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Natural killer (NK) cells are innate lymphocytes that eliminate infected and transformed

cells. They discriminate healthy from diseased tissue through killer cell Ig-like receptor

(KIR) recognition of HLA class I ligands. Directly impacting NK cell function, KIR

polymorphism associates with infection control and multiple autoimmune and pregnancy

syndromes. Here we analyze KIR diversity of 241 individuals from five groups of Iranians.

These five populations represent Baloch, Kurd, and Lur, together comprising 15% of

the ethnically diverse Iranian population. We identified 159 KIR alleles, including 11

not previously characterized. We also identified 170 centromeric and 94 telomeric

haplotypes, and 15 different KIR haplotypes carrying either a deletion or duplication

encompassing one or more complete KIR genes. As expected, comparing our data

with those representing major worldwide populations revealed the greatest similarity

between Iranians and Europeans. Despite this similarity we observed higher frequencies

of KIR3DL1∗001 in Iran than any other population, and the highest frequency of

HLA-B∗51, a Bw4-containing allotype that acts as a strong educator of KIR3DL1∗001+

NK cells. Compared to Europeans, the Iranians we studied also have a reduced

frequency of 3DL1∗004, which encodes an allotype that is not expressed at the NK

cell surface. Concurrent with the resulting high frequency of strong viable interactions

between inhibitory KIR and polymorphic HLA class I, the majority of KIR-A haplotypes

characterized do not express a functional activating receptor. By contrast, the most

frequent KIR-B haplotype in Iran expresses only one functional inhibitory KIR and the

maximum number of activating KIR. This first complete, high-resolution, characterization

of the KIR locus of Iranians will form a valuable reference for future clinical and

population studies.
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INTRODUCTION

Natural killer (NK) cells are essential for human immunity
to infection and cancer, and for successful reproduction (1,
2). To discriminate diseased from healthy tissue cells, NK
cells express an array of inhibiting and activating cell surface
receptors (3, 4). Prominent among these receptors are the
killer cell immunoglobulin like receptors (KIR), which educate
and modulate NK cell function through interaction with HLA
class I (5, 6). KIR are highly polymorphic, a genetically-
determined variation that directly impacts NK cell function, and
susceptibility to disease (7, 8).

TheKIR locus spans 150–350 kbp of chromosome 19q13.4 (9).
The locus is distinguished by structural and sequence diversity
of the 13 constituent genes (KIR2DL1, KIR2DL2/L3, KIR2DL4,
KIR2DL5A,KIR2DL5B,KIR2DS1,KIR2DS2,KIR2DS3,KIR2DS4,
KIR2DS5, KIR3DL1/S1, KIR3DL2, and KIR3DL3) and two
pseudogenes (KIR2DP1 and KIR3DP1) (10, 11). KIR have either
two (2D) or three (3D) specificity-determining immunoglobulin-
like domains and a long (L) or short (S) tail (12). KIR having
a long cytoplasmic tail are inhibitory, whereas those having
a short cytoplasmic tail are activating. The one exception is
KIR2DL4, which can exhibit inhibitory or activating function
(13–15). The KIR locus segregates in two main haplotype forms
that are maintained in all human populations by balancing
selection (16). The KIR-A haplotypes have a fixed number
of predominantly inhibitory receptors, whereas the KIR-B
haplotypes are characterized by a variable number of both
activating and inhibitory receptors. Further distinguishing KIR-
A and -B haplotypes are their characteristic alleles (17). KIR-
A haplotypes are associated with controlling infectious disease
and cancer, but confer susceptibility to reproductive disorders,
whereas KIR-B haplotypes are associated with protection
from reproductive disorders (1, 7). Additionally, haploidentical
transplantation therapy for leukemia has an increased success
rate when the stem cell donors carry KIR-B haplotypes (18, 19).

