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Abstract 

Background:  Diagnosis codes in administrative health data are routinely used to monitor trends in disease preva‑
lence and incidence. The International Classification of Diseases (ICD), which is used to record these diagnoses, have 
been updated multiple times to reflect advances in health and medical research. Our objective was to examine the 
impact of transitions between ICD versions on the prevalence of chronic health conditions estimated from adminis‑
trative health data.

Methods:  Study data (i.e., physician billing claims, hospital records) were from the province of Manitoba, Canada, 
which has a universal healthcare system. ICDA-8 (with adaptations), ICD-9-CM (clinical modification), and ICD-10-CA 
(Canadian adaptation; hospital records only) codes are captured in the data. Annual study cohorts included all indi‑
viduals 18 + years of age for 45 years from 1974 to 2018. Negative binomial regression was used to estimate annual 
age- and sex-adjusted prevalence and model parameters (i.e., slopes and intercepts) for 16 chronic health conditions. 
Statistical control charts were used to assess the impact of changes in ICD version on model parameter estimates. 
Hotelling’s T2 statistic was used to combine the parameter estimates and provide an out-of-control signal when its 
value was above a pre-specified control limit.

Results:  The annual cohort sizes ranged from 360,341 to 824,816. Hypertension and skin cancer were among the 
most and least diagnosed health conditions, respectively; their prevalence per 1,000 population increased from 40.5 
to 223.6 and from 0.3 to 2.1, respectively, within the study period. The average annual rate of change in prevalence 
ranged from -1.6% (95% confidence interval [CI]: -1.8, -1.4) for acute myocardial infarction to 14.6% (95% CI: 13.9, 15.2) 
for hypertension. The control chart indicated out-of-control observations when transitioning from ICDA-8 to ICD-
9-CM for 75% of the investigated chronic health conditions but no out-of-control observations when transitioning 
from ICD-9-CM to ICD-10-CA.
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Introduction
International Classification of Diseases (ICD) codes were 
developed by the World Health Organization (WHO) 
as the worldwide standard for classifying the causes of 
injury and death [1]. These codes are captured in admin-
istrative health data, such as hospital records. ICD codes 
have been updated multiple times to reflect advances 
in health and medical science, and these changes are 
reflected in administrative health data. For example, US 
administrative health billing data changed from the 9th 
revision Clinical Modification (ICD-9-CM) to the 10th 
revision (ICD-10-CM) in 2015 [2]. Several countries, 
including Australia (ICD-10-AM), Canada (ICD-10-CA), 
Germany (ICD-10-GM), Korea (ICD-10-KM), and Thai-
land (ICD-10-TM), developed ICD-10 modifications to 
address country-specific needs [3].

In Canada, three ICD versions are captured in many 
administrative health databases: 8th revision (ICD-8), 9th 
revision (ICD-9), and 10th revision (ICD-10), which were 
introduced by the WHO in 1965, 1975, and 1993, respec-
tively [4–6]. Each ICD version has a greater number of 
codes, resulting in new diseases being added, and other 
diseases being recategorized, removed, or combined [1]. 
Though the increasing level of detail with each update of 
the ICD system is essential for diagnostic and adminis-
trative purposes, codes in one ICD version may not map 
(i.e., correspond) exactly to codes in another ICD ver-
sion [7]. This introduces challenges in using ICD codes to 
track trends in disease prevalence. A change in the trend 
may be associated with changes in coding standards 
rather than a change in the true disease prevalence.

Heslin and Barrett [8] observed an upward shift in the 
number of diagnosed cases of alcohol abuse, alcohol-
induced mental disorders, and intoxication after ICD-
10-CM was introduced as compared to when ICD-9-CM 
was used in the US. The study used 2-sided t-statistics 
to test for a difference in the average quarterly counts 
of inpatient stays between ICD periods. Slavova et  al. 
[2] used segmented regression to model injury hospi-
talizations to evaluate the effect of transitioning from 
ICD-9-CM to ICD-10-CM in the US; they reported a sig-
nificant change in the slope estimate after the transition 
in 2015. The effects of transitions to a new ICD version 
help researchers to know where to expect significant and 

sustained changes in trends between one ICD version 
and another [9].

