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Abstract 
Selection of a suitable habitat by animals before settlement is critical for their survival and reproduction. In silk-spinning arthropods like spider 
mites, denser webs offer protection from predation and serve as a dispersal mode. Settling in habitats with the presence of conspecifics and 
silk webs can benefit the habitat-searching females. Silk and conspecifics usually coexist, but their distinct effects on female colonization have 
received little attention. In this study, we used a haplodiploid spider mite, Tetranychus ludeni Zacher (Acari: Tetranychidae), to examine the impact 
of conspecific cues, including cues from ovipositing conspecifics and silk, on habitat selection and subsequent reproductive performance of 
females. Results show that females significantly preferred habitats with cues from neighboring conspecifics and silk and neighboring conspecif-
ics induced additive effect to that of silk on habitat selection. Conspecific cues did not boost female reproduction but facilitated females laying 
larger eggs that were more likely to be fertilized and to develop into daughters. When given a choice between silk-covered and clean habitats, 
females preferred silk-covered habitats, laid a similar number of eggs with similar size, but produced more daughters, suggesting that T. ludeni 
females can adjust the size threshold for fertilization in response to the current social environment. Knowledge of this study improves our under-
standing of spider mite habitat selection and post-settlement reproductive performance behaviors.
Key words: conspecific cues, habitat selection, reproduction, sex allocation.

Habitat selection, the phenomenon by which individuals decide 
to use or settle in a given site, is certainly important for growth, 
survival, and reproduction (Vollrath 1987; Reed and Dobson 
1993; Vinson 1998; Schuck-Paim and Alonso 2001; Fletcher 
and Miller 2008; Clotuche et al. 2013a). Habitat selection by 
animals is not random. Much evidence suggests that animals 
select habitats by using information such as tactile, visual, acous-
tic, or chemical cues to explicitly assess habitat quality (Godfray 
1994; Schmidt et  al. 2010; Aquino et  al. 2012; Buxton et  al. 
2020; Bowen-MacLean et al. 2021). It is frequently reported that 
social species may use multiple conspecific cues for breeding- 
site selection (Reed and Dobson 1993), because settling near 
conspecifics brings various benefits including reduced searching 
costs (Fletcher 2006) and incidental assessment of habitat qual-
ity (Doligez et al. 2003), and increasing fitness gains through the 
Allee effect (i.e., positive correlation between population density 
and fitness of individuals) (Courchamp et  al. 2008; Astudillo 
Fernandez et al. 2012a, 2012b).

In silk-spinning arthropods, silken threads are indicative of 
the presence of conspecifics and thus can be used as a social 
cue for group cohesion or for selection of a place to live (Saffre 
et al. 1999; Schuck-Paim and Alonso 2001; Bernard and Krafft 
2002; Despland and Le Huu 2007; Yano 2012; Clotuche 
et  al. 2014). Spider mites from genus Tetranychus produce 
silk webs while walking (Saito 1977; Clotuche et al. 2012a). 
The dense webs may protect mites from predation (McMurtry 