Polymorphism of KIR affects cell surface expression, ligand
specificity, ligand binding strength, and intracellular signaling
(20–25). All these factors affect the capacity of NK cells to
recognize and kill target cells. Because both KIR polymorphism
and associated diseases are unevenly distributed worldwide, it
is critical to fully gauge the genetic diversity of KIR in well-
defined human populations. Despite this importance, only a few
populations have been studied to high resolution, principally
due to the complexity of the KIR locus. These studies have
focused on representative populations of Amerindians (Yucpa)
(26), divergent African groups (27–29), Europeans (30, 31),
East Asians (Japanese) (32), and Oceanians (Māori) (33).
Together, they show how KIR allele and haplotype diversity
varies dramatically between human populations and highlight
the importance of extending KIR allele analysis to represent all
ethnicities and geographical areas. In this regard, our recent
analysis of HLA allelic diversity in Iran revealed the highest
frequencies ofHLA-B∗51:01 worldwide (34). HLA-B∗51 contains
the Bw4 epitope and interacts KIR3DL1 (35, 36). In the present
study we fully characterize KIR locus diversity of the same cohort
of Iranian individuals.

MATERIALS AND METHODS

Study Population
The KIR locus diversity of three indigenous Iranian populations
was determined to high-resolution by analyzing genomic DNA
from 241 healthy unrelated donors (34). The populations studied
represent Baloch, Kurd, and Lur, together comprising 15% (12
million individuals) of the ethnically diverse Iranian population.
Studied were 160 Lurs and 48 Kurds, from the Zagros Mountains
at the west of Iran, and 33 Baloch from the southeast of Iran.
The Lur population included 64 individuals from the city of
Khoramabad in the province of Lorestan, 81 from Yasuj in
the province of Kohgiluyeh and Boyer-Ahmad, and 15 from
Lordegan in the province of Chaharmahal and Bakhtiari. The
samples from Kurds were collected from the city of Sanandaj.
With the exception of the Baloch, the HLA class I alleles were
described previously (34). The ancestors of every individual
studied had been part of their respective population for at least
two generations. Sample collection was approved by the Medical
Research Ethics Committee of Shiraz University of Medical
Sciences. All participants gave informed consent. Banked, de-
identified samples were used for this study.

Library Preparation and Enrichment
Genomic DNA was prepared by shearing with sonication and
the KIR genomic region was enriched from the genomic libraries
using a pool of oligonucleotide probes as described (37). The
enriched fragments were subjected to paired-end sequencing
using Illumina’s MiSeq instrument and V3 sequencing chemistry
(Illumina, La Jolla CA). The sequencing read length was 2 ×

300 bp.

Next Generation Sequence Data
Processing and Analysis
Sequence reads specific to the KIR region were identified and
harvested using Bowtie 2 (38). KIR genotyping was performed
using the Pushing Immunogenetics to the Next Generation
pipeline (37). This pipeline generates a high-resolution KIR
gene content and allele level genotype. It can also identify
previously unreported single nucleotide polymorphisms (SNPs)
and recombinant alleles. Novel allele sequences were analyzed by
visual inspection: reads specific to the relevant gene were isolated
by bioinformatics filtering, aligned to the closest reference allele
using MIRA 4.0.2 (39), and inspected using Gap4 of the Staden
package (40) or Integrative Genomics Viewer (41).

Allele and Haplotype Frequencies
Allele frequencies were calculated by direct counting. The
composition and frequencies of KIR haplotypes were determined
at the allelic level using PHASE 2.1 (42). The following
parameters for PHASE 2.1 were used: –f1, –x5, and –d1.
Because of the high rate of recombination between KIR3DP1
and KIR2DL4 (9), we performed two separate PHASE runs,
one for the KIR genes of the centromeric region and one for
telomeric KIR genes. Genes analyzed were KIR3DL3, 2DS2,
2DL2/3, 2DL5A and B, 2DS3/5, 2DP1, 2DL1, 2DL4, 3DL1/S1,
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FIGURE 1 | Iranian KIR genotypes resemble those of Europeans. (A) Shows KIR gene copy-number genotypes ordered by the total number observed across the five

Iranian populations. Only genotypes present in more than one individual are shown. Colored boxes indicate the number of copies of the gene, as given in the key

(Continued)
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FIGURE 1 | below. A white box indicates the gene is absent. (B) Frequency of the full KIR AA (left), Cen AA (center), and Tel AA (right) genotypes across seven

representative world populations, ordered by frequency of full KIR AA. The populations are Japanese (N = 115), Yucpa Amerindians (N = 61), Ghanaians from West

Africa (N = 131), Maori from New Zealand (N = 49), Europeans (N = 378), Iranians (N = 241), and Khomani from South Africa (N = 79). (C) Frequency of centromeric

(Cen) and telomeric (Tel) KIR A and B haplotypes in the five Iranian populations combined. (D) Genetic distance between the combined Iranian population and the six

representative, populations from (B). KIR genes included are those genotyped in all the populations shown 2DL1-4, 2DS1-5, 3DL1/S1, 3DL2. (E) Genetic distance

between the three Iranian populations.

