al., 1997; McBride et al., 2002; 

Liu et al., 2005; Ushijima et al., 2005; Ma and Cao, 2006). 

However, molecules other than importins could also participate 

in the regulation of the nuclear translocation of STATs.

We have recently described the interactions among STAT3, 

Rac1, and a Rac/Cdc42 GTPase-activating protein (GAP), 

MgcRacGAP (male germ cell Rac-GAP), and have shown that 

MgcRacGAP is required for transcriptional activation of STAT3 

(Tonozuka et al., 2004). However, the mechanisms by which 

Rac and MgcRacGAP regulate transcriptional activation of 

STAT3 remained unclear. In the present work, we investigated 

the molecular mechanisms of nuclear transport of a tyrosine-

phosphorylated form of STAT5A, a close relative of STAT3, 

and found that GTP-bound Rac1 and MgcRacGAP were re-

quired for transport of activated STATs to the nucleus,  indicating 

a novel function of Rac1 GTPase.
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TAT transcription factors are tyrosine phosphory-

lated upon cytokine stimulation and enter the nu-

cleus to activate target genes. We show that Rac1 

and a GTPase-activating protein, MgcRacGAP, bind di-

rectly to p-STAT5A and are required to promote its nuclear 

translocation. Using permeabilized cells, we fi nd that nu-

clear translocation of purifi ed p-STAT5A is dependent on 

the addition of GTP-bound Rac1, MgcRacGAP, importin α, 

and importin β. p-STAT3 also enters the nucleus via 

this transport machinery, and mutant STATs lacking the 

MgcRacGAP binding site do not enter the nucleus even 

after phosphorylation. We conclude that GTP-bound Rac1 

and MgcRacGAP function as a nuclear transport chaper-

one for activated STATs.
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Results
STAT5A, Rac, and MgcRacGAP 
form a complex in hematopoietic cells
To test whether Rac1 and MgcRacGAP bind STAT5A, as was 

the case for STAT3 (Tonozuka et al., 2004), we did coimmuno-

precipitation. STAT5A and MgcRacGAP were coimmuno-

precipitated with Rac1 (Fig. 1 A) and Rac2 in Ba/F3 cells 

(unpublished data). In addition, STAT5A was coimmuno-

precipitated with MgcRacGAP in Ba/F3 cells and in several 

other human and mouse cell lines, as well as in human primary 

T cells (unpublished data). These data show that Rac, STAT5A, 

and MgcRacGAP form a complex in vivo.

Augmentation of MgcRacGAP association 
with STAT5A by IL-3 stimulation
A considerable amount of STAT5A protein was coimmuno-

precipitated with MgcRacGAP in IL-3–starved Ba/F3 cells, and 

this association was enhanced by IL-3 stimulation (Fig. 1 B, left). 

Vice versa, a small amount of MgcRacGAP protein was coimmuno-

precipitated with STAT5A in the starved cells, and this association 

was enhanced by IL-3 (Fig. 1 B, middle). In Ba/F3 cells ex-

pressing a constitutively active form of STAT5A (CA-STAT5A), 

which is more stable in the phosphorylated form than the wild-

type STAT5A (Onishi et al., 1998), a considerable amount of 

STAT5A protein bound MgcRacGAP, even in unstimulated cells. 

This binding was also enhanced by IL-3 (Fig. 1 C). Thus, the 

association between MgcRacGAP and STAT5A does not require 

phosphorylation of STAT5A, but is enhanced by phosphorylation.

To map the interacting domains between MgcRacGAP and 

STAT5A, we prepared a series of truncated mutants of MgcRac-

GAP and STAT5A fused with maltose binding protein (MBP; 

Fig. S1, a, b, d, and e, available at http://www.jcb.org/cgi/content/

full/jcb.200604073/DC1). It was found that STAT5A and Rac1 

interacted with the Cys-rich and GAP domains of MgcRacGAP, 

whereas MgcRacGAP interacted with the DNA-binding domain 

(DBD) of STAT5A (Fig. S1, c and f). The binding domains be-

tween STAT5A and MgcRacGAP were similar to those between 

STAT3 and MgcRacGAP (Tonozuka et al., 2004).

Simultaneous translocation of STAT5A 
and MgcRacGAP to the nucleus 
upon IL-3 stimulation
We next investigated the stoichiometry of STAT5A/MgcRacGAP 

binding in the cytoplasm or nucleus. IL-3–starved Ba/F3 cells 

were stimulated with IL-3 for 0, 15, or 90 min, and the cell lysates 

were fractionated. The cytosol and nuclear fractions were then 

 immunodepleted with the anti-MgcRacGAP or anti-STAT5A anti-

body. The amounts of total STAT5A and tyrosine-phosphorylated 

STAT5A (p-STAT5A) in the nuclear fraction increased 15 min 

after IL-3 stimulation and decreased 90 min after IL-3 stimulation 

(Fig. 2 A, a–d, lanes for the control antibody). Notably, most of 

p-STAT5A in the cytosolic fractions was immunodepleted with 

the anti-MgcRacGAP antibody as well as with the anti-STAT5A 

antibody (Fig. 2 A, c). On the other hand, a considerable part of 

p-STAT5A was left in the nuclear extracts of IL-3–stimulated cells 

after the immunodepletion with the anti-MgcRacGAP antibody 

(Fig. 2 A, a). These results suggested that most of p-STAT5A was 

bound by MgcRacGAP in the cytoplasm of IL-3–stimulated cells 

and was released from MgcRacGAP in the nucleus.

The amount of cytoplasmic STAT5A immunoprecipitated 

with the anti-MgcRacGAP antibody gradually increased after 

IL-3 stimulation (Fig. 2 A, h), and concomitantly the amount of 

cytoplasmic STAT5A immunodepleted with the anti-MgcRac-

GAP antibody gradually decreased (Fig. 2 A, d), implicating 

that MgcRacGAP maintained interaction with STAT5A in the 

cytoplasm of IL-3–stimulated cells even after the dephosphory-

lation of STAT5A. The fractionation was confi rmed by Western 

blotting with the anti-HDAC (for nuclear fraction) or RhoA (for 

cytosol fraction) antibody (unpublished data).