et  al. 1970; Sabelis 1985; Tien et  al. 2009; Dittmann and 
Schausberger 2017), bad weather conditions (Davis 1952; 
Linke 1953) and pesticides (McMurtry et al. 1970) and serve 
as modes of dispersal (Saito 1977; Gerson 1985; Yano 2008; 
Clotuche et al. 2013b). Additionally, silk may act as the sub-
strate for sex pheromones (McGregor 1950; Saito 1977, 
1979; Sabelis 1985; Sabelis and Bakker 1992; Zhang et al. 
2002; Yano 2008; Clotuche et al. 2009, 2011, 2012b, 2014; 
Tien et al. 2009; Le Goff 2011). Moreover, as spinning silk 
is costly due to energy and protein expenditure (Hazan et al. 
1974), mothers living on leaves over which silk is already 
present may minimize their silk production and allocate 
more resources to reproduction (Oku et  al. 2009; Le Goff 
et al. 2010) and survival (Le Goff et al. 2010; Yano 2012). 
Considering the given benefits, spider mites usually tend to 
settle in the presence of conspecifics and their silk directly by 
perceiving visual and olfactory cues emitted by ovipositing 
conspecifics and/or indirectly by tracking olfactory cues from 
feces and silk (Royalty et al. 1993; Clotuche 2011; Le Goff 
2011; Bowen-MacLean et al. 2021; Schausberger et al. 2021). 
Nevertheless, in nature, conspecifics and silk usually exist 
concurrently; whether they have distinct effects on settlement 
and reproduction of colonizers has received little attention. 
Furthermore, the behavioral responses of spider mites are 
usually stronger in the presence of multiple cues than that of 
an individual cue alone (Azandémè-Hounmalon et al. 2016).
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Spider mites usually colonize and feed on the underside 
of leaves of host plants by piercing cells and extracting cell 
contents (Dhooria 2016), leading to scramble competition for 
food resources (Krips et al. 1998). Aggregating in a habitat 
may induce overcrowding conditions which will accelerate 
food depletion in the natal environment (Krips et al. 1998; 
Clotuche et al. 2011; Bitume et al. 2013). Therefore, females 
must develop strategies to minimize resource competition 
with conspecifics and their offspring. Tetranychus spp. are 
haplodiploid species, mated females raise haploid sons from 
unfertilized eggs and diploid daughters through fertilized eggs 
(Young et al. 1986; Macke et al. 2011; Zhou et al. 2018). They 
are capable of manipulating offspring sex ratio by adjusting 
egg size and fertilizing larger eggs that develop into daugh-
ters (Macke et  al. 2011, 2012; Weerawansha et  al. 2022), 
or through sex allocation distortion by Wolbachia bacteria, 
which is driven by increasing egg size, hereby promoting egg 
fertilization (Wybouw et  al. 2023). In spider mites, females 
usually mate at emergence and then disperse from the dense 
environments (Brandenburg and Kennedy 1982; Boykin 
and Campbell 1984; Margolies and Kennedy 1985; Li and 
Margolies 1993; Yano 2004; Osakabe et al. 2008; Clotuche 
et al. 2013c). Tetranychus species have a high female-biased 
sex ratio, which will reduce the intensity of local mate com-
petition and local resource competition (Macke et al. 2012; 
Weerawansha et  al. 2023). Yet, it remains unclear whether 
and how females adjust offspring sex ratio in response to 
socio-environmental cues in their surroundings.

Here, we used the spider mite, Tetranychus ludeni Zacher, 
as a model species to examine whether the settlement and 
reproductive performance of mated females were influenced 
by the presence of conspecific cues. Based on the knowledge 
outlined above, we tested two hypotheses that 1) females are 
more likely to settle, lay more eggs, and produce a higher 
female-biased offspring sex ratio in habitats covered with 
conspecific silk compared with the clean ones (i.e., no silk 
and no conspecifics), and 2) females tend to settle, lay more 
eggs, and produce a higher female-biased offspring sex ratio 
on silk-covered habitats with conspecifics occupying the 
neighboring habitats, compared with the silk-covered or clean 
habitats. The results of this study are anticipated to enhance 
our understanding of the mechanisms of habitat selection and 
the post-settlement reproductive performance of silk-spinning 
arthropods.

Materials and Methods
Mite colony and experimental conditions
We started a colony of T. ludeni by collecting adults on 
Passiflora mollissima Kunth (Malpighiales: Passifloraceae) in 
Palmerston North, New Zealand, and reared them on com-
mon bean plants Phaseolus vulgaris L. (Fabales: Fabaceae) 
grown in pots. We used the first expanded leaves of 1- to 
2-week-old plants for the experiment. The colony was main-
tained, and experiments were conducted under environ-
mental conditions of 25 ± 1 °C, 40 ± 10% RH, and 16:8 h 
(light:dark) photoperiod.

Preparation of mites for experiments
To obtain mated females for the experiment, we haphaz-
ardly collected 50 female deutonymphs from the colony 
and introduced them onto a bean leaf square (2 cm × 2 cm) 
placed on a water-saturated cotton pad in a Petri dish (9.5 cm 

diameter × 1.0 cm height) with a mesh-covered ventilation 
hole (1.0 cm diameter) in the lid. Deutonymphs were allowed 
to develop to the quiescent stage. We then introduced 15 
newly emerged male adults produced by virgin females onto 
the leaf square. We maintained these mites for 24 h to allow 
mating to occur on female emergence. The mated females 
were then employed for the experiment. Sixty such Petri 
dishes were prepared for the experiment. We obtained about 
2,500 mated female adults from those dishes.