2DS1, 2DS4, and 3DL2. For each haplotype we calculated the
frequency by direct counting.

Statistical Analysis
Hardy-Weinberg equilibrium proportions was examined using
Fisher’s exact test. Differences in frequency amongst populations
were tested using χ

2 with Bonferroni correction for the number
of alleles at the respective locus. Fisher’s and χ

2 test as well
as Mann-Whitney U-test were implemented using GraphPad
Prism 7.05.

Genetic Distance
The genetic distance between Iranians and other populations
was calculated using the Cavalli-Sforza model (43), implemented
in GENETIX 4.05 (https://kimura.univ-montp2.fr/genetix/). The
populations used were Japanese (N = 115) (32), Yucpa
Amerindians (N = 61) (26), Ghanaians from West Africa (N =

131) (27), Māori from New Zealand (N = 49) (33), Europeans (N
= 378) (44), and Khomani from South Africa (N = 79) (28).

RESULTS

We sequenced the KIR genes of 241 individuals from five
populations, representing three groups of Iranians; the Lurs,
Kurds and Baloch. The Lurs comprised individuals from the
cities of Khoramabad, Lordegan and Yasuj. Only two KIR genes
were present as two copies (2N) in every individual, KIR3DL3
at the centromeric end of the KIR locus and KIR3DL2 at
the telomeric end (Figure 1A). Every KIR haplotype in this
Iranian cohort is therefore flanked by these two framework
genes. The third framework gene is KIR2DL4 (9). Because
eight individuals have only one copy of KIR2DL4 and six
have three copies, KIR2DL4 is not present on every Iranian
KIR haplotype (Figure 1A), but is likely duplicated on some
haplotypes and deleted from others (45). The frequency of
KIR-A haplotypes varies across populations (16, 46). In the
combined study population, the frequency of KIR AA genotypes
observed is 25% (Figure 1B). Centromeric KIR-A haplotypes
are present at 65% and telomeric KIR-A haplotypes at 76%
(Figure 1C). The frequency of KIR A haplotype homozygotes
closely matches that of European populations (Figure 1B), as do
genetic distance measurements calculated from the KIR genotype
data (Figure 1D). In conclusion, the number and distribution of
KIR gene content haplotypes in Iranians closely resemble those
present in Europeans.

We determined the KIR allele frequencies in the five Iranian
populations. These data are shown in Supplementary Material A

and summarized in Figure 2. The allele frequencies were
consistent with Hardy-Weinberg equilibrium. Among the five

populations, we identified 115 inhibitory KIR alleles and 18
activating KIR alleles (Figure 2A). Also present are 12 KIR2DL4
alleles. Inhibitory KIR are highly polymorphic in Iranians, with
12 KIR2DL1, 9 KIR2DL2/L3, 10 KIR2DL5, 22 KIR3DL2, 18
KIR3DL1, and 44 KIR3DL3 alleles observed in total. As in other
populations, the activating KIR are less polymorphic than the
inhibitory KIR, with 7 KIR2DS4 alleles, 8 KIR2DS3/5 alleles, two
KIR2DS1 and two KIR2DS2 alleles and one KIR3DS1 allele being
seen (Figure 2A). In Iranians, KIR3DL3 is the most polymorphic
KIR gene, whereas KIR2DS1 and KIR2DS2 are the least variable.
In the combined population analyzed, the most frequent allele
for each of the inhibitory KIR are 2DL1∗00302, 2DL2∗00101,
2DL3∗00101, 3DL1∗00101, 3DL2∗00101, and 3DL3∗00301,
respectively (Supplementary Material A). The most common
KIR2DL4 and KIR2DS4 alleles are 2DL4∗00801 and 2DS4∗003,
respectively. For the other activating KIR (KIR2DS1-3 and
2DS5) as well as KIR2DL5, the most frequent allele observed is
absence of the gene (Supplementary Material A). We did not
observe any statistically significant difference in frequency of any
specific KIR allele between Kurs and Lurs. We identified 11 novel
KIR alleles, eight being defined by amino acid substitutions,
one by a synonymous substitution and two by substitutions
in KIR2DP1 pseudogene (Figure 2B). All these novel alleles
were observed in one or two individuals (Figure 2B). Seven
of them have sequences identical to ones reported recently in
a survey of more than one million registered bone marrow
donors (47).

