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Abstract: The use of non-resorbable polytetrafluoroethylene (PTFE) membranes is indicated for the
treatment of large, non-self-containing bone defects, or multi-walled defects in the case of vertical
augmentations. However, less is known about the molecular basis of the foreign body response to
PTFE membranes. In the present study, the inflammatory tissue responses to a novel high-density
PTFE (dPTFE) barrier membrane have preclinically been evaluated using the subcutaneous
implantation model in BALB/c mice by means of histopathological and histomorphometrical analysis
methods and immunohistochemical detection of M1- and M2-macrophages. A collagen membrane
was used as the control material. The results of the present study demonstrate that the tissue response
to the dPTFE membrane involves inflammatory macrophages, but comparable cell numbers were also
detected in the implant beds of the control collagen membrane, which is known to be biocompatible.
Although these data indicate that the analyzed dPTFE membrane is not fully bioinert, but its
biocompatibility is comparable to collagen-based membranes. Based on its optimal biocompatibility,
the novel dPTFE barrier membrane may optimally support bone healing within the context of guided
bone regeneration (GBR).

Keywords: PTFE membrane; collagen membrane; biocompatibility; tissue reaction; inflammation;
macrophage; M1; M2

1. Introduction

Guided bone regeneration (GBR) is widely used in the fields of periodontology, implant dentistry,
and maxillofacial surgery. Dental barrier membranes allow for the formation and maintainance of
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spaces, which, when filled with bone substitutes, stabilizes blood clots and allow the migration of
osteoprogenitor cells in to the space intended for bone regeneration, while preventing the area from
soft tissue penetration or collapse [1,2]. In this context, barrier membranes have to fulfill the following
main criteria: separation of hard and soft tissue up to the time point of completed bone regeneration,
biocompatibility, space-maintenance, cell-occlusiveness, tissue integration, and clinical manageability,
amongst other different requirements [3]. Different biological and physical properties of the variety of
available barrier membranes contribute to clinical decision making regarding their indications for use.

Resorbable barrier membranes are based on natural or synthetic resorbable polymers, and they
are widely used for GBR [4]. Most of the resorbable barrier membranes are based on collagen, which is
derived from different sources, i.e., different species such as pigs or cattle, and different harvesting sites
such as the subcutaneous connective tissue or the pericardium [5]. Altogether, collagen-based barrier
membranes have most often been shown to be very biocompatible biomaterials, and they allow for a
comparable degree of bone regeneration, like non-resorbable membranes [6,7]. Collagen membranes
avoid the need for second-stage surgery for removal, they are easy to handle, are cost effective, and
show less morbidity [8]. However, the disadvantage of the collagen membranes is their lack of ability
to maintain spatial stability, which in some cases leads to collapse and therefore diminished grafted
bone volume [9]. Resorbable membranes of synthetic origin have also been shown to be suitable for
bone regeneration. Polylactic acid (PLA)- or polylactic-co-glycolic-acid (PLGA)-based membranes
provide good spatial stability of the graft material [9]. Nonetheless, these biomaterials are degraded by
non-enzymatic hydrolysis and cellular metabolization under the release of acidic molecules, which
negatively influences their biocompatibility and the healing process [10]. Altogether, most of the
currently available resorbable barrier membranes are limited with regard to the treatment of large,
non-contained bone defects or multi-walled defects, or in case of vertical augmentations.

Although second-stage surgery is required for their removal, the use of non-resorbable membranes
is still indicated for GBR procedures in the case of the afore-mentioned clinical situations, as they offer a
higher form of stability and space-maintaining properties [11]. Commercially available non-resorbable
barrier membranes are most often made of polytetrafluoroethylene (PTFE). PTFE has been shown to
be biocompatible, and it maintain its integrity during and after implantation. Some PTFE membranes
are even combined with structural elements such as titanium [9]. In this context, both high density
PTFE (dPTFE) and semipermeable expanded PTFE (ePTFE) membranes are available, both providing
different advantages [12]. While semipermeable PTFE membranes may support a transmembraneous
transport of nutrients, dense PTFE membranes have shown to act as an efficient barrier against bacterial
and cellular penetration in different clinical indications, due to its small pore size [13].