Experimental procedures
To test the effects of the presence of conspecific cues on mated 
female dispersal and reproduction, we set up 3 habitat selec-
tion treatments: (1) Silk vs. NoCue, females were offered a 
choice of 2 habitats, 1 with silk (Silk) and another with no 
cue (NoCue) (Figure 1A); (2) Silk+Consps vs. NoCue, females 
were offered a choice of 2 habitats, 1 with silk and 5 neigh-
boring conspecifics (Silk + Consps) and another with no cue 
(NoCue) (Figure 1B), and (3) Silk+Consps vs. Silk, females 
were offered a choice of 2 habitats, 1 with silk and 5 neigh-
boring conspecifics (Silk+Consps) and another with silk (Silk) 
(Figure 1C). There were 20 replicates for each treatment. 
The experimental females and neighboring conspecifics were 
prepared as mentioned above, and they were haphazardly 
selected with the same age (i.e., 1 day old) when used for the 
experiment.

To obtain a “silk-covered” section, we introduced 15 mated 
females prepared as mentioned above onto a leaf square  
(4 cm × 4.6 cm) placed upside down on a water-saturated 
cotton pad in an above Petri dish, and allowed them to 
deposit silk for 24 h (Figure 1, top dish), after which time we 
removed the females, eggs, and feces using a fine brush. The 
“silk-covered” leaf square was then split into 2 equal sections 
(4 cm × 2.2 cm) by cutting off a 2-mm-wide leaf strip using a 
knife along its mid-plane, so that the water-saturated cotton 
pad could support the parafilm square (1 cm × 1 cm) from 
which the test females selected and dispersed to either hab-
itat (Figure 1A–C). To ensure a clean leaf surface devoid of 
conspecific cues from silk and feces (Figure 1A,B), we metic-
ulously washed 1 of the 2 leaf sections with distilled water 
and a fine hairbrush, and then left the washed section to air-
dry for 1 h in the laboratory. These processes aimed to mini-
mize the difference in leaf quality between the “silk-covered” 
and clean leaf sections due to mite feeding. Each leaf section 
was further divided into 2 equal sub-sections (4 cm × 1 cm) 
(Figure 1A,B). This division was achieved by cutting off a 
2-mm-wide leaf strip from one-fourth the length of one side 
of the original leaf square (Figure 1A–C). Depending on 
the treatment, we introduced 5 mated females onto the far 
neighboring leaf sub-section creating the habitat condition 
of presence of conspecifics (Figure 1B and C). We placed a 
parafilm square in the center that bridged the 2 neighbor-
ing leaf sub-sections (Figure 1A–C). We then introduced 15 
mated females onto the parafilm square and allowed them 
to disperse and settle on the 2 inner neighboring leaf sub- 
sections (Figure 1A–C) without any physical contact with the 
neighboring conspecifics (Figure 1B and C). After 24 h, we 
counted and recorded the number of dispersed individuals 
that finally settled on each of neighboring leaf sub-sections. 
For each replicate, we calculated the overall dispersal rate 
(i.e., proportion of females dispersed) as the number of dis-
persed females/total number of test females (i.e., n = 15), and 
habitat selection (i.e., proportion of dispersed females settling 
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on a habitat) as the number of females settling on a selected 
habitat/total number of dispersed females. To eliminate the 
variance between treatments caused by individual mites from 
different batches, 3–5 replications of each treatment were 
daily performed simultaneously.

