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Abstract
Homologous recombination deficiency (HRD) leads to DNA double-strand breaks and can be exploited by the use of
poly (ADP-ribose) polymerase (PARP) inhibitors to induce synthetic lethality. Extending the original therapeutic
concept, the role of HRD is currently being investigated in clinical trials testing immune checkpoint blockers alone
or in combination with PARP inhibitors, but the relationship between HRD and immune cell context in cancer is
incompletely understood. We analyzed the association between immune cell composition, gene expression, and HRD
in 9,041 tumors of 32 solid cancer types from The Cancer Genome Atlas (TCGA). The numbers of genomic scars
were quantified by the HRD sum score (HRDsum) including loss of heterozygosity, large-scale state transitions, and
telomeric allelic imbalance. The T-cell inflamed gene expression profile correlated weakly, but significantly posi-
tively, with HRDsum across cancer types (ρ = 0.17). Within individual cancer types, a significantly positive correla-
tion was observed only in breast cancer, ovarian cancer, and four other cancer types, but not in the remaining
26 cancer types. HRDsum and tumor mutational burden (TMB) correlated significantly positively across cancer types
(ρ = 0.42) and within 18 cancer types. HRDsum and a proliferation metagene correlated significantly positively
across cancer types (ρ = 0.52) and within 20 cancer types. Mismatch repair deficiency and HRD as well as proof-
reading deficiency showed a high level of exclusivity. High HRD scores were associated with an immunologically
activated tumor microenvironment only in a minority of cancer types. Our data favor the combination of genetic
markers, complex genomic markers (including HRDsum and TMB), and other molecular markers (including prolifera-
tion scores) for a precise and comprehensive read-out of the tumor biology and an individually tailored treatment.
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Introduction

Defects in different components of the DNA repair
machinery [1] are successfully exploited therapeutically
in specific cancer types as well as across cancer types.
Mismatch repair deficiency (MMRD) is typically
detected by lack of immunohistochemical expression of
MLH1, MSH2, MSH6, PMS2, or fragment length analy-
sis indicating microsatellite instability (MSI). MMRD
leads to accumulation of frameshift mutations connected
with the expression of potent neoantigens. Deleterious
mutations in POLE or POLD1 lead to proofreading defi-
ciency (PRD), accumulation of missense mutations, and
ultra-high tumor mutational burden (TMB). Both
MMRD and PRD represent promising biomarkers for
responsiveness to immune checkpoint blockade (ICB)
[2,3]. In 2017, the US Food and Drug Administration
(FDA) approved pembrolizumab for the treatment of
tumors with MMRD in an entity-agnostic manner. Addi-
tionally, in 2020, an entity-agnostic approval of TMB to
detect patients who will likely benefit from ICB was
granted [4,5].
Homologous repair deficiency (HRD), identified

either by deleterious alterations of genes of the homolo-
gous recombination repair pathway or by the resulting
signature of genomic scars, has been shown to identify
patients who benefit from PARP inhibition [6–8].
More recent trials are investigating the role of HRD

in the context of checkpoint blockade alone or in con-
junction with PARP inhibition. The rationale behind
this approach is the assumption that HRD, similar to
MSI, may give rise to unstable genomes leading to
neoantigens which elicit a strong immune response
that could be unleashed by ICB. Combining ICB and
PARP inhibitors may therefore result in additive or
synergistic effects [9–14].
Over the last few years, many research efforts collec-

tively led to an improved understanding of the immune
cell context [15] in microsatellite unstable [16,17] and
TMB-high [18] tumors, but studies comparing the
immune cell composition in HRD-positive and
-negative tumors are scarce. As a contribution to this
research field, we comprehensively analyzed the associ-
ation of HRD, MMRD/PRD, TMB, immune cell infil-
tration, and gene expression across 9,041 tumors of
32 solid cancer types. In this context, HRD was ana-
lyzed in two ways: (1) based on deleterious, biallelic
mutations of BRCA1/2 and BRCA1 hypermethylation
and (2) based on HRDsum, the summation score of loss
of heterozygosity (LOH) [19], large-scale state transi-
tions (LSTs) [20], and telomeric allelic imbalance (TAI)
[21] recently used in clinical trials [8].