Interestingly, PTFE-based biomaterials are stated to be bioinert, which means they do not induce a
tissue reaction when introduced to biological tissue [14]. However, it has been shown that nearly every
biomaterial induces an inflammatory tissue reaction, which is unique for every material depending
on its combination of physical and chemical properties [15]. This tissue reaction to a biomaterial is
a cascade including mainly macrophages as key elements, which have been shown to express both
pro- and anti-inflammatory molecules depending on material factors such as surface topography or
surface chemistry [16–18]. Based on their molecule expression, macrophages are more or less divided
into pro-inflammatory M1- and anti-inflammatory M2 subtypes [19,20]. Taken together, it is believed
that the successful clinical application of a biomaterial has to be accompanied by an “overall M2
tissue reaction” to promote tissue healing, while a chronic pro-inflammatory tissue response may
lead to negative consequences for tissue remodeling, such as fibrous encapsulation [19,20]. Thus,
the understanding of the material-specific foreign body reaction, and of the interactions of the immune
system with a biomaterial is pivotal to ensure the safety, biocompatibility, and functionality of a
medical device.

Interestingly, there are very limited data about the degree of the foreign body response to
non-resorbable PTFE membranes. Thus, the present preclinical in vivo study aims to analyze the
tissue responses to a new synthetic, non-resorbable high-density PTFE barrier membrane. Following
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implantation into the subcutaneous connective tissue of BALB/c mice for up to 30 days, the hypothesis
of the bioinertness of PTFE-based biomaterials has been evaluated. A commercially available
collagenous barrier membrane that has already been examined in different preclinical and clinical
studies and described as biocompatible biomaterial was used as control material [21–23]. Established
histopathological and histomorphometrical analysis methods, and especially immunohistochemical
detection of M1- and M2-macrophages have been applied [24–28].

2. Results

2.1. Histological (Qualitative) Analysis

The results of the histological analysis showed an inflammatory tissue reaction within the
implantation beds of the dPTFE membranes at day 10 post-implantation (Figure 1A). A thin reactive
tissue wall was detectable surrounding the membranes, which was mainly composed of inflammatory
cell types such as macrophages and granulocytes, besides single other cell types such as fibroblasts
(Figure 1A). Furthermore, single vessels have been found within the reactive connective tissue
(Figure 1A). At this time point, no biomaterial-associated multinucleated giant cells (BMGCs) have
been observed. Furthermore, no tissue ingrowth into the membrane has been detected.
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staining, 400× magnification, scale bar = 20 µm). (B) Into the implant beds of the collagen membranes, 
a comparable tissue reaction, including mainly macrophages (black arrows) besides single eosinophils 
and fibroblasts (purple/yellow arrows) (haematoxylin and eosin (HE)-staining, 400x magnification, 
scale bar = 20 µm). At this time point only some single cells have migrated into the outer regions of 
the membrane body. (C) At day 30 after implantation, the wall of reactive tissue around the dPTFE 
membranes have visibly been decreased. Macrophages (black arrows) were still observed dominating 
the tissue reaction beside single eosinophils and fibroblasts (purple/yellow arrows) (Movat’s 
Pentachrome-staining, 400× magnification, scale bar = 20 µm). (D) Also, into the implant beds of the 
collagen membrane mainly macrophages (black arrows) have been detected at this time point, 
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Figure 1. The histological images from the implantation beds of the analyzed membranes, i.e.,
the dPTFE membrane (PM) and the collagen membrane (CM) within the subcutaneous connective tissue
(CT) (MT = muscle tissue). (A) At the surfaces of the dPTFE membrane, a thin layer of mononuclear
cells that mainly belonged to the monocyte/macrophage line (black arrows) beside single granulocytes
(purple arrow) were observable. Within the reactive peri-implant tissue, mainly macrophages
(black arrows) and fibroblasts (yellow arrows) were found, besides small numbers of granulocytes
and lymphocytes as well as some small vessels (red arrows) (Movat’s Pentachrome-staining, 400×
magnification, scale bar = 20 µm). (B) Into the implant beds of the collagen membranes, a comparable
tissue reaction, including mainly macrophages (black arrows) besides single eosinophils and fibroblasts
(purple/yellow arrows) (haematoxylin and eosin (HE)-staining, 400× magnification, scale bar = 20 µm).
At this time point only some single cells have migrated into the outer regions of the membrane body.
(C) At day 30 after implantation, the wall of reactive tissue around the dPTFE membranes have
visibly been decreased. Macrophages (black arrows) were still observed dominating the tissue reaction
beside single eosinophils and fibroblasts (purple/yellow arrows) (Movat’s Pentachrome-staining, 400×
magnification, scale bar = 20 µm). (D) Also, into the implant beds of the collagen membrane mainly
macrophages (black arrows) have been detected at this time point, together with low numbers of
eosinophils and fibroblasts (purple/yellow arrows). At day 30 after implantation, more cells have
invaded the membranes body, while the material showed no signs of breakdown (Alcian blue-staining,
400× magnification, scale bar = 20 µm).
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In case of the collagen membrane (control), a comparable tissue reaction has been observed
(Figure 1B). Mainly cell types such as macrophages, eosinophilic granulocytes, and single fibroblasts
were found within the thin walls of the reactive tissue adherent to the biomaterial (Figure 1B).
Only some single cells penetrated the membrane body at this early post-implantation time point
of 10 days outgoing (Figure 1B). Furthermore, no BMGCs were detected at this time point.