On the basis of allele composition, we defined
170 centromeric and 94 telomeric KIR haplotypes
(Supplementary Materials B,C). Thus, by distinct haplotype
number, the centromeric region is twice as diverse as the
telomeric region. Emphasizing this difference, the 55 most
frequent centromeric haplotypes account for 75% of the total
haplotypes, whereas only 13 telomeric haplotypes are sufficient
to account for 75% of the telomeric haplotypes (Figures 3A,B).
In conclusion, the centromeric KIR region of Iranian KIR
haplotypes is far more diverse than the telomeric KIR region.

Although KIR-A haplotypes are more numerous and frequent
thanKIR-B haplotypes (Figure 1), the most frequent centromeric
region and the second most frequent telomeric region haplotypes
are KIR-B (Figures 3C,D). Together, these centromeric and
telomeric segments encode only one inhibitory receptor specific
for HLA class I (KIR2DL2∗001). Also encoded are KIR2DL1∗004,
an attenuated receptor (23) and KIR3DL2∗007, which has a
mutation in the first ITIM of the cytoplasmic tail (48) and
thus may not transmit an inhibitory signal. By contrast, the
KIR-B haplotype encodes three functional activating receptors
(KIR2DS1, 2DS2, and 3DS1) and a full-length KIR2DL4 (∗005).
This combination of common centromeric and telomeric KIR-B
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FIGURE 2 | High KIR diversity and allele discovery in Iranians. (A) Shows the numbers of KIR alleles (k) and the heterozygosity (H) in each of the five Iranian

populations. The total number observed is shown at the right. Gene absence is not included as an allele. (B) Shows the novel KIR alleles identified in this study.

Columns from left to right are: the KIR gene, the closest known allele, the nucleotide change compared to the closest allele, the amino acid substitution caused by the

nucleotide change, domain affected by the amino acid substitution (LP, leader peptide; D0–D1, Ig-like domains; TM, transmembrane domain) and the number

observed.
†
-indicates identical allele observed by Wagner et al. (47).

haplotypes can therefore provide the maximum number of
activating KIR. The most frequent KIR-A haplotype encodes four
inhibitory receptors specific for polymorphic HLA class I and
carries KIR2DS4∗003, which is not-expressed because of a 22 bp
deletion in exon 5 (11). Indeed, the frequency of the KIR2DS4
22 bp-del variant in Iranians is 0.62, more than four times
higher than the frequency of the full-length variant (Figure 3E).
Consequently, almost all KIR-A haplotypes in Iranians encode
four functional inhibitory receptors and no activating receptor
specific for polymorphic HLA class I.

A characteristic of the KIR locus is the occurrence of large-
scale duplication or deletion events that encompass complete
genes, which synergizes with allele variation to enhance KIR
functional diversity (45, 49, 50). In the Iranian cohort, we
identified seven KIR haplotypes having large deletions and eight
with duplications (Figure 4). One of these haplotypes (number
1 in Figure 4) was not observed previously and is similar to the
most frequent KIR-B haplotype in Iran, with the difference being
that it lacks KIR2DS1. This haplotype could have been formed by
homologous or looping out recombination (50). The remaining
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FIGURE 3 | Centromeric KIR are more diverse than telomeric KIR in Iranians. (A) Shows the number of distinct haplotypes observed in the centromeric and telomeric

KIR regions. (B) Shows the cumulative frequency of haplotypes observed in the centromeric and telomeric KIR regions. (C,D) Shows the allele composition of all (C)

centromeric, and (D) telomeric KIR haplotypes identified in more than ten individuals in the combined Iranian population. KIR A haplotypes are shaded pink and KIR B

haplotypes are blue. Empty boxes indicate gene absence. At the right is shown number observed and the frequency in the combined Iranian population (N = 241). All

the observed haplotypes are given in Supplementary Material (E). Shown are the frequencies of KIR2DL4 and KIR2DS4 alleles in the combined Iranian population.