To test whether the selected habitat environment affect-
ing the subsequent reproductive fitness of mated females, we 
removed parafilm bridges after counting the number of dis-
persers and separated the cotton pad in the Petri dish into 2 
equal halves by cutting along its mid-vertical line using scis-
sors while keeping the leaf sections (i.e., one inner and one 
outer sub-sections) intact. We then transferred each half of 
the cotton pad along with the dispersed mites and its adja-
cent leaf sub-section containing 5 conspecifics, no cue or silk 
onto a new Petri dish. We allowed the females to oviposit in 
situ for 5 days. We checked each Petri dish twice a day. The 
total number of eggs laid in a selected habitat was counted. 
Due to the different number of females settled on different 
selected habitats, we also calculated the number of eggs laid 
by a female on a habitat (i.e., total number of eggs laid on a 
selected habitat/number of females settling on that habitat). 
As egg size does not change before hatching (usually in 3 days 
under the experimental conditions), we haphazardly selected 
all or a maximum of 20 eggs from each test leaf section on 

the 3rd day of oviposition and measured the egg diameter 
under a stereomicroscope (Leica MZ12, Germany) connected 
to a digital camera (Olympus SC30, Japan) and an imag-
ing software (CellSens® GS-ST-V1.7, Olympus, Japan). We 
then calculated the egg size (volume =4/3πr3), where r is the 
radius (= diameter/2). The larvae hatching from the eggs were 
allowed to feed in situ; after developing into protonymphs 
they were transferred onto a clean leaf square (2 cm × 2 cm), 
where they developed into adults. Newly emerged adults were 
sexed and removed from the leaf square daily. We calculated 
the offspring sex ratio (i.e., proportion of daughters) as the 
number of daughters/total number of offspring, and imma-
ture survival rate as the number of eggs laid/total number of 
offspring.

Statistical analysis
We analyzed all data using SAS 9.4 (SAS Institute Inc., Cary, 
NC). Data on the percentage of mated females dispersing 
from the parafilm square to any habitat in the 3 exper-
imental settings (treatments) (Figure 2A) were analyzed 
using a generalized linear model with a Logit function 
and a binomial distribution (GLIMMIX procedure). Their 
differences were multiply compared using an adjusted- 
Tukey test. Data on habitat selection (Figure 2B), number 

Figure 1. Diagram of experimental design to test the effects of presence of conspecific cues on habitat selection and reproduction of Tetranychus 
ludeni females. The test females were able to detect cues from the far leaf sub-sections but unable to settle on these sub-sections.
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of eggs laid per female, total number of eggs laid in a 
selected habitat, egg size, offspring sex ratio (proportion of 
daughters) (Figure 3), and immature survival rate (Figure 
4) were normally distributed (Shapiro–Wilk test, univari-
ate procedure). As these parameters were paired datasets 
within each replicate of a given treatment, the difference 
between the 2 selected habitats was compared using a 
paired-t test (TTEST procedure).

Results
Dispersal and settlement
Among the test individuals, the percentage of mites dis-
persing from the parafilm square was not significantly dif-
ferent between the three experimental settings (F2,57 = 0.45, 
P = 0.6384) (Figure 2A). However, among the dispersers, sig-
nificantly more females selected and settled in habitats with 
the presence of neighboring conspecifics and/or silk, i.e., they 
preferred Silk to NoCue habitat in treatment Silk vs. NoCue 
(t19 = 4.45, P = 0.0003), preferred Silk + Consps to NoCue 
habitat in treatment Silk + Consps vs. NoCue (t19 = 5.97, 
P < 0.0001), and preferred Silk + Consps to Silk habitat 
in treatment Silk + Consps vs. Silk (t19 = 5.70, P < 0.0001) 
(Figure 2B).

Reproduction
The number of eggs laid by a female after settling in a 
selected habitat was not significantly influenced by the pres-
ence of conspecific cues (t19 = −0.98, P = 0.3379 for Silk vs. 
NoCue; t19 = -0.47, P = 0.6424 for Silk + Consps vs. NoCue; 
t19 = −1.94, P = 0.0676 for Silk + Consps vs. Silk) (Figure 

3A). However, due to significantly more females settling in 
habitats with the presence of conspecific cues (Figure 2B), 
the total number of eggs laid in the preferred habitats was 
significantly higher, i.e., Silk > NoCue in treatment Silk vs. 
NoCue (t19 = 5.13, P < 0.0001), Silk + Consps > NoCue in 
treatment Silk + Consps vs. NoCue (t19 = 6.75, P < 0.0001), 
and Silk + Consps > Silk in treatment Silk + Consps vs. Silk 
(t19 = 6.48, P < 0.0001) (Figure 3B).