Next, we visualized STAT5A and MgcRacGAP by immuno-

staining using adherent 293T cells. To enhance phosphorylation 

and nuclear translocation of STAT5, we used a constitutively 

 active tyrosine kinase receptor, ITD-Flt3 (Yokota et al., 1997). 

In the absence of ITD-Flt3, ectopically expressed STAT5A-Flag 

 localized to the cytoplasm and colocalized in part with the endog-

enous MgcRacGAP. Expression of ITD-Flt3 led to translocation 

Figure 1. MgcRacGAP, Rac1, and STAT5 formed a protein complex in 
IL-3–dependent Ba/F3 cells. (A) STAT5A and MgcRacGAP were coprecipi-
tated with Rac1. The cell lysates of IL-3–dependent Ba/F3 cells were 
 subjected to immunoprecipitation with an anti-Rac1 or control antibody, 
followed by the immunoblotting with the anti-MgcRacGAP, anti-STAT5A, or 
anti-Rac1 antibody. (B) IL-3 enhanced association between STAT5A and 
MgcRacGAP. Ba/F3 cells were incubated in the presence or absence of 
5 ng/ml IL-3 for the times indicated, and the cell lysates were subjected 
to immunoprecipitation with the anti-MgcRacGAP, anti-STAT5A, or control 
anti body, followed by the immunoblotting with the anti-p-STAT5 (top), anti-
STAT5A (middle), or anti-MgcRacGAP antibody (bottom). Each row of 
 images of the immunoprecipitation using the anti-MgcRacGAP and anti-
STAT5A antibodies is derived from the same exposure of one gel, and each 
using the control antibody is derived from a similar exposure of the different 
gel. (C) The association of STAT5A and MgcRacGAP was enhanced in 
Ba/F3 cells expressing CA-STAT5A. Ba/F3 cells expressing CA-STAT5A were 
incubated in the presence or absence of 5 ng/ml IL-3 for 30 min, and cell 
lysates were subjected to immunoprecipitation with the anti-STAT5A (left) or 
anti-MgcRacGAP antibody (right), followed by the immunoblotting with the 
anti-p-STAT5 (top), anti-STAT5A (middle), or anti-MgcRacGAP antibody 
(bottom). Each row of images is derived from the same exposure of one gel.
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and colocalization of STAT5A and MgcRacGAP in the nucleus 

(Fig. 2 B). These results indicated that MgcRacGAP trans-

located to the nucleus concurrently with STAT5A in response to 

IL-3 and ITD-Flt3 stimulation. Intriguingly, a dominant-negative 

form of Rac1, N17Rac1, completely inhibited the ITD-Flt3–

 induced nuclear translocation of STAT5A (Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200604073/DC1). This 

result suggested that the GTP-bound form of Rac1 was required 

for the nuclear accumulation of activated STAT5A. However, 

N17Rac1 was recently reported to inhibit not only Rac1 but also 

other Rho-GTPases (Debreceni et al., 2004). To confi rm that the 

N17Rac1 inhibition of nuclear translocation of p-STAT5A was 

indeed due to the inhibition of Rac1, we used mouse embryonic 

fi broblasts derived from gene-targeted conditional Rac1-fl ox 

mice in the Rac2-null background (Gu et al., 2003).

Rac1 is required for the nuclear 
translocation of p-STAT5A in mouse 
embryonic fi broblast cells
ITD-Flt3 induced the nuclear localization of STAT5A-Flag in the 

presence of Rac1 (Fig. 3 A, a and b). However, when Rac1 was 

depleted by Cre recombinase in Rac2−/−Rac1fl ox/fl ox fi broblasts 

(Fig. 3 B), the nuclear translocation of STAT5A was severely 

 impaired (Fig. 3 A, c and d), and even p-STAT5 mostly remained in 

the cytoplasm (Fig. 3 A, e and f). In addition, CA-STAT5A did not 

enter the nucleus in the absence of Rac1 (unpublished data). We 

performed a similar analysis using Rac1fl ox/fl oxRac2wt/wt fi broblasts 

and obtained identical results. These results demonstrate that Rac1 

plays an essential role in the nuclear translocation of p-STAT5A.

Rac1 and MgcRacGAP were required 
for the nuclear accumulation and 
transcriptional activation of STAT5A
We next used siRNA to knock down Rac1 or MgcRacGAP ex-

pression in Ba/F3 cells where STAT5 activation is required for 

cell growth. The siRNA treatment for Rac1 or MgcRacGAP re-

sulted in severe growth retardation of Ba/F3 cells and caused 

apoptosis in some cells. The total cell number was only one tenth 

or one fi fth 48 h after siRNA treatment for Rac1 or MgcRac-

GAP, respectively (unpublished data). The siRNA treatment for 

MgcRacGAP led to the formation of multinucleated cells, as re-

ported previously (Mishima et al., 2002), but no more than 20% 

of the cells, indicating the failure of cytokinesis by MgcRacGAP 

depletion is not the major cause of the growth inhibition.

We then did semiquantitative RT-PCR analysis to test 

whether transcriptional activation of STAT5 is affected by the 

knock down of Rac1 or MgcRacGAP and found that expression 

of bcl-xL, one of the STAT5 target genes, was severely impaired 

by the siRNA treatment (Fig. 4 A). We also confi rmed that siRNA 

treatments specifi cally decreased the expression levels of Rac1 

or MgcRacGAP protein but not those of RhoA and HDAC, 

similar to the results shown in Fig. 4 B (not depicted).

We also investigated whether knock down of Rac1 or 

MgcRacGAP affects the subcellular distribution of STAT5A 

and p-STAT5A in Ba/F3 cells before and after IL-3 stimulation. 

The siRNA-treated Ba/F3 cells were starved for 6 h after the 

isolation of live cells using Ficoll and stimulated with IL-3 

(15 min), and the cell lysates were fractionated. The siRNA 

treatments specifi cally decreased expression levels of Rac1 or 

MgcRacGAP protein (Fig. 4 B, c and d) but not those of RhoA 

and HDAC (Fig. 4 B, e and f). The IL-3–induced nuclear accu-

mulation of STAT5A and p-STAT5A was almost completely 

blocked in Ba/F3 cells treated with either Rac1 or MgcRacGAP 

siRNA when compared with those treated with the control 

siRNA (Fig. 4 B, a and b). The same treatment moderately de-

creased the amounts of p-STAT5A and total STAT5A in the cyto-

plasmic fraction (Fig. 4 B, a and b), suggesting that Rac1 and 

MgcRacGAP enhance the IL-3–induced phosphorylation of 

STAT5A and somehow stabilize STAT5A in the cytoplasm.