The analysis of the immunohistochemically stained slides showed that more CD206-positive M1
macrophages were observable at this early study time point, compared to M2 positively stained with
CD163 within the implantation beds of both materials (Figure 2A–D). Interestingly, no differences in
the cell numbers of the CD163 nor the CD206 fractions have been microscopically observed between
both study groups.
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Figure 2. Exemplary images of the detection of M2 (CD163) and M1 (CD206) positive macrophages
(yellow arrows) into the implantation beds of the dPTFE and the collagen membrane at day 10 (A–D)
and day 30 (E–H) after implantation (all images: 400× magnification, scale bar = 20 µm).

At day 30 post-implantation, the width of the reactive tissue wall adherent to the dPTFE
membranes was clearly decreased (Figure 1C). Histopathological analyses showed that the reactive
tissue was still composed of the same cell types, i.e., macrophages, granulocytes, and fibroblasts
(Figure 1C). However, the numbers of granulocytes and macrophages have visibly been declined
indicating a reduction of the degree of inflammation described at day 10 post implantation. At this
time point, some single BMGCS have been found to be adherent to the dPTFE membranes. Still, no cell
penetration or tissue ingrowth into the membranes was observed.

In case of the collagen membranes a similar tissue reaction compared to that observed at day
10 post-implantation has been detected (Figure 1D). Thus, macrophages, eosinophilic granulocytes
and fibroblasts were found within the small walls of reactive tissue that are adherent to the material
surfaces (Figure 1D). Moreover, the same cell types have microscopically been observed within the
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material bodies, but with significantly lower numbers compared to the surface-adherent connective
tissue (Figure 1D). Only very low numbers of BMGCs sporadically found at the material surfaces have
been found within the implantation beds of the collagen membrane. No ingrowth of complex tissue or
any signs of a material breakdown have been detected.

The analysis of the immunohistochemically stained slides showed that the number of
CD163-positive M2 macrophages has clearly decreased in the implantation beds of both biomaterials,
while still no differences of the cell numbers in both groups could microscopically be detected
(Figure 2E–H). Furthermore, it was observed that the numbers of CD206-positive M1 macrophages
seemed to be comparable to the numbers of M2 macrophages in both groups (Figure 2E–H).

2.2. Histomorphometrical (Quantitative) Analysis

The histomorphometrical analysis of the occurrence of pro- and anti-inflammatory cells
showed that comparable numbers of CD163-positive M2 macrophages were detected in the
implantation beds of the dPTFE membrane (1295.0 ± 529.8 cells/mm2) and the collagen membrane
(1174.0 ± 476.9 cells/mm2) at day 10 after implantation (Figure 3). Furthermore, comparable numbers
of CD206-positive M1 macrophages were found in the implantation beds of both biomaterials (dPTFE
membrane: 2339.0 ± 608.6 cells/mm2; collagen membrane: 2159.0 ± 478.8 cells/mm2) at this study
time point (Figure 3). In the implantation beds of both materials, significantly higher numbers of M1
macrophages (* p < 0.05) compared to the numbers of M2 macrophages per mm2 were detected at this
time point (Figure 3).