Silk cue alone had no significant effect on egg size com-
pared with NoCue (t19 = 0.83, P = 0.4169) (Figure 3C); 
however, eggs laid by females in habitats with multiple 
conspecific cues were significantly larger than that with no 
cue (t19 = 4.83, P < 0.0001) or with silk cue only (t19 = 5.29, 
P < 0.0001) (Figure 3C). The proportion of daughters was 
significantly higher in habitats with the presence of conspe-
cifics and/or silk cue, i.e., Silk > NoCue in treatment Silk vs. 
NoCue (t19 = 5.06, P < 0.0001), Silk + Consps > NoCue in 
treatment Silk + Consps vs. NoCue (t19 = 10.00, P < 0.0001), 
and Silk + Consps > Silk in treatment Silk + Consps vs. Silk 
(t19 = 6.04, P < 0.0001) (Figure 3D).

Conspecific cues had no significant effect on the imma-
ture survival (t19 = −1.98, P = 0.0629 for Silk vs. NoCue; t19 
= 1.12, P = 0.2779 for Silk + Consps vs. NoCue; t19 = 0.19, 
P = 0.8506 for Silk + Consps vs. Silk) (Figure 4).

Discussion
In the present study, we differentiated the effects of silk and 
neighboring conspecifics on habitat selection in spider mite 
females. We demonstrate that although T. ludeni females 
had similar possibility to disperse regardless of experimental 

Figure 2. Effects of presence of conspecific cues on female dispersal (A) and habitat selection (B) in Tetranychus ludeni. n.s. indicates non-significant 
difference (P > 0.05), and * indicates significant difference (P < 0.05).
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settings (Figure 2A), they significantly preferred habitats 
with conspecific cues, either from silk alone or silk along 
with additional conspecifics in neighboring habitats, for 

settlement (Figure 2B). It has long been recognized that in 
many web-building species, including spider mites, the pres-
ence of conspecifics and webs can increase the probability of 

Figure 3. Effects of presence of conspecific cues on number of eggs laid per dispersed female (A), total number of eggs (B), egg size (C), and 
proportion of daughters (D) in selected habitats in Tetranychus ludeni. n.s. indicates non-significant difference (P > 0.05), and * indicates significant 
difference (P < 0.05).
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settlement (Enders 1977; Leborgne and Pasquet 1987a, 1987b; 
Hodge and Storfer-Isser 1997; Schuck-Paim and Alonso 
2001; Buxton et al. 2020; Schausberger et al. 2021). We show 
that when given a choice between Silk and NoCue habitats,  
T. ludeni females were more likely to select the silk-covered 
habitats (Figure 2B). This aligns with previous observations 
that cues from silk are sufficient to induce conspecific aggre-
gation in spider mites (Yano 2008; Clotuche 2011, 2012a, 
2012b, 2014; Carr and Roe 2016). However, silk may not 
always be the main cause of aggregation displayed by spider 
mites (Astudillo Fernandez et al. 2012a), because silk only pro-
vides short-term indirect positive feedback including recruit-
ment and arrestment (Van Impe 1985; Le Goff et al. 2010). 
We further reveal that when provided the Silk + Consps and 
Silk habitats for choice, females significantly preferred the for-
mer for settlement (Figure 2B), suggesting that the presence of 
conspecific cues from ovipositing females in the neighboring 
habitat induced an additive effect to that of Silk cue on habi-
tat selection in T. ludeni. Previous studies also reveal that the 
presence of conspecifics predominantly influences spider mite 
dispersal and settlement (Reed and Dobson 1993; Stamps 
1994; Stephens and Sutherland 1999), because of the longer-
term direct positive feedback through Allee effects, such as 
higher reproduction and survival in groups (Van Impe 1985; 
Le Goff et al. 2010; Astudillo Fernandez et al. 2012a, 2012b).