Direct interaction between STATs and 
MgcRacGAP/Rac1 regulates the activation 
of STATs through facilitating their tyrosine 
phosphorylation and nuclear translocation
We previously found that STAT3 bound MgcRacGAP through 

its DBD (Tonozuka et al., 2004). To examine whether MgcRac-

GAP regulated transcriptional activity of STAT3 and -5A through 

direct interaction, we attempted to produce mutant STATs lacking 

Figure 2. STAT5A and MgcRacGAP simultaneously entered 
the nucleus. (A) Stoichiometry of the association between 
MgcRacGAP and p-STAT5A or total STAT5A in the cytoplasm 
and nucleus. IL-3–starved Ba/F3 cells were stimulated with 
IL-3 for the times indicated, and cytosol and nuclear extracts 
were prepared as described previously (Nakamura et al., 
2002). 10 μg of protein for each of the extracts was immuno-
depleted with the anti-MgcRacGAP, anti-STAT5A, or control 
antibody, followed by immunoblotting with the anti–p-STAT5 
and anti-STAT5A antibodies (a–d). The immunoprecipitates 
were also examined by Western blotting with the anti–
p-STAT5 and anti-STAT5 antibodies (e–h). (B) STAT5A and 
MgcRacGAP translocated into the nucleus upon ITD-Flt3 stimu-
lation in 293T cells. Cells were transfected with pME/STAT5A-
Flag together with pMKIT (MOCK; top) or pMKIT/ITD-Flt3 
(bottom). After 36 h, cells were immunostained with the anti-
MgcRacGAP and anti-Flag antibodies and viewed using a 
Fluoview FV300 confocal microscope. Bar, 10 μm.
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the MgcRacGAP binding site. To this end, we narrowed down 

the binding site in DBD-STAT3 to a 25-amino-acid stretch, using 

MBP-fused DBD-STAT3 truncations (DB1-DB6; Fig. S3 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200604073/DC1). 

We found that only DB2 (aa 338–362) of DBD-STAT3 inter-

acted with MgcRacGAP (Fig. S3 B). Conversely, the mutant 

of DBD-STAT3 lacking DB2 (DBD-STAT3-dDB2) did not 

bind MgcRacGAP (Fig. S3 C). These results clearly demon-

strated that the DB2 region (25 amino acid) of STAT3 bound 

MgcRacGAP. This region is well conserved among STAT fam-

ily proteins and harbors a β-sheet structure, which is thought to 

mediate protein–protein interaction. Purifi ed MgcRacGAP was 

pulled down by the MBP-DB2 of STAT3, and the corresponding 

region of STAT5 (aa 341–365) fused with MBP but not by MBP 

alone, demonstrating that MgcRacGAP directly bound DB2 of 

STAT3 and -5 (Fig. S3 D and Fig. 5 A). Both of the STAT3 

and -5A mutants lacking DB2 (STAT3- and STAT5A-dDB2) did 

not bind MgcRacGAP and the extent of tyrosine phosphoryla-

tion of these mutants was less prominent after IL-6 or ITD-Flt3 

stimulation (Fig. 5 B and not depicted). In addition, STAT3- 

and STAT5A-dDB2 lacked their transcriptional activities (Fig. 

S3 E and Fig. 5 C). These results indicated that the interaction 

of MgcRacGAP/Rac1 with STAT3 and -5A facilitates cytokine 

receptor–induced tyrosine phosphorylation of both STAT3 and 

-5A. Considerable decrease in the tyrosine phosphorylation of 

STAT5A was also observed when Rac1 or MgcRacGAP was 

knocked down (Fig. 4 B, a). Intriguingly, MgcRacGAP also in-

teracted with JAK2 (Fig. 5 D), suggesting that  MgcRacGAP/

Rac1 also mediated the tyrosine phosphorylation of STATs 

through the interaction with JAK2. Importantly, STAT3- and 

STAT5A-dDB2 that do not bind MgcRacGAP did not enter the 

nucleus even after tyrosine phosphorylation by IL-6 or ITD-Flt3 

(Fig. 5 E and not depicted), suggesting that MgcRacGAP/Rac1 

is required not only for nuclear translocation of p-STATs but 

also for effi cient tyrosine phosphorylation of STATs.

MgcRacGAP and GTP-bound Rac1 were 
required for the nuclear translocation 
of p-STAT5A in cytosol-free 
digitonin-permeabilized cells
We established a nuclear transport assay using semi-intact 

permeabilized cells (Adam et al., 1990), which enables us to 

Figure 3. The nuclear translocation of p-STAT5 was not observed in the 
Rac1-knockout mouse embryonic fi broblasts. (A) The nuclear translocation 
of ITD-Flt3–induced p-STAT5 was impaired in the Rac2−/−Rac1fl ox/fl ox fi bro-
blasts. The Rac2−/−Rac1fl ox/fl ox fi broblasts were transduced with a control 
pMX-IG (a and b) or pMX-IG-Cre (c and d) retrovirus vector. After 3 d, cells 
were transiently cotransfected with pME/STAT5A-Flag and MOCK (a and c) 
or pMKIT/ITD-Flt3 (b and d). After 36 h, the cells were fi xed and immuno-
stained with the anti-Flag antibody (a–d, left) or anti–p-STAT5 antibody 
(e and f, left). Bars, 10 μm. (B) Expression of Rac1 was depleted in the 
Rac2−/−Rac1fl ox/fl ox fi broblasts by Cre recombinase. Expression of α-tubulin 
and Rac1 was examined in the Rac2−/−Rac1fl ox/fl ox fi broblasts retovirally 
transduced with a control pMX-IG or pMX-IG-Cre.