At day 30 post implantation, comparable numbers of M2 macrophages have been found in
the implantation beds of both membranes (dPTFE membrane: 968.0 ± 185.0 cells/mm2; collagen
membrane: 568.2 ± 320.8 cells/mm2), but without any significance compared to the former study time
point (Figure 3). Also, comparable numbers of M1 macrophages have been detected within the implant
beds of both analyzed biomaterials (dPTFE membrane: 1182.0 ± 506.7 cells/mm2; collagen membrane:
1208.0 ± 346.5 cells/mm2) and no significant differences compared to the numbers of CD163-positive
cells have been measured (Figure 3). Moreover, in case of both biomaterials, the numbers of M1
macrophages decreased significantly compared with day 10 after implantation ( p < 0.001 and

p < 0.05) (Figure 3).
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3. Discussion

Different barrier membranes are available for guided bone regeneration (GBR) procedures,
which can mainly be divided into resorbable und non-resorbable materials. Although resorbable
membranes are preferred due to the avoidance of a second surgery, clinical situations such as bone
defects outside the ridge contour, multi-walled bone defects, or vertical augmentations require
maintenance of the spatial barrier, which can be achieved by the application of non-resorbable
materials such as PTFE membranes [11]. Furthermore, ethical issues due to the xenogeneic origin
of collagen membranes make PTFE a preferable GBR-membrane due to its synthetic origin [29].
PTFE-based membranes have been described in manifold to enable successful barrier functionality and
associated successful bone regeneration, in various preclinical and clinical studies [1,30,31]. Moreover,
the biocompatibility of PTFE materials has widely been studied, although limited knowledge about
the underlying cellular responses exists. In this context, PTFE materials have been described to be
bioinert [32,33]. However, it has been stated that no material implanted in living tissue is inert, because
every biomaterial induces a tissue response [15]. Thus, the present study was conducted to examine
the immune responses to a new dPTFE barrier membrane by the means of published histopathological
and histomorphometrical analysis methods mainly focusing on immunohistochemical detection of
M1- and M2-macrophages [24–28]. A collagen membrane described as a biocompatible and resorbable
biomaterial was used as control [21–23].

The results of the present study show that the dPTFE membrane induced a tissue response,
including inflammatory cell types such as macrophages and granulocytes, up to day 30 post
implantation. Interestingly, the histomorphometrical detection of both macrophage subtypes showed
that more CD206-positive M1 macrophages were present at day 10 after implantation, compared to
macrophages expressing the M2 phenotype, and that this tissue reaction pattern was found to be
comparable to the control collagen membrane. However, this early pro-inflammatory tissue reaction
was not unexpected, as it is known that day 10 displays an early post-implantation phase, which still
includes the reactions to the implantation procedure per se. More interestingly, the analysis showed
a decrease of pro-inflammation reflected by the significant reduction of M1 macrophages at 30 days
in both groups. Although no differences between the numbers of CD206-positive cells within the
implantation beds of both biomaterials have been measured, the decrease of M1 macrophages was
more pronounced in the case of the dPTFE membrane, as expressed by the higher significance level,
as in case of the collagen membrane. Taken together, the significantly higher pro-inflammatory tissue
response at day 10 after implantation was reduced at day 30 to a comparable level of M1 and M2
macrophages, even in the case of the dPTFE membrane.

In this context, it has been reported that an initial response of M1 macrophages that have been
shown to lead to high levels of pro-inflammatory cytokine expressions to a biomaterial is a necessary
process, while a prolonged proinflammatory response is associated with material failures, as it will
induce a severe foreign body reaction or fibrous encapsulation [34]. In contrast, M2 macrophages
consistently express anti-inflammatory cytokines that lead to a suppression of an inflammatory
immune response, and that guide the tissue remodeling process [34]. These results lead to the
conclusion that the dPTFE membrane altogether did induce an inflammatory tissue response that was
comparable to the collagen membrane, which is considered to be biocompatible [35–37]. The tissue
reaction to a non-resorbable biomaterial is comparable to that of a resorbable material, and this might be
explained by the degradation mechanism of collagen-based biomaterials, which are mainly processed
by physiological enzymes, such as matrix metalloproteinases (collagenases) [37]. This suggests that
also in case of collagen membranes not a high level of inflammation is required for their degradation
and, thus, the severity of pro- and anti-inflammation is comparable in the case of both biomaterials.