Materials and methods

The analysis was performed using data from The Can-
cer Genome Atlas (TCGA) and comprised 9,041 pri-
mary tumors of 32 solid cancer types. Leukemia cases
were excluded. Only tumors with both mutational data
(from whole-exome sequencing) and copy number
data (from single-nucleotide polymorphism [SNP]
arrays) were included. Gene expression data were
available for 8,522 of these tumors.
Allele-specific copy numbers estimated from SNP

array data using the ASCAT algorithm were obtained
from the GDC Data Portal [22]. Starting from the copy
number data, HRD scores, LOH, LST, TAI, and
HRDsum (= LOH + LST + TAI) were calculated
using scarHRD [23].
Gene expression data and mutation calls were

obtained from the pan-cancer web page of the GDC
Data Portal (https://gdc.cancer.gov/about-data/
publications/pancanatlas). Gene expression data were
transformed to a logarithmic scale using the transfor-
mation x to log2(x + 1). The abundance of 14 specific
immune cell populations in the tumor microenviron-
ment (TME) was estimated using the method devel-
oped by Danaher et al. [24]. The level of the T-cell
inflamed gene expression profile (GEP) was calculated
as described in [25].
TMB was calculated by counting the missense

mutations of each tumor. The cutoff points of 42 geno-
mic scars and 199 missense mutations (corresponding
to 10 mut/Mb) were used for stratification of HRDsum
and TMB values, respectively [8,26,27]. Ultra-high
TMB was defined by the cutoff point of 1,990 mis-
sense mutations (corresponding to 100 mut/Mb) [28].
Statistical analysis and generation of figures were

performed using the statistical programming language
R. Associations between continuous variables were
assessed using Spearman correlations (ρ). Associations
between continuous variables and binary variables
were assessed using the two-sided Wilcoxon test.
Association between dichotomized versions of the bio-
markers (binary variables) was assessed using the two-
sided Fisher’s exact test. Multiple testing correction
was carried out using the Benjamini–Hochberg method
to control the false discovery rate (FDR) at 10%. In
the context of heatmap display, multiple testing correc-
tion included both dimensions, the cancer types, and
the immune biomarkers.
The association of HRDsum and gene expression of

individual genes was assessed using Spearman correla-
tions and corresponding P values. Separate gene lists
of positively (ρ > 0.3) and of negatively (ρ < �0.3)
correlating genes were generated. Only genes that
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were significant after multiple testing correction
(Benjamini–Hochberg method, FDR = 10%) were
included in the gene lists. The gene lists were analyzed
for enrichment with respect to the 50 hallmark gene
sets from the Molecular Signatures Database
(MSigDB v7.4) [29]. The significance of enrichments
or depletions was assessed using the two-sided Fish-
er’s exact test. The enrichment foldchange with respect
to a hallmark gene set was calculated as quotient of
the proportion of the genes in the gene list in the gene
set divided by the proportion of the genes in the
genome in the gene set. A proliferation metagene was
defined as mean expression level (log2 scale data) of
the 200 genes in the ‘G2M-checkpoint’ hallmark
gene set.

Results

A total number of 9,041 primary tumors of 32 solid
cancer types were included. A list of cancer type
abbreviations used in the description and discussion of
the data is provided in Table 1.

Association of immune cell infiltration with HRD
HRDsum as a continuous variable

We analyzed the association of 14 specific immune
cell populations, PD-L1 expression, and the T-cell
inflamed GEP with HRDsum (Figure 1). The T-cell
inflamed GEP correlated weakly, but significantly
positively, with HRDsum across cancer types
(ρ = 0.17) as well as in the following cancer types:
BRCA, KIRC, KIRP, LGG, OV, and TGCT
(ρ = 0.20, 0.23, 0.20, 0.10, 0.19, and 0.28). For the
remaining cancer types, no significant positive cor-
relation was observed. When analyzing the aggre-
gated pan-cancer dataset, HRDsum also correlated
positively with a core set of immune cell
populations including CD8-positive T cells, regula-
tory T cells, and NK cells (Figure 1A). This was
also observed in four of the mentioned cancer types
(BRCA, KIRC, KIRP, and TGTC). In 11 other can-
cer types (BLCA, CHOL, OV, LGG, LUAD,
PRAD, READ, THYM, SARC, UCEC, and UCS)
positive correlations were detected only for a minor-
ity (1–7) of the immune markers. In the majority of
cancer types (17 of 32), none of the immune cell
populations correlated significantly positively with
HRDsum.