Red text indicates alleles not expressed at cell surface. The allele frequencies for all KIR genes in each of the five populations are given in Supplementary Material.
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FIGURE 4 | Rare structural variants of KIR haplotypes in Iranians. Shown are Iranian KIR haplotypes affected by a copy number variation. Gray and purple boxes

highlight deleted or duplicated segments, respectively. “N” indicates the number observed.

deletion haplotypes are similar to those observed worldwide
including Africans, and the duplication haplotypes similar to
those observed outside of Africa (45).

The interaction of HLA class I with inhibitory KIR contributes
to NK cell education (51, 52). We analyzed the distribution of
alleles for the four inhibitory KIR that are specific for HLA class
I in Iranians and compared them with six other populations that
represent the breadth of human genetic diversity (Figure 5). This
analysis showed that in Iranians, Europeans, West Africans, and
Japanese the most frequent KIR2DL1 and KIR2DL2/3 alleles are
2DL1∗003 and 2DL3∗001, respectively. The two populations that
differ are relatively small indigenous populations (Figures 5A,B).
By contrast, the KIR3DL1/S1 and KIR3DL2 alleles most frequent
in Iranians are usually not the same as those most frequent in
other populations (Figures 5C,D). This shows there is a greater
worldwide divergence of KIR specific for HLA-A and -B than of
KIR specific for HLA-C. Of particular note, Iranian populations
have the highest frequency of 3DL1∗001 (0.29) compared to the
other six populations as well as to all other populations analyzed
to date (53). Allele frequencies of the four inhibitory KIR specific
for HLA class I are similar across the Iranian populations
analyzed (Figures 5E–H). The one exception is the Baloch who
have a low frequency of KIR3DL1∗004, as well as KIR3DL2∗003
and ∗005, which are in strong linkage disequilibrium with
3DL1∗004 (28, 44) (Supplementary Material C). The Baloch
have one tenth the frequency of 3DL1∗004 (0.015) than Kurd
[0.114, χ2 p = 0.006; pc = 0.06(ns)], Lorestan [0.109, χ2 p =

0.006; pc = 0.06(ns)] and Yasuj [0.129, χ2 p = 0.003; pc = 0.03].
KIR3DL1∗004 is retained in the cytoplasm and unable to bind
HLA-Bw4+HLA-A or -B on target cells (54).

We examined the compound genotypes of KIR and HLA class
I, to determine the potential number of interactions between
HLA class I ligands and inhibitory KIR.We observed a consistent
mean of four viable interactions per individual of HLA-C with

inhibitory KIR across the five Iranian populations (Figure 6A).
This number is similar to the mean of 3.6 observed in Europeans
(28). Although we observed no significant difference in the
potential interactions of KIR3DL1 with HLA-A, the Baloch and
Lordegan have more interactions of KIR3DL1 with HLA-B than
the other three Iranian populations (Figures 6B,C). Despite the
small numbers of individuals in these groups, the differences
are statistically significant (Mann-Whitney U-test; p < 0.013).
Contributing to these differences is the high frequency of HLA-
B∗51 in the Baloch (0.29; Supplementary Material D). This
frequency is similar to the 0.28 observed in the Lordegan and
considered the highest worldwide (34).

DISCUSSION

This study applied high-throughput, next-generation sequencing
to define KIR polymorphism at high resolution in five Iranian
populations. These comprise the Kurd and Lur populations from
the Zagros Mountains in the west of Iran and the Baloch from
the south-east. The Lur comprised three subpopulations; the
Lorestan, Lordegan, and Yasuj. HLA class I allele distributions
for four of these populations were reported previously (34)
whereas those for the Baloch are described here. When we
compared the KIR allele frequencies of Iranians to those
representing African, Asian, European, Oceanian, and South
American populations, we found that the Iranian groups we
studied are particularly similar to Europeans. This finding is
consistent with ancient DNA analysis, which revealed that
Iranians and Europeans both originate from an Indo-Europeans
steppe ancestor population (55).