Furthermore, the question arises as to what may be the reasons for the found level of inflammation
in the case of a non-resorbable biomaterial such as the analyzed dPTFE membrane. In this context,
it has to be recalled that in healthy conditions, a physiological level of inflammation has also
been shown to be present. Although the number of material-associated inflammatory cells is
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higher compared to the cell distribution in the surrounding connective tissue, it is questionable
whether the level of expression of pro- and/or anti-inflammatory molecules is really increased
in comparison to the immune cells of the healthy connective tissue. In this context, it has to
be mentioned that the results of the present study can only give limited information about the
degree of the inflammatory response as the immunohistochemical examination method does not
allow for any assertion about the (level of) expression of the different cytokines or mediators by
macrophages that are involved in the inflammatory tissue response to both analyzed biomaterials.
Thus, the immunohistochemical detection method is not an analysis method that allows for the
precise quantification of the severity of the foreign body reaction to the biomaterials, although it is
a first indicator that allows an insight into the general tissue response to a biomaterial. This leads
to the conclusion that a standardized in vitro test system including the cell types that are involved
in the foreign body reaction to a biomaterial might also be necessary for analyzing biocompatibility,
to prevent the rollout of inadequate biomaterials. Furthermore, specialized in vivo analysis methods,
such as laser-assisted cell microdissection, which allows for the measurement of cytokine release from
single cells or cell types, are important tools for biomaterial research and development [38,39].

Moreover, the time span up to day 30 post implantation might be not sufficient to make a final
statement about the overall tissue reaction, which has to be regarded as a dynamic process. This means
that the inflammatory cell or tissue response to the dPTFE membrane might ease after 30 days.
However, the application of non-resorbable PTFE membranes is most often restricted to only 30 days
after their application, which makes this investigation period justifiable [12,40].

Altogether, the results of the present study showed that the tissue response to the dPTFE
membrane involves inflammatory macrophages. However, comparable cell numbers were found in the
implant beds of a well-described collagen membrane, whose biocompatibility has been investigated
and confirmed in different studies. Although these data indicate that the analyzed dPTFE membrane
is not fully bioinert, they show that the device is biocompatible and thus may optimally support bone
healing within the context of guided bone regeneration.

4. Materials and Methods

4.1. Barrier Membranes

4.1.1. dPTFE Membrane (Permamem®)

The analyzed synthetic barrier membrane (permamem®, botiss biomaterials, Zossen, Germany)
is made of non-resorbable high-density polytetrafluoroethylene (dPTFE) (Figure 4A). The membrane
maintains its structural integrity during implantation and acts as an efficient barrier against bacterial
and cellular penetration due to its small pore size [41]. The membrane fulfills the requirements of
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(A) dPTFE membrane (500× magnification, scale bar = 20 µm); (B) collagen membrane (500×
magnification, scale bar = 20 µm).
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4.1.2. Pericardium-Based Collagen Membrane (Jason® membrane)

The collagen membrane analyzed in the present study is based on native collagen originating from
porcine pericardium (Jason® membrane, botiss biomaterials, Zossen, Germany). The standardized
manufacturing process includes an initial selection of the donor animals based on veterinary-controls.
During the purification process, the pericardium undergoes a wet-chemical treatment, lyophilization,
and sterilization by ethylene oxide gas. The collagen membrane exhibits a natural, multilayered
structure with an increased content of collagen type III (Figure 4B). Also, this membrane has shown to
fulfill the requirements of biocompatibility, according to EN ISO 10993-1 and EN ISO 7405 [41].

4.2. Scanning Electron Microscopy (SEM)

The (ultra-) structure of both biomaterials imaged by scanning electron microscopy (SEM) using a
XL30 CP SEM (Philips, Amsterdam, The Netherlands).

4.3. In Vivo Study Design, Subcutaneous Implantation, and Explantation Procedure

The in vivo experiments and animal housing were conducted at the Faculty of Medicine
(University of Niš, Serbia). The Local Ethical Committee (Faculty of Medicine, University of Niš,
Serbia) authorized the described in vivo experiments, on the basis of the Veterinary Directorate of the
Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia issued the decision
number 323-07-00278/2017-05/6 (Date: 13 July 2017). The animals were kept under standard conditions
(water ad libitum, artificial light, and regular rat pellet) and standard pre- and postoperative care was
ensured. The Local Ethical Committee (Faculty of Medicine, University of Niš, Serbia) authorized the
described in vivo experiments.

In total, 20 female, 6–8 week-old BALB/c mice obtained from the Military Medical Academy
(Belgrade, Serbia) were randomly allocated into two study groups. Each of the two study groups
contained 10 experimental animals and five animals were used for implantation of the respective
biomaterial per time point (n = 5), i.e., 10 and 30 days. The implantation was conducted following
the protocol described by Barbeck et al. [24–26,28,42]. In brief, the animals were anesthetized via an
intraperitoneal injection (10 mL ketamine (50 mg/mL) with 1.6 mL Xylazine (2%)). After shaving and
disinfection, an incision down to the subcutaneous tissue within the rostral subscapular region was
made. Subsequently, a subcutaneous pocket was bluntly built by scissors, and the biomaterials were
implanted into the pocket. Afterwards, the wounds were sutured.