HRDsum as a dichotomized variable

Comparing HRD-positive and HRD-negative tumors
(cutoff point: 42 genomic scars), a significantly higher T-
cell inflamed GEP was detected in the aggregated pan-
cancer dataset (fold change = 1.48). In the analysis of
the 32 individual cancer types, a higher T-cell inflamed
GEP was detected only in bladder cancer (BLCA, fold
change = 1.55) and in breast cancer (BRCA, fold
change = 1.43), but in none of the other cancer types. In
the pan-cancer dataset and in BRCA, all investigated
immune cell populations with the exception of mast cells
were up-regulated simultaneously with the GEP. In
BLCA, PRAD, SARC, UCEC, and UCS, we detected
up-regulation of a few immune cell populations in HRD-
positive tumors, while none of the 14 immune cell
populations were up-regulated in the remaining 26 cancer
types (Figure 1B). In SARC, we observed a strong up-
regulation of macrophages and of dendritic cells (both
fold changes > 2). Up-regulation of cytotoxic cells and of
PD-L1 was detected only pan-cancer (fold changes = 1.3
and 1.55) and in BRCA (fold changes = 1.63 and 1.78),
but in none of the 31 other cancer types.

Table 1. Cancer type abbreviations
ACC Adrenocortical carcinoma
BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and

endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Diffuse large B-cell lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and neck squamous cell carcinoma
KICH Kidney chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LGG Brain lower grade glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
TGCT Testicular germ cell tumors
THYM Thymoma
THCA Thyroid carcinoma
UCS Uterine carcinosarcoma
UCEC Uterine corpus endometrial carcinoma
UVM Uveal melanoma

373Non-association of HRD and immune infiltration

© 2022 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2022; 8: 371–382



Figure 1. Association of the levels of specific immune cell populations, PD-L1 expression, and the T-cell inflamed GEP with the HRDsum
score across cancer types (pan-cancer) and in each of 32 cancer types. (A) Heatmap of Spearman correlations between HRDsum and the
gene expression-based biomarkers. (B) Heatmap of fold changes between HRD-positive (HRDsum ≥ 42) and HRD-negative
(HRDsum < 42) tumors. (C) Heatmap of fold changes between BRCA1/2-altered tumors and the remaining tumors. Alterations included
comprised deleterious biallelic mutations in BRCA1 or BRCA2 and BRCA1 hypermethylation. Colored boxes mark results that were signif-
icant after multiple testing correction for both the investigated cancer types and the investigated biomarkers (33 � 16 hypotheses,
FDR = 10%). Dark grey boxes mark not significant results.
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HRD interrogated by the mutational status of BRCA1/2

Comparing tumors with deleterious alterations in
BRCA1/2 and unaltered tumors, immune up-regulation
was only observed in breast cancer, in testicular germ
cell cancer, and in the pan-cancer analysis and
restricted to very few biomarkers (Figure 1C).

Analysis of HRDsum in the subtypes of breast cancer and
ovarian cancer

The highest levels of HRDsum were detected in
triple-negative breast cancer (TNBC), high-grade
serous ovarian carcinoma, and low-grade serous
ovarian carcinoma (supplementary material,
Figure S1A). The levels of HRDsum were lower in
HER2+ breast cancer and even lower in hormone
receptor positive (HR+) HER2� breast cancer. Posi-
tive correlations of the T-cell inflamed GEP and
a few immune cell populations were detected in
HR+/HER2� breast cancer, but not in the other sub-
types of breast cancer and not in the subtypes of
ovarian cancer (supplementary material, Figure S1B).
Up-regulation of almost all immune markers (except
B cells and mast cells) was detected in the HRD-
positive tumors of HR+/HER2� breast cancer (sup-
plementary material, Figure S1C). Only two immune
cell populations were up-regulated in the HRD-
positive tumors of HER2+ breast cancer, while none
of the immune markers were up-regulated in the
HRD-positive tumors of TNBC and of the subtypes
of ovarian cancer.