Figure 4. Rac1 and MgcRacGAP were required for IL-3–induced nuclear 
accumulation and transcriptional activation of p-STAT5A. (A) IL-3–induced 
transcriptional activation of STAT5A was suppressed by knock down of 
Rac1 or MgcRacGAP. Expression of bcl-xL or GAPDH mRNA was exam-
ined in Ba/F3 cells treated with the control siRNA (lane 1), Rac1 siRNA 
(lane 2), or MgcRacGAP siRNA (lane 3). 24 h after the siRNA treatment, 
the live cells were collected using Ficoll and subjected to semiquantitative 
RT-PCR. (B) IL-3–induced nuclear accumulation of p-STAT5A was impaired 
by knock down of Rac1 or MgcRacGAP. The intracellular distribution of 
p-STAT5A or total STAT5A in the IL-3–stimulated or unstimulated Ba/F3 cells 
pretreated with the control, Rac1, or MgcRacGAP siRNA (a and b). Note 
that Rac1 or MgcRacGAP expression was specifi cally suppressed by 
siRNA (c and d). Cytosol and nuclear extracts were prepared as described 
previously (Nakamura et al., 2002) and validated by Western blot using 
an anti-HDAC antibody or anti-RhoA antibody (e and f).
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biochemically analyze the roles of Rac1 and MgcRacGAP in 

the nuclear import of p-STAT5A. We confi rmed the purities 

of STAT5A, MgcRacGAP, V12Rac1, N17Rac1, importin α1, 

importin α5, importin β1, Ran, and NTF2 produced by Sf-9 

cells, and the tyrosine phosphorylation of STAT5A induced 

by coexpression with the kinase domain of JAK2 in Sf-9 cells 

(Fig. 6, A and B). It was confi rmed that the purifi ed p-STAT5A 

bound DNA in electrophoretic mobility shift analysis (EMSA) 

in a similar fashion with GM-CSF–activated STAT5 in TF-1 

cells (Fig. S4 A, available at http://www.jcb.org/cgi/content/

full/jcb.200604073/DC1), indicating that the recombinant in 

vivo phosphorylated STAT5A formed a proper dimer. Permea-

bilized HeLa cells were incubated with the indicated combina-

tions of purifi ed proteins in transport buffer (TB) plus an energy 

regenerating system. After the import reaction in the cells in-

cubated with purifi ed unphosphorylated STAT5A, a consider-

able amount of unphosphorylated STAT5A was detected at the 

cytoplasm in most cells (Fig. 6 C, a). The addition of purifi ed 

MgcRacGAP, V12Rac1, importin α1, and importin β1 did not 

affect localization of unphosphorylated STAT5A (Fig. 6 C, b–d 

and f). Although rabbit reticulocyte lysate reduced  cytoplasmic 

localization of unphosphorylated STAT5A (Fig. 6 C, e), it 

 induced both the nuclear and plasma membrane localization 

of p-STAT5A (Fig. 6 C, k). These results suggested that rab-

bit reticulocyte lysate contained cofactors that are required for 

the nuclear translocation of p-STAT5A in this transport assay. 

 Interestingly, p-STAT5A accumulated at the nuclear membrane, 

with some migrating into the nucleus in the presence of puri-

fi ed MgcRacGAP and V12Rac1, but the nuclear translocation 

of p-STAT5A was inhibited in the presence of purifi ed MgcRac-

GAP and N17Rac1 (Fig. 6 C, h and i). These results indicate 

that the GTP-bound form of Rac1 and MgcRacGAP facilitate 

the nuclear translocation of p-STAT5A. Given that purifi ed 

importin β1 also accumulated mostly in the nuclear envelope 

and only partially migrated to the nucleus in our assay system 

(unpublished data) as reported previously (Kutay et al., 1997), the 

accumulation of p-STAT5 and importin β1 in the nucleus might 

have been caused by residual amounts of nuclear transporters 

left in the assay system. Thus, it is likely that the GTP-bound 

form of Rac1 and MgcRacGAP play critical roles in targeting 

p-STAT5A to the nuclear envelope and that cofactors are required 

for the effi cient nuclear import of p-STAT5A from the nuclear 

envelope. In fact, nuclear translocation of p-STAT5A was en-

hanced by further addition of the purifi ed nuclear transporters, 

including importin α1, importin β1, Ran, and NTF2 to the assay 

(Fig. 6 C, j). This nuclear translocation of p-STAT5A was not 

observed in the absence of MgcRacGAP even in the presence of 

cofactors (Fig. 6 C, l).

 To confi rm whether the unphosphorylated recombinant 

STAT5A conserved a native folded state, we did nuclear trans-

port assay using the in vitro phosphorylated STAT5A. The 

 recombinant full-length JAK2 effi ciently phosphorylated the 

recombinant STAT5A in the kinase reaction buffer (Fig. S4 B). 

This in vitro phosphorylated STAT5A behaved in the nuclear 

transport assay like the in vivo phosphorylated STAT5A (Fig. 

S5, a–i, available at http://www.jcb.org/cgi/content/full/jcb.

200604073/DC1). The nuclear transport of p-STAT5A requires 

both MgcRacGAP and V12Rac1. The nuclear import of the in 

vitro phosphorylated recombinant STAT5A was also achieved 

by the presence of the cytosol fraction of HeLa cells (HeLa-CS), 

which had been prepared as described previously (Adam et al., 

1990). In addition, immunodepletion of MgcRacGAP or Rac1 

considerably inhibited the nuclear import of the in vitro phos-

phorylated recombinant STAT5A (Fig. S5, j–m). This inhibition 

Figure 5. The mutant of STAT5A, which lacks MgcRacGAP 
binding site, was not effi ciently tyrosine phosphorylated by 
ITD-Flt3 stimulation and did not enter the nucleus even after 
 tyrosine phosphorylation. (A) The DB2 region of STAT5 directly 
interacted with MgcRacGAP in vitro. Full-length MgcRacGAP 
was expressed in Sf-9 cells using the baculovirus vector and 
was purifi ed from infected Sf-9 cells. The recombinant MgcRac-
GAP was pulled down by MBP-DB2 or MBP-bound beads and 
subjected to Western blot analysis with the anti-MgcRacGAP 
(top) or anti-MBP antibody for the loading control (bottom). (B) 
The deletion mutant of DB2 did not bind MgcRacGAP, and the 
STAT5 phosphorylation was considerably impaired by the de-
letion of DB2. Expression and tyrosine phosphorylation of 
Flag-tagged STAT5A-dDB2 (top and middle, respectively) were 
examined in the MOCK or ITD-Flt3–transfected 293T cells. The 
interactions of MgcRacGAP with the WT-STAT5A or STAT5A-
dDB2 were also examined in the MOCK or ITD-Flt3–trans-
fected 293T cells (bottom). Images of the immunoblots using 
the MOCK or ITD-Flt3–transfected cells are derived from the 
same exposure of one gel that was cut to remove intervening 
lanes. (C) The transcriptional activity of STAT5-dDB2 was 
 impaired. Luciferase activities were examined in the lysates of 
ITD-Flt3–stimulated 293T cells cotransfected with the STAT5-
 reporter plasmid together with internal control reporter plasmids 