After the respective study time points, i.e., 10 and 30 days, the animals were euthanized with an
overdose of the above-mentioned anesthetics and the implantation area, together with the surrounding
tissue, were explanted. Subsequently, the explanted tissue was fixed using a 4% formalin solution for
24 h, and then placed into PBS for the following histological workup process.

4.3.1. Histology and Immunohistochemistry

For the histological workup, the tissue explants were initially cut into two segments of identical
dimensions and dehydrated using a series of increasing alcohol concentrations. After a xylol exposure,
paraffin embedding was performed, followed by the preparation of sections with a thickness of 3–5 µm,
which were prepared by means of a rotation microtome (SLEE, Mainz, Germany). Three sections of
every tissue explant were used for histochemical stainings, i.e., haematoxylin and eosin (H&E), and
Movat pentachrome and Alcian blue.

Furthermore, four additional sections of every tissue explants were used for the
immunohistochemical detection of macrophages and their M1- and M2-subforms by means of
antibodies against the pro- and anti-inflammatory molecules, i.e., hemoglobin scavenger receptor
(CD163) and mannose receptor (MR, also known as CD206), based on previously published
methods [28,42–44]. Briefly, the slides were initially treated with citrate buffer and proteinase K
at pH8 for 20 min in a water bath at 96 ◦C, followed by equilibration using TBS-T buffer. Subsequently,
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the slides were prepared by H2O2 and avidin and biotin blocking solutions (Avidin/Biotin Blocking
Kit, Vector Laboratories, Burlingame, CA, USA). Incubated with the respective first antibody for 30 min
was conducted, followed by incubation with the secondary antibody (goat anti- rabbit IgG-B, sc-2040,
1:200, Santa Cruz Biotechnology, Shandon, CA, USA). Afterwards, the avidin–biotin–peroxidase
complex (ThermoFisher Scientific, Dreeich, Germany) (30 min) was applied, and counterstaining by
hematoxylin and blueing was conducted.

4.3.2. Histological Analysis

The histological analyses to study the tissue–biomaterial interactions within the implantation
beds of the biomaterials and their surrounding tissue were conducted using an Axio.Scope.A1
microscope (Zeiss, Oberkochen, Germany), as previously described [24–28]. These analyses focused
on the evaluation of the following parameters within the framework of the early and the late tissue
response related to the implants: fibrosis, hemorrhage, necrosis, vascularization, and the presence
of neutrophils, lymphocytes, plasma cells, macrophages, and biomaterial-associated multinucleated
giant cells (BMGCs). Finally, microphotographs were taken with an Axiocam 305 color connected to a
computer system running the ZEN Core (Zeiss, Oberkochen, Germany) connected to the microscope.

4.3.3. Histomorphometrical Analysis

The histomorphometrical analyses included the comparative measurements of the occurrence
of anti-inflammatory and pro-inflammatory cells within the implant beds of the membranes, as
previously described [24–28]. Briefly, “total scans” were generated with the aid of a specialized
scanning microscope, which consists of an Axio Scope.A1 microscope combined with a Axiocam
305 color digital camera and an automatic scanning table (Maerzhaeuser, Wetzlar, Germany) connected
to a computer system running the ZEN Core software (all: Zeiss, Oberkochen, Germany) containing
the complete implant area, as well as the peri-implant tissue. The slides stained by the aforementioned
immunohistochemical methods were digitized. To measure the extents of the cells, the amounts of
these cells were manually counted using the “count tool” of the Zen Core software, and related to the
total implant area (cells/mm2).

4.3.4. Statistical Analyses

Quantitative data were shown as mean ± standard deviation after an analysis of variance
(ANOVA), which enabled comparison of the data from the study groups via the GraphPad Prism 7.0d
software (GraphPad Software Inc., La Jolla, California, USA). Statistical differences were designated as
significant if the p-values were less than 0.05 (* p ≤ 0.05), and highly significant if the p-values were
less than 0.01 (** p ≤ 0.01) or less than 0.001 (*** p ≤ 0.001).
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