Functional genomics analysis of HRD scores
We carried out a genome-wide correlation analysis
of gene expression and HRDsum followed by a
gene set enrichment analysis. Correlating genes
were investigated across cancer types and separately
for each of the cancer types. Gene lists of signifi-
cantly correlating genes were generated separately
for positive and for negative correlations and only
genes with correlations above the threshold jρj > 0.3
were include in the lists. Significant correlations
between GEPs and HRDsum were detected across
cancer types and in 29 of 32 cancer types
(Figure 2A). Across cancer types, there were 1,072
genes (5.2% of all genes) in the list of positively
correlating genes and 511 genes (2.5% of all genes)
in the list of negatively correlating genes.
The gene lists were analyzed for enrichment with

respect to the 50 hallmark gene sets from the Molec-
ular Signatures Database [29]. We detected
112 (6.8%) enriched categories and 103 (6.2%)
depleted categories for the positively correlating

genes in a total of 33 � 50 = 1,650 analyses
(Figure 2B). For the negatively correlating genes,
we detected 54 (3.3%) enriched categories and
25 (1.5%) depleted categories. Enrichment of the
category ‘G2M_CHECKPOINT’ for the positively
correlating genes was detected across cancer types
and for 16 cancer types (ACC, BLCA, BRCA,
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO,
PAAD, PCPG, PRAD, SKCM, SARC, and UCEC).
In 14 of these cancer types, we additionally
observed enrichment of the category
‘E2F_TARGETS’ and in 12 of these cancer types of
the category ‘MITOTIC_SPINDLE’. Thus, cell
cycle related genes were over-represented among the
positive correlators of HRDsum in half of the cancer
types under investigation.
The correlation of HRDsum with the 200 genes in

the category ‘G2M_checkpoint’ in each of the cancer
types was visualized as a heatmap (Figure 3). Cluster-
ing revealed a cluster of 14 cancer types and a
corresponding cluster of 110 genes showing consis-
tently positive correlations between HRDsum and gene
expression.

Correlation of HRDsum scores with TMB and with
proliferation rates
Correlation of HRDsum with TMB and with prolifer-
ation was analyzed pan-cancer and within each of the
cancer types. Pan-cancer, a positive correlation was
detected between HRDsum and TMB (ρ = 0.42,
p < 2.2E-16, Figure 4A). Within specific cancer
types, HRDsum and TMB correlated significantly
positively in 18 cancer types (Figure 4C), with the
strongest correlations (ρ ≥ 0.35) detected in the
10 cancer types ACC, BLCA, BRCA, LGG, LUAD,
OV, PAAD, PRAD, SARC, and THYM. Signifi-
cantly negative correlations were detected in COAD
and UCEC (ρ = �0.33 and ρ = �0.37) connected
with a considerable prevalence of tumors with
MMRD and PRD in these entities (COAD: 6% and
17%, UCEC: 31% and 14%). Excluding tumors with
MMRD or PRD, correlations between HRDsum and
TMB were not significant in COAD and significantly
positive in UCEC (ρ = 0.23).
Proliferation was quantified by a metagene defined

as the mean expression level of the 200 genes in the
‘G2M-checkpoint’ hallmark gene set. Across cancer
types, a positive correlation was detected between
HRDsum and the proliferation metagene (ρ = 0.52,
p < 2.2E-16, Figure 4B). HRDsum and proliferation
correlated significantly positively in 21 cancer types
(Figure 4C), with the strongest correlations (ρ ≥ 0.35)
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detected in the 10 cancer types ACC, BLCA, BRCA,
KIRP, LIHC, LUAD, MESO, PAAD, PRAD, and
SARC. A significantly negative correlation between
HRDsum and proliferation was detected in
THYM (ρ = �0.37).