and the MOCK vector (pME), the expression vector for the Flag-tagged WT-STAT5, or STAT5-dDB2 mutant. The results shown are the mean ± SD of three in-
dependent experiments. (D) MgcRacGAP was coprecipitated with JAK2. The cell lysates of 293T cells transfected with the expression vector (pRK5) for JAK2 
were subjected to immunoprecipitation with the anti-MgcRacGAP or control antibody, followed by the immunoblotting with the anti-JAK2 (top) or anti-MgcRac-
GAP antibody (middle). Levels of transfected JAK2 were assayed by blotting with the anti-JAK2 antibody (bottom). (E) STAT5A-dDB2 did not enter the nucleus 
even after the phosphorylation. The 293T cells were cotransfected with pMKIT/ITD-Flt3 together with the MOCK (left), the expression vector for the Flag-
tagged WT-STAT5A (middle), or STAT5A-dDB2 (right). After 24 h, the cells were fi xed and immunostained with the anti–p-STAT5 antibody. Bar, 10 μm.
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was restored by add-back of the purifi ed recombinant MgcRac-

GAP or Rac1 (Fig. S5, n and o).

To determine whether the Rac1 activation or the presence 

of MgcRacGAP is required for the interaction of p-STAT5A 

with importin αs, an in vitro binding assay was done using puri-

fi ed proteins. Intriguingly, p-STAT5A formed complexes with 

importin α1 and α5 only in the presence of both MgcRacGAP 

and V12Rac1 or another constitutively active mutant L61Rac1, 

but not N17Rac1 (Fig. 6 D). These results demonstrated that 

GTP-bound Rac1 and MgcRacGAP functions as p-STAT5A 

nuclear chaperone, facilitating p-STAT5A to form protein com-

plexes with importin αs.

Discussion
In the present work, we demonstrate that Rac1 and MgcRac-

GAP are essential for the nuclear translocation of STAT5A, 

based on the following observations. First, Rac1 and MgcRac-

GAP directly bound STAT5A, and the interaction between 

MgcRacGAP and STAT5A was enhanced by IL-3 stimulation. 

Second, STAT5A and MgcRacGAP simultaneously entered the 

nucleus upon IL-3 and ITD-Flt3 stimulation. Third, knock down 

of Rac1 or MgcRacGAP profoundly inhibited both the IL-3–

 induced transcriptional activation of STAT5A and the nuclear 

accumulation of p-STAT5A in IL-3–dependent Ba/F3 cells. 

Fourth, depletion of Rac1 in fi broblasts, as well as expression of 

N17Rac1 in 293T cells, prevented p-STAT5A from entering the 

nucleus. Fifth, p-STAT5A lacking the MgcRacGAP binding site 

(p-STAT5A–dDB2) did not accumulate in the nucleus. Last, in 

a nuclear transport assay, purifi ed V12Rac1 and MgcRacGAP 

induced accumulation of purifi ed p-STAT5A on the nuclear 

 envelope, with some p-STAT5A migrating into the nucleus, and 

the further addition of nuclear transporters, including importin 

α1, importin β1, Ran, and NTF2, achieved the effi cient nuclear 

translocation of p-STAT5A. Moreover, either the absence of 

MgcRacGAP or the presence of N17Rac1 inhibited this nuclear 

translocation of p-STAT5A.

Simon et al. (2000) suggested that an active form but not 

an inactive form of Rac1 bound STAT3 and played important 

roles in EGF-induced STAT3 activation. These authors did not, 

however, specifi cally examine the nuclear transport of STAT3. 

Interestingly, EGF receptor–mediated endocytosis is required 

for cytoplasmic transport of STAT3 (Bild et al., 2002), and 

MgcRacGAP is recruited to the EGF receptor complex after EGF 

stimulation (Blagoev et al., 2003). We also found that STAT3 

bound Rac1 and Rac2, which was enhanced by IL-6 stimulation. 

Figure 6. Purifi ed p-STAT5A accumulated to the nuclear en-
velope in the presence of V12Rac1 and MgcRacGAP in the 
nuclear transport assay. (A) Coomassie blue (CBB) staining of 
purifi ed STAT5A, p-STAT5A, V12Rac1, N17Rac1, importin 
α1, importin α5, importin β1, Ran, NTF2, or MgcRacGAP. 
(B) Western blot analysis of the STAT5A-Flag protein purifi ed 
from Sf-9 cells with or without coexpression with the kinase 
domain of JAK using the anti–p-STAT5 antibody. Total cell lysate 
of GM-CSF–stimulated TF-1 was used as a control. (C) The 
 nuclear transport assay. HeLa cells were permeabilized with 
40 μg/ml digitonin. Incubation with 50 μl import mix was done 
at 37°C for 30 min. Import mix contained TB, an energy re-
generating system, and a single or combinations of the follow-
ing purifi ed proteins as indicated: 1 μM STAT5A, p-STAT5A, 
V12Rac1, N17Rac1, MgcRacGAP, importin α1, importin β1, 
Ran, or NTF2. After the import reaction, the cells were fi xed. 
STAT5A protein was detected using the anti-STAT5A antibody. 
Cells were examined using a Fluoview FV300 confocal micro-
scope. A representative result of three independent experi-
ments is shown. Bar, 10 μm. (D) The direct bindings of both 
GTP-bound Rac1 and MgcRacGAP facilitated the interaction 
of p-STAT5A with importin αs. Purifi ed p-STAT5A was incu-
bated with importin αs in the absence or presence of the indi-
cated combinations of V12Rac1, L61Rac1, N17Rac1, or 
MgcRacGAP in TB containing 5% BSA to block nonspecifi c 
bindings. 1 μg of each purifi ed protein was used for each 
sample. After the incubation for 30 min at RT, STAT5A was 
immunoprecipitated with anti-STAT5A antibody and washed 
three times with TB. The immunoprecipitates were subjected to 
Western blot analysis with the anti–importin α1, anti–importin 
α5, anti-Rac1, anti-MgcRacGAP, or anti-STAT5A antibody.
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In addition, STAT3 bound MgcRacGAP, which was required for 