Despite their overall similarity, the Iranians we studied differ
from Europeans in their frequencies of KIR3DL1∗001, a high-
expressing inhibitory receptor specific for the Bw4 epitope of
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FIGURE 5 | Telomeric KIR are more divergent than centromeric KIR across populations. Shows the alleles of (A) KIR2DL1, (B) KIR2DL2/3, (C) KIR3DL1/S1, and (D)

KIR3DL2 observed in Iran, and their frequencies in the combined Iranian population and six other populations representing major world groups (Left). (E-H) show the

allele frequencies in the individual Iranian populations. The populations are Iranians (N = 241, comprised from Baloch N = 33, Kurds N = 48, Lorestan N = 64,

Lordegan N = 15, and Yasuj N = 81), Ghanaians (N = 131), Khomani (N = 79), Maori (N = 49), Japanese (N = 115), Europeans (N = 378), and Yucpa (N = 61). The

allele frequencies for all KIR genes in each of the five Iranian populations are given in Supplementary Material.
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FIGURE 6 | Interactions between KIR and HLA class I in five Iranian populations. (A) Shows the mean total number of viable interactions per individual of inhibitory

KIR and HLA-C. (B) Shows the mean total number of viable interactions per individual of KIR3DL1 and HLA-A. (C) Shows the mean total number of viable interactions

per individual of KIR3DL1 and HLA-B. ***p < 0.013, obtained from a two-tailed Mann-Whitney U-test.

subsets of HLA-A and -B allotypes. Iranians have KIR3DL1∗001
frequencies that are twice those in Europeans and are the
highest worldwide. Iran has the highest frequency of HLA-
B∗51 in the world (34), and this is also the case for the
Baloch. HLA-B∗51 has the Bw4 epitope and thus educates
KIR3DL1+ NK cells to detect any loss in Bw4+ HLA-A or -
B expression (35, 56, 57). HLA-B∗51 is associated with Behçet
disease, a chronic, multi-system autoimmune condition that has
substantially higher incidence in Iran (80/100,000) than Europe
(<1/100,000) (58, 59). We recently showed that high-expressing
allotypes of KIR3DL1, including 3DL1∗001, can protect from
Behçet disease (60). It is unlikely that KIR3DL1∗001 and HLA-
B∗51 rose to high frequency in Iran to protect specifically from
an autoimmune disease, but this combination of HLA and
KIR could also protect against specific infectious diseases (7).
Examples include tuberculosis and hepatitis, which are both
prevalent in Balochistan (61–63). Amongst Iranians, the Baloch
and Lordegan have the highest number of viable interactions
between KIR3DL1 and Bw4+HLA. Contributing to this high
occurrence in the Baloch, are high frequencies of KIR3DL1∗001
and HLA-B∗51 and a low frequency of KIR3DL1∗004. That both
the KIR3DL2 alleles linked to KIR3DL1∗004 are also reduced
in frequency suggests that KIR3DL1∗004 has been specifically
targeted by negative selection in the Baloch, rather than another
KIR allele in linkage disequilibrium with KIR3DL1∗004.

KIR-A and -B haplotypes are present in all human
populations, where they are maintained by balancing selection,
likely because KIR-A haplotypes favor infection control,
particularly viral infections, and KIR-B haplotypes favor
successful fetal implantation (1, 16). Accordingly, KIR-A
haplotypes express all possible inhibitory receptors specific for
HLA class I, whereas KIR-B haplotypes express fewer inhibitory
receptors but more activating receptors. Thus, whereas the
inhibitory KIR help prime NK cells to be able to be responsive
to HLA class I loss during infection, the activating KIR can
both promote fetal trophoblast invasion and recognize specific
pathogen-derived peptides to control certain infections (64, 65).
In Iranian populations the differences between the KIR-A and
KIR-B haplotypes is extreme. The common KIR-A haplotypes
express no activating KIR, due to the high frequency of the

truncated KIR2DS4 variant, and the common KIR-B haplotypes
provide the maximum number of activating receptors. In
this regard, the KIR-B haplotypes differ considerably from
those of Africans and were likely obtained since the out of
Africa migration, through adaptive introgression with ancient
humans (66).

In summary, we describe the KIR locus at allelic resolution
in Iranian populations and place it in the context of the HLA
ligands recognized by KIR. Iran is a culturally diverse country
and the ethnic groups we have studied comprise ∼15% of the
population (67). Because substantialKIR gene content diversity is
observed across Iran (68–71), it will be of interest in future studies
to compare our results with other Iranian populations including
Persians and Azeris. The allele and haplotype distributions
described here will provide a baseline for future studies of disease
association and transplantation matching in this important
region of the world.
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