We calculated the partial correlation between
HRDsum and TMB controlling for the level of the
proliferation metagene. Pan-cancer, the correlation
dropped from ρ = 0.52 to a lower, but still highly sig-
nificant value of ρ = 0.24 (p = 4.5E-111) after the

Figure 2. Correlation analysis of the genome-wide expression pattern with HRDsum. For each cancer type, lists of significantly
(FDR = 10%) positively and negatively correlated genes were generated and functionally analyzed. Only genes with a correlation
jρj > 0.3 were included in the lists. (A) Numbers of genes in the lists of positively and negatively correlated genes. (B) Enrichment analy-
sis of the list of positively correlated genes with respect to the categories in the hallmarks gene sets of MSigDB. (C) Same as in (B), but
for the negatively correlated genes. Colored (green = enrichment, red = depletion) boxes mark results that were significant after correc-
tion for both the investigated 33 cancer types and the 50 investigated hallmarks (33 � 50 hypotheses, FDR = 10%). The enrichment
fold changes (FC) displayed in the heatmap are defined as quotient of the proportion of the genes in the gene list annotated for the
functional category under consideration divided by the proportion of the genes in the genome annotated for the functional category.
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control for proliferation. For 17 of the 21 cancer types
with a significantly positive correlation between
HRDsum and TMB, we detected a numerically lower
correlation after controlling for proliferation
(Figure 4C). These observations are in line with the
hypothesis that high proliferation gives rise to a high
number of mutations and contributes to both high
HRDsum scores and high TMB.

Tumor classification by HRDsum and TMB
HRDsum with a cutoff point of 42 is an FDA- and Euro-
pean Medicines Agency (EMA)-approved biomarker to
select ovarian cancer patients for PARP inhibition [8].
TMB with a cutoff point of 10 mut/Mb is an FDA-
approved entity-overarching biomarker to select patients
for pembrolizumab monotherapy [30]. To estimate the
number of patients that these biomarkers would select for
the respective therapies, we calculated the numbers of
HRD-positive, TMB-positive, and double-positive patients

for each of the cancer types (Figure 5). Additionally, we
stratified the tumors with respect to the level of tumor cell
proliferation. The quantification of proliferation was based
on the expression of a metagene including the 200 genes
in the hallmark gene set G2M_CHECKPOINT.
Across cancer types, 1,695 (18.7%) tumors were

classified as HRD-positive, while 1,291 (14.3%)
tumors were classified as TMB-high. The highest
proportions of HRD-positive tumors were detected
in OV (70%), LUSC (52%), ESCA (44%), UCS
(41%), SARC (39%), and LUAD (35%). The
highest percentages of TMB-high tumors were
detected in SKCM (60%), LUSC (50%), LUAD
(45%), UCEC (37%), and BLCA (36%). The per-
centage of tumors that were neither HRD- nor
TMB-positive varied strongly across cancer types:
While less than 50% of the tumors were double-
negative in BLCA, LUAD, LUSC, SKCM, STAD,
OV, and UCEC, more than 95% of tumors were
double-negative in CHOL, GBM, KIRC, KIRP,

Figure 3. Correlation analysis of HRDsum and the mRNA expression of 200 genes involved in the regulation of the G2/M checkpoint of
the cell cycle (hallmark gene set G2M_CHECKPOINT). The heatmap shows the levels of Spearman correlations across cancer types and in
each of 32 specific cancer types. The genes in the top cluster (110 genes) show significantly positive correlation with HRDsum across
cancer types and in each of the 14 cancer types in the right cluster: in ACC, BLCA, BRCA, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO,
PAAD, PRAD, SARC, and UCEC. Colored boxes mark significant correlations (red = positive correlations, green = negative correlations).
Black boxes mark not significant correlations.
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KICH, LGG, PCPG, PRAD, TGCT, THCA, THYM,
and UVM. In 9 of these 12 cancer types (in all apart
from GMB, TGCT, and THYM) with a very high
percentage of double-negative tumors, low-
proliferating tumors were abundant with 85%
or more.