the transcriptional activation of STAT3, and some population 

of MgcRacGAP entered the nucleus together with STAT3 

(Tonozuka et al., 2004). Although these results suggested a role 

of Rac1/MgcRacGAP in STAT3 activation, the underlying mole-

cular mechanisms remained elusive. We studied the functional 

interactions using a nuclear transport assay and found that 

the nuclear translocation of p-STAT3 as well as p-STAT5A was 

 induced in the presence of a combination of purifi ed proteins, 

including V12Rac1, MgcRacGAP, importin α1, importin β1, 

Ran, and NTF2 (Fig. 6, Fig. S5, and not depicted). These results 

demonstrate a novel Rac1 function in the nuclear transport of 

p-STAT3 as well as p-STAT5A.

Although we showed the results for STAT5A, we obtained 

identical results in experiments so far performed for closely re-

lated STAT5B (unpublished data). In addition, the phenotypes 

of STAT3- and STAT5A-dDB2 were nearly identical (Fig. 5 and 

Fig. S3), and the region of STAT3 that binds to MgcRacGAP 

(STAT3-DBD-DB2) is well conserved among STAT family pro-

teins, suggesting a general role for MgcRacGAP and Rac1 in 

the nuclear transport of p-STAT proteins.

Involvement of Rac1 in the nuclear 
transport of STATs
The Rho family small GTPases play key roles in a variety of 

cellular functions, including regulation of cell cycle, transcrip-

tion, and transformation (Bishop and Hall, 2000). Among them, 

the Rac subfamily consists of three known members: Rac1, 

Rac2, and Rac3. Although Rac1 and Rac3 are ubiquitously ex-

pressed, Rac2 expression is specifi c in hematopietic cells. Rac1 

and Rac2 were implicated in both distinct and overlapping func-

tions, including cell migration, membrane ruffl ing, production 

of superoxide, and phagocytosis (Ridley, 1995; Roberts et al., 

1999; Bishop and Hall, 2000; Williams et al., 2000; Gu et al., 

2003; Cancelas et al., 2005). Interestingly, the C-terminal region 

of Rac1 but not Rac2 or Rac3 contained a functional NLS, sug-

gesting a role for Rac1 in the nucleus. Consistent with this, Rac1 

was reported to play a role in the nuclear import of SmgGDS and 

p120 catenin (Lanning et al., 2003), members of the importin 

α–like armadillo family of proteins (Peifer et al., 1994; Chook 

and Blobel, 2001). In the present paper, using Rac1-defi cient mouse 

embryonic fi broblasts, we demonstrate that Rac1 was critically 

required for the nuclear transport of p-STAT5A (Fig. 3).

Requirement of cofactors involved 
in importin 𝛂/𝛃 pathway for nuclear import 
of STAT5
It was reported that unphosphorylated STATs shuttled between 

the cytoplasm and nucleus (Zeng et al., 2002; Marg et al., 2004). 

Activated STAT1 was reported to bind importin α5, leading to 

its nuclear translocation (Sekimoto et al., 1997; McBride et al., 

2002). How activated STAT3 is imported to the nucleus has re-

mained controversial. Ushijima et al. (2005) showed that acti-

vated STAT3 binds importin α1, α3, and α5, and Ma and Cao 

(2006) demonstrated that activated STAT3 binds importin α5 

and α7 but not α1, α3, or α4, whereas Liu et al. (2005) reported 

that STAT3 nuclear import is independent of tyrosine phosphor-

ylation and mediated by importin α3. On the other hand, how 

activated STAT5A is imported to the nucleus remained largely 

elusive. It was reported that the ERBB4/HER4 receptor tyrosine 

kinase, which harbors the NLS sequence, functions as a STAT5A 

nuclear chaperone, implicating the NLS of STAT5A-associated 

molecules in the nuclear translocation of STAT5A (Williams 

et al., 2004). However, unlike ERBB4/HER4, ITD-Flt3 does not 

harbor an NLS and did not enter the nucleus (unpublished data). 

In the nuclear transport assay, most p-STAT5A accumulated to 

the nuclear envelope in the presence of V12Rac1 and MgcRac-

GAP, and further addition of the purifi ed nuclear transporters, 

including importin α1, importin β1, Ran, and NTF2, facilitated 

the nuclear translocation of p-STAT5A (Fig. 6 C, j). Together, it 

is likely that the complex of p-STAT5, GTP-bound Rac1, and 

MgcRacGAP translocates to the nuclear envelope, where it re-

cruits other factors such as importin α/β to pass through the nu-

clear pore complex into the nucleus. Indeed, direct interaction 

of both GTP-bound Rac1 and MgcRacGAP facilitated the inter-

action of p-STAT5A with importin αs (Fig. 6 D). In agreement 

with this, Rac1 harbors an NLS (Lanning et al., 2003) and 

MgcRacGAP harbors a bipartite NLS and binds importin αs 

(unpublished data). Interestingly, a mutant of MgcRacGAP 

lacking NLS strongly blocked the nuclear translocation of 

p-STATs in the nuclear transport assay even with V12Rac1, im-

portin α1, importin β1, Ran, and NTF2 (unpublished data), 

suggesting a role of MgcRacGAP as an NLS-containing nuclear 

chaperone of p-STATs. Establishment of the nuclear transport 

assay for p-STATs has enabled us to clearly demonstrate the 

 requirement of Rac1 and MgcRacGAP for the nuclear trans-

location of p-STATs.