It is known that producing silk in spider mites involves 
costs of expenditure in energy, protein, and amino acids 
(Hazan et al. 1974), thus settling on webs that are previously 
constructed may allow females to save resources and allocate 
them to egg production (Oku et al. 2009). In this sense, females 
are expected to lay more eggs in habitats with the presence 
of conspecifics and webs (Le Goff et al. 2010). Surprisingly, 
in this study, the presence of conspecific cues did not elevate 
female fecundity (Figure 3A). Alternately, we show that due 
to more females settling in habitats with the presence of con-
specific cues (Figure 2B), eggs laid in the preferred habitats 
were significantly higher (Figure 3B). The results may have 2 
implications. First, aggregating females adjust their reproduc-
tive strategies by restraining their reproductive output due to 
the increasing population size and density (Krips et al. 1998; 
Clotuche 2011; Bitume et al. 2013). Second, aggregating in 
a large group may also entail costs on foraging and feeding 
efficiency because of the interference among group members 

(Bilde et  al. 2007; Estevez et  al. 2007; Grove 2012; Wong 
et al. 2013; Li and Zhang 2021; Tinsley Johnson et al. 2021) 
which may also restrain female fecundity. Females restrain-
ing reproductive output (Figure 3A) in habitats with high egg 
density (Figure 3B) might reduce future food competition and 
subsequently ensure offspring survival (Figure 4).

Although conspecific cues did not elevate fecundity (Figure 
3A), females aggregated in Silk + Consps habitats significantly 
increased egg size (Figure 3C) and produced a significantly 
higher female-biased offspring sex ratio in response to the pres-
ence of conspecific cues (Figure 3A). These results indicate that 
T. ludeni females facultatively manipulated offspring sex allo-
cation by adjusting egg size in response to the conspecific cues. 
Previous studies on spider mites have demonstrated that mated 
females are more likely to fertilize larger eggs that develop into 
daughters (Macke et al. 2011, 2012; Weerawansha et al. 2022) 
and produce a higher female-biased sex ratio in the larger and 
denser populations (Weerawansha et al. 2023). Producing more 
daughters by the females that aggregate in clusters may decrease 
resource competition with their offspring because daughters 
usually mate at emergence and then disperse from the dense 
environmental conditions (Brandenburg and Kennedy 1982; 
Boykin and Campbell 1984; Margolies and Kennedy 1985; Li 
and Margolies 1993; Yano 2004; Osakabe et al. 2008; Clotuche 
et al. 2013a). Moreover, a female-biased sex ratio of offspring 
may minimize the local mate competition between sons (Macke 
et al. 2012; Weerawansha et al. 2023) when females aggregate in 
habitats with conspecific cues.

Additionally, our results reveal that when provided a choice 
between Silk and NoCue habitats, the size of eggs laid by 
females was similar (Figure 3C), but the proportion of daugh-
ters was significantly higher in the Silk habitat than that in the 
NoCue one (Figure 3D). These results suggest that Silk alone 
did not allow the aggregating females to allocate more nutri-
ents to produce larger eggs; however, ovipositing females may 
be capable of adjusting the sex allocation strategy to fertilize 
more eggs in the silk-covered and crowded habitat by lower-
ing the fertilization threshold, above which eggs are fertilized. 
However, it is noted that the colony of T. ludeni was derived 
from a field population, which might include both Wolbachia-
infected and -uninfected females. How Tetranychus females 
adjust sex allocation in response to Wolbachia infection under 
various social environments warrants future investigations.

Figure 4. Effects of presence of conspecific cues on immature survival in Tetranychus ludeni. n.s. indicates non-significant difference (P > 0.05).
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Overall, the study reveals that the habitat choice of  
T. ludeni females is also influenced by the presence of con-
specifics. However, conspecific cues from ovipositing conspe-
cifics do not boost female fecundity, although they induce 
the production of larger eggs that give rise to more daugh-
ters. Restraining fecundity while producing more daughters 
could be the strategy to minimize resource competition and 
interference among individuals. We also find that ovipositing 
conspecifics impose an additive effect on Silk cue for habi-
tat selection by T. ludeni females. Females tend to settle on 
silk-covered habitats over those with NoCue; although they 
lay a similar number of eggs with similar sizes in both hab-
itats, but produce more daughters, suggesting that T. ludeni 
females can adjust the size threshold for fertilization above 
which eggs are fertilized. Knowledge of this study enhances 
our understanding in the dispersal and reproductive strategies 
of spider mites in response to the social environments.
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