Across cancer types, simultaneous high TMB and
high HRDsum were detected in 4.3% of the tumors,
which is significantly higher than the expected overlap
of 2.7% for independent variables (p = 6.4E-16). The
highest prevalences of tumors with high levels of both
genomic markers were detected in LUSC (30%),

Figure 4. Analysis of the correlations of HRDsum with TMB and with the proliferation level in 9,041 tumors of 32 cancer types.
(A) Association of the levels of HRDsum and TMB with BRCA1/2, MSI, and POLE/D1 status in the pan-cancer dataset. (B) Same as in (A),
but for the levels of HRDsum and proliferation. Proliferation was quantified by the mean expression level of 200 genes annotated to the
G2M checkpoint. (C) Correlation analysis of (1) HRDsum and TMB, (2) HRDsum and proliferation, and (3) HRDsum and TMB controlled
for the level of proliferation (partial correlation) across cancer types and in each of the 32 cancer types. Significant correlations after
multiple testing correction for the investigated cancer types and the three different analyses (33 � 3 hypotheses, FDR = 10%) are mar-
ked by stars.
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LUAD (23%), BLCA (16%), STAD (5.8%), and
HNSC (4.0%). In none of these cancer types did we
detect a significantly higher level of any of the
immune markers in the tumors with high TMB and

HRDsum compared to the tumors with high TMB and
low HRDsum (data not shown). Thus, using HRDsum
additionally to TMB did not improve the identification
of highly immune-infiltrated tumors.

Figure 5. Tumor classification by HRDsum, TMB, and proliferation level. Proportions of HRD-positive (HRDsum ≥ 42) tumors, hypermutated
(TMB ≥ 10 mut/Mb) tumors, and strongly proliferating (proliferation metagene ≥ median) tumors across cancer types and for each of the
32 cancer types. Brighter colors denote strongly proliferating tumors, while darker colors denote weakly proliferating tumors.
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HRD is inversely correlated with MSI
Ultra-hypermutation as commonly defined by a TMB
above 100 mut/Mb [28] was detected in 81 (0.9%)
tumors of the study cohort. Out of these, only a single
tumor had HRDsum ≥ 42, reflecting a high level of
exclusivity of ultra-hypermutation and HRD (p = 2.6E-
06). We also analyzed the association of HRD with
MMRD and PRD using the MSI status determined by
the Bethesda assay (available for COAD, READ,
STAD, and UCEC) as marker for MMRD and using
mutations in the exonuclease domain of POLE or
POLD1 as markers for PRD. Using these markers,
297 (3.3%) tumors of the study cohort were classified
as MMR-deficient, while 172 (1.9%) tumors were clas-
sified as proofreading-deficient. We detected a high
level of exclusivity of HRD and MMRD as well as
HRD and PRD, as only 4 (0.05%, p < 2.2E-16) and
15 tumors (0.18%, p = 0.00064) tumors were deficient
for both DNA repair systems. These results are in line
with a high level of exclusivity of deficiency in different
DNA repair systems in cancer cells.

Discussion

Following preclinical work, a number of clinical trials are
currently investigating the combined use of PARP inhibi-
tion and checkpoint blockade across solid cancer types as
well as in specific cancers, such as ovarian cancer, breast
cancer, prostate cancer, and cholangiocarcinoma [9]. The
conceptual approach is based on several major observa-
tions: (1) Tumors with high mutational load, which is
associated with a higher likelihood of neoantigens [4],
tend to harbor functionally abrogative mutations in genes
implicated in DNA repair mechanisms including
homologous recombination repair [13,31,32]; (2) Pre-
clinical evidence that tumor cells with genomic insta-
bility may accumulate tumor-derived double-stranded
DNA in the cytoplasm, which can lead to activation of
the cGAS-STING pathway leading to a type I
interferon-mediated anti-tumor immune response [33–
39]; (3) Data suggesting that defects in BRCA1/2 as
well as PARP inhibition itself can be associated with
higher PD-L1 levels [40,41]; and (4) PARP inhibition
may shape the TME from a passively inflamed state,
influenced by suppressive immune cells, toward a pro-
active tumor immune response [41,42].
But, clinical data on combination therapy approaches

are still limited and the associations between tumors
exhibiting HRD and the immune microenvironment and
other genetic aberrations are still poorly understood.
Importantly, while a given set of cancer types might