The activities of small GTPases are regulated by two 

classes of proteins, GAPs and GEFs (guanine nucleotide exchange 

factors). In this paper, we did not address GEFs, but some, such 

as smgGDS or ECT-2, may also participate in the nuclear trans-

port of STAT proteins. Based on the results that p-STAT5A 

binds importin αs only in the presence of MgcRacGAP and 

 active forms of Rac1 but not inactive form of Rac1, we specu-

late that Rac1 inactivation by MgcRacGAP release p-STATs 

from the importin complex in the nucleus. To prove this hypoth-

esis and clarify its molecular mechanisms, further work will 

be required.

Coordinate control of cell division 
and transcription
Another interesting question raised by our work concerns the 

coordinate control of cell division and transcription. We origi-

nally identifi ed MgcRacGAP as a GAP protein that regulates 

IL-6–induced macrophage differentiation of leukemic M1 cells 

(Kawashima et al., 2000). Later, we and others found that 

MgcRacGAP or Cyk-4, an orthologue in Caenorhabditis ele-
gans, played essential roles in cytokinesis (Jantsch-Plunger et al., 

2000; Hirose et al., 2001; Van de Putte et al., 2001; Mishima 

et al., 2002). We further demonstrated that MgcRacGAP was 

phosphorylated at Serine 387 by Aurora-B at the midbody, 

functionally converted from Rac/Cdc42-GAP to Rho-GAP, and 

played essential roles to complete cell division in cytokinesis 

(Minoshima et al., 2003). In interphase, MgcRacGAP formed a 
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complex with Rac1 and STAT3 and was required for the full 

transcriptional activation of STAT3, thereby enhancing the 

 differentiation of IL-6–stimulated M1 cells (Tonozuka et al., 

2004). On the other hand, when STAT5 was activated by IL-3 or 

ITD-Flt3 in conjunction with Rac1 and MgcRacGAP, the cells 

proliferate. Thus, MgcRacGAP functions as a Rac-GAP to acti-

vate transcription of STAT in the nucleus of interphase cells, 

probably leading to cell proliferation or differentiation. At cyto-

kinesis, it functions as a Rho-GAP to complete cytokinesis, in-

dicating that the distinct roles of the Rho family small GTPases 

depend on the cell cycle.

Does Rac1 play a general role 
in nuclear transport of transcription-
related proteins?
The experiments using N17Rac1 showed that Rac1 contributes 

to maximal activation of STAT1 and -3 in response to IFN-γ 

(Park et al., 2004). The molecular mechanisms of this phenom-

enon can be explained by our current results. Esufali and Bapat 

(2004) suggested that Rac1 plays some role in redistribution of 

β-catenin and that a mutant Rac1 lacking its NLS hampers nu-

clear localization of β-catenin, leading to attenuation of the 

β-catenin–dependent transcriptional activity of T cell factor/lym-

phoid enhancing factor. The authors stated that it was not yet 

clear whether the Rac1/β-catenin association facilitated nuclear 

import or retention of β-catenin or, alternatively, Rac1  augments 

the function of β-catenin as a coactivator. Given the results of 

the present study, however, it is likely that Rac1 also plays a 

critical role in the nuclear transport of β-catenin, suggesting a 

general role of Rac1 GTPase for the nuclear transport of trans-

cription factors. It is tempting to speculate that Rac1 is a mole-

cular link between changes in cytoskeletal organization and 

alterations in transcription.

Materials and methods
Culture, cytokines, and antibodies
Ba/F3 cells were maintained in RPMI1640 medium (Invitrogen) containing 
10% FCS and 1 ng/ml mIL-3 (R&D Systems). An ecotropic retrovirus pack-
aging cell line PLAT-E was maintained as described previously (Hirose 
et al., 2001). An anti-STAT5A antibody and anti-STAT5B antibody were 
obtained from R&D Systems. Affi nity-purifi ed anti-MgcRacGAP antibody 
was produced as described previously (Hirose et al., 2001). An anti-Rac1 
mAb and anti–importin α1 mAb were purchased from BD Biosciences. The 
rabbit polyclonal anti-Rac1, anti-RhoA, anti-JAK2, and goat polyclonal 
anti-HDAC or anti–importin α5 antibodies were obtained from Santa Cruz 
Biotechnology, Inc.

Immunoprecipitation and Western blotting
Immunoprecipitation, gel electrophoresis, and immunoblotting were done 
as described previously (Kawashima et al., 2001), with minor modifi ca-
tions. Cell lysates (2 × 107 cells/ml) were incubated at 4°C for 2 h with 
the indicated antibodies and protein A–Sepharose. The immunoprecipi-
tates were subjected to Western blot analysis with an anti–p-STAT5 mAb 
(Upstate Biotechnology), anti-MgcRacGAP, or anti-STAT5A antibody. The 
loading amounts were verifi ed with the anti-STAT5A or anti-MgcRacGAP 
antibody after stripping the fi lters. The fi lter-bound antibody was detected 
using the ECL system (GE Healthcare). Cytosol and nuclear fractions were 
prepared as described previously (Nakamura et al., 2002).

MBP pull-down assays
MBP fusion proteins (0.5 μg) bound to amylose resin beads were incu-
bated with cell lysates (10 μg) from IL-3–stimulated Ba/F3 cells as  described 
previously (Tonozuka et al., 2004).

Transfection and immunostaining
The 293T cells were transfected with 1.0 μg pME/STAT5A-Flag together 
with 0.5 μg pMKIT (MOCK) or pMKIT/ITD-Flt3, and in some experiments 
cells were transfected with 0.5 μg pME/STAT5A-HA and 0.5 μg pMKIT 
(MOCK) or pMKIT/ITD-Flt3 together with 1.0 μg pCMV5/N17Rac1-Flag, 
using Lipofectamine Plus reagents (Life Technologies). After 24 h, cells were 
plated on glass coverslips, and the next day the cells were immunostained 
as described previously (Hirose et al., 2001).

Microscopy
Fluorescence images were analyzed on a confocal microscope (Fluoview 
FV300 Scanning Laser Biological Microscope IX 70 system; Olympus) 
equipped with two lasers (Ar 488 and HeNe 543) using a 60× oil objective 
(PlanApo; Olympus). Fluoview version 4.3 software (Olympus) was used for 
image acquisition from confocal microscopy. Photoshop 7.0 or Photoshop 
Elements 2.0 software (Adobe) was used for processing of images.