display some level of genomic instability, the underlying
mechanisms may differ and play a crucial role as these
lead to different genetic aberrations in the tumor genome,
which in turn influences the immune contexture. Utiliz-
ing the TCGA dataset comprising 9,041 cases, this study
analyzed the association of HRD with TMB, with
immune cell populations, with T-cell inflamed GEP as
well as with genome-wide GEPs.
Notably, positive associations between the T-cell

inflamed GEP and HRDsum were detected only in the
following six cancer types: BRCA, OV, LGG, TGCT,
KIRC, and KIRP. Only four of them (BRCA, TGCT,
KIRC, and KIRP) also demonstrated positive correlations
with a core set of immune cells implicated in anti-tumor
response. The analysis of the aggregated pan-cancer
dataset showed only a weak correlation that is driven by
the aforementioned cancer types as well as individual
cases form other entities. Higher expression of PD-L1 in
HRD-positive tumors was observed only pan-cancer and
in breast cancer. When stratifying tumors based on dele-
terious BRCA1/2 alterations instead of HRDsum, the
absence of an association with an immunological active
TME was even more pronounced; significant associa-
tions were detected only for breast cancer and testicular
germ cell tumors, but not for the remaining 30 cancer
types. Taken together, with the exception of breast and
bladder cancer, for which tumors with HRDsum ≥ 42
showed an increased T-cell inflamed GEP and up-
regulated immune cell populations, the majority of can-
cer types displaying HRD appear to be immunologically
cold and require therapeutic modulation toward an acti-
vated TME. As the association of immune cell markers
with HRD is differently pronounced in different cancer
types, a tumor type-specific rather than an entity-agnostic
approach might be appropriate for establishing HRDsum
as a marker for immune therapy guidance.
In the study cohort, only 4.3% of the tumors were

characterized by simultaneous HRD-positivity and a
TMB-high status, both of which were defined according
to approved biomarkers derived from prospective clini-
cal trials with a cutoff point of 42 for the HRDsum
score [8] and a cutoff point of 10 mut/Mb for TMB
[27]. At the same time, a total of 14.3% of the tumors
had high TMB. Consistent with biological consider-
ations, these results suggest that HRD is not a major
driver of TMB. In this context, it is also important to
note that MMRD and defective POLE/POLD1, which
both give rise to ultra-high TMB counts, potent
neoantigens [3,43,44], and indicate responsiveness to
pembrolizumab, are mutually exclusive with HRD.
Gene expression analysis revealed a positive corre-

lation of genes implicated in cell cycle regulation and
proliferation with HRDsum in 21 cancer types. The
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association between HRD and high proliferation rates
[45] is likely explainable by the accumulation of geno-
mic scars over a high number of cell divisions and a
high likelihood of DNA double-strand breaks and
imperfect DNA repair during mitosis. Stochastically,
highly proliferating tumors might also impair immune
response through (1) replication exceeding immune-
mediated detection and subsequent killing of tumor cells
and (2) molecular evolution leading to immune evasion.
The retinoblastoma (RB) pathway appears to play a role
in this context [46]. As the RB pathway supports the
repair of DNA double-strand breaks by non-homologous
end-joining [47,48], there might be a rationale in explor-
ing the effect of PARP inhibition and modulation of the
RB pathway in preclinical models. Interestingly, a recent
study observed that the loss of RB in the HRD-high sub-
group of high-grade serous ovarian cancers was associ-
ated with prolonged survival, increased CD8+ T cells,
and higher proliferation [49].
Limitations of our study are the fact that our analysis

is primarily based on resected tumor specimens with
molecular data, which are not spatially resolved, and the
absence of a validation cohort. Furthermore, the investi-
gated tissue samples represent a balance between
immune response, immune-editing of the tumor, and
immune evasion in the absence of treatment. Thus, the
study cannot identify the effect of PARP inhibition or
combined PARPi and ICB on the immune cell context
nor directly assess the role of biomarkers in this context.
In conclusion, our study provides a comprehensive

overview of the associations between HRD, MMRD,
PRD, and TMB as well as the immune cell context
and GEPs in ICB/PARPi-naïve tumors, which invites
consideration of these findings in the design of clinical
trials as well as preclinical disease models.
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