RNA interference and semiquantitative RT-PCR
For the silencing of Rac1 or MgcRacGAP, SMARTpool Rac1 or MgcRac-
GAP siRNA (L-041170 or L040081; Dharmacon) was used. A control 
siRNA was used as a nonsilencing control (Tonozuka et al., 2004). 5 μl of 
40 μM double-stranded siRNA were introduced in to 2 × 106 cells of 
Ba/3F cells with Nucleofector II (Amaxa) set at program T-16 using a Cell 
Line Nucleofector kit V (Amaxa) according to the manufacturer’s instruc-
tion. A control vector carrying GFP was introduced to >80% of Ba/3F cells 
under this condition. 24 h after transfection, live cells were isolated using 
Ficoll-Paque PLUS (GE Healthcare), and gene expression was examined by 
semiquantitative RT-PCR analysis as described previously (Nosaka et al., 
1999). The primers used are as follows: 5′bcl-x, 5′-G A A A G A A T T C A C C A T-
G T C T C A G A G C A A C C G G -3′; 3′bcl-x, 5′-G A A A G C G G C C G C T C A C T T C C-
G A C T G A A G A G T G -3′; 5′GAPDH, 5′-A C C A C A G T C C A T G C C A T C A C -3′; 
3′GAPDH, 5′-T C C A C C A C C C T G T T G C T G T A -3′.

Production of retroviruses
High-titer retroviruses harboring Cre recombinase were produced in a tran-
sient retrovirus packaging cell line PLAT-E (Morita et al., 2000) and were 
used to deplete Rac1 in Rac2−/−Rac1fl ox/fl ox fi broblasts (Fig. 3 B).

Generation, expression, and purifi cation of recombinant proteins 
in Sf-9 cells
To construct baculovirus vectors, the cDNAs encoding STAT5A, MgcRac-
GAP, V12Rac1, L61Rac1, N17Rac1, importin αs, importin β1, Ran, and 
NTF2 with the C-terminal Flag epitope tag, and a kinase domain of JAK2 
(JH1; Saharinen et al., 2000) were subcloned into pBacPAK (BD Biosci-
ences). The resulting constructs were used to obtain recombinant baculovi-
ruses by cotransfection with Bsu36 I–digested BacPAK viral DNA (BD 
Biosciences) into Sf-9 cells according to the manufacturer’s protocol. For 
protein expression, Sf-9 cells were infected with high-titer viral stocks for 96 h 
and lysed. The lysate was clarifi ed by centrifugation, and the supernatant 
was immunoprecipitated with the anti-Flag M2-agarose affi nity gel (Sigma-
Aldrich) for 2 h at 4 °C. The recombinant Flag-tagged proteins were eluted 
with 3× Flag peptide (Sigma-Aldrich).

EMSA using purifi ed p-STAT5A
To determine whether purifi ed p-STAT5A formed a proper dimer, EMSA 
was performed using consensus sequence of STAT5A as a probe, as 
 described previously (Kawashima et al., 2001).

In vitro kinase reaction
An in vitro kinase reaction of purifi ed STAT5A was performed as described 
previously with minor modifi cations (Quelle et al., 1995). In vitro phos-
phorylated STAT5A was immunoprecipitated with the anti-Flag M2-aga-
rose affi nity gel and reeluted with a 3× Flag peptide. The purifi ed in vitro 
phosphorylated STAT5A was dialyzed against TB, and the fi nal concentra-
tions of STAT5A protein were determined for use in SDS-PAGE and in the 
nuclear transport assay.

Preparation of fl uorescent conjugates
FITC-labeled BSA (Sigma-Aldrich) conjugated with a synthetic peptide con-
taining the SV40 large T antigen (C G G G P K K K R K V E D ; NLS-conjugated 
FITC-BSA) was prepared as described previously (Adam et al., 1990), as 
a control protein harboring an NLS. We confi rmed that NLS-conjugated 
FITC-BSA was imported to the nucleus in our experimental conditions as re-
ported previously (Kutay et al., 1997), which was not inhibited by immuno-
depletion of MgcRacGAP or Rac1 (Fig. S5, p–t).
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Import assays with permeabilized cells
HeLa cells were grown on poly-L-lysine–coated coverslips and permeabi-
lized with 40 μg/ml digitonin (Roche) in TB (20 mM Hepes, pH 7.3, 110 mM 
KOAC, 2 mM Mg(OAC)2, 1 mM EGTA, 2 mM DTT, 0.4 mM PMSF, 
3 μg/ml aprotinin, 2 μg/ml pepstatin A, 1 μg/ml leupeptin, and 20 mg/ml 
BSA) for 10 min at RT. Subsequently, the cells were washed twice in TB. 
 Incubation with 50 μl import mix was performed at 37°C for 30 min. The 
import mix contained TB, an energy regenerating system (0.5 mM ATP, 
0.5 mM GTP, 10 mM creatine phosphate, and 30 U/ml creatine phospho-
kinase), and 1 μM of purifi ed unphosphorylated or phosphorylated STAT5A 
alone, or STAT5A plus the 1 μM of other purifi ed cofactor proteins as indi-
cated in Fig. 6 C. After the import reaction, the cells were washed with ice-
cold TB and immunostained with the anti-STAT5A antibody and anti–p-STAT5 
mAb as described previously (Hirose et al., 2001). Fixed cells were exam-
ined using a Fluoview FV300 confocal microscope (Olympus).

Online supplemental material
Fig. S1 depicts the binding domains of MgcRacGAP with STAT5A and 
that of STAT5A with MgcRacGAP. Fig. S2 shows that N17Rac1 expression 
inhibits the nuclear translocation of p-STAT5A. Fig. S3 shows that the DB2 
region is required for the interaction of STAT3 with MgcRacGAP and the 
transcriptional activation of STAT3. Fig. S4 shows that purifi ed p-STAT5A 
forms a dimer and binds DNA containing the STAT5 consensus sequence 
and that the purifi ed STAT5A can be phosphorylated in vitro. Fig. S5 shows 
that the in vitro phosphorylated recombinant STAT5A can be imported to 
the nucleus in the nuclear transport assay and that immunodepletion of 
Rac1 or MgcRacGAP specifi cally inhibits the nuclear import of p-STAT5A 
using HeLa cytosol extract. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200604073/DC1.
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