A control chart, an efficient statistical tool to monitor 
and signal changes in a process over time [10], can also 
be used to investigate the trend pattern before and after 
transitions to a different ICD version. The control chart 
was first introduced in manufacturing for monitoring 
product estimates, such as the number of defects [11]. 
The control chart has been used in population health 
and health services research and surveillance to moni-
tor trend estimates, such as outcomes of pneumonia 
[12], proportion of live births by caesarean section [13], 
ratio of nurse attendance to ward workload [14], mortal-
ity rates [15], morbidity rates of patients after undergoing 
coronary artery bypass graft surgery [16], measurement 
error in vital signs [17], and patient dissatisfaction with 
hospitals [18]. As well, Hanslik et  al. [19] implemented 
the control chart as an epidemiological tool to test for 
a significant increase in the average number of cases of 
communicable, environmental and societal diseases 
relating to mass gatherings. Coory et  al. [20] used the 
control chart to monitor clinical indicators in administra-
tive health data. Other control chart applications include 
monitoring infection rates and lengths of hospital stays 
[21]. Control charts could also be used to investigate 
changes in disease trends amongst ICD versions.

This study applied control charts for the surveillance of 
chronic health conditions over time. Our objective was to 
examine the impact of transitions between ICD versions 
on the prevalence of chronic health conditions estimated 
from administrative health data.

Methods
Data sources
Study data were from the province of Manitoba, Can-
ada, which has a population of approximately 1.3 mil-
lion according to the 2016 Statistics Canada Census [22]. 
Manitoba has a universal healthcare system for publicly-
funded services, which include hospitalizations, prescrip-
tion drug dispensations, and outpatient physician visits. 
More than 99% of the population is eligible to receive 
health insurance coverage. Details of who is captured and 
excluded from the Manitoba Health Insurance Registry is 
provided by Hamm et al. [23].

Conclusions:  The prevalence of most of the investigated chronic health conditions changed significantly in the 
transition from ICDA-8 to ICD-9-CM. These results point to the importance of considering changes in ICD coding as a 
factor that may influence the interpretation of trend estimates for chronic health conditions derived from administra‑
tive health data.

Keywords:  Diagnosis codes, Hotelling’s T2, Multivariate control chart, Negative binomial, Trend analysis
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The Manitoba Population Research Data Reposi-
tory housed at the Manitoba Centre for Health Policy, 
University of Manitoba, has a variety of administrative 
health databases that contain ICD codes and can be 
linked via a unique, anonymized personal health iden-
tifier. The specific databases used in this study were 
the Medical Services database, the Hospital Discharge 
Abstracts Database (DAD), and the Manitoba Health 
Insurance Registry (Table  1). The Medical Services 
database consists of physician billing claims, which are 
forwarded to the ministry of health for reimbursement 
of fee-for-service physicians. Each record includes the 
date of service and a single ICD code that corresponds 
to the reason for the physician visit. The diagnoses were 
recorded using the 8th revision of ICD with adaptations 
(ICDA-8) from 1970 until 1979, when ICD-9-CM was 
adopted. Physician billing claims capture visits to fam-
ily physicians and specialists provided in outpatient 
(i.e., clinic) settings. This database covers more than 
80 provider categories and multiple specialist fields 
[24]. The DAD contains hospital records for all acute 
care facilities in the province; it does not capture emer-
gency department visits. Diagnosis codes in the DAD 
were defined using ICDA-8 codes from 1970 to 1979. 
After this period, ICD-9-CM was used until 2004, when 
ICD-10-CA (ICD-10 with Canadian enhancement) was 
adopted. The Manitoba Health Insurance Registry con-
tains records for all individuals eligible for health insur-
ance coverage in the province [25]. It also captures the 
start and end dates of coverage and socio-demographic 
information. The study databases were used to define 
the annual study cohorts from 1974 to 2018, as well as 
to produce demographic characteristics and prevalence 
estimates of chronic health conditions. The accuracy 
and completeness of Manitoba’s administrative data 
have been demonstrated in multiple studies and tools 
for data quality assessment have been developed and 
are routinely applied to the data [26–29].

Study cohorts
The study cohorts were formed by including all individu-
als residing in Manitoba that were 18 years of age or older 
in each year between 1974 and 2018. We categorised age 
into the following groups: 18–29, 30–39, 40–44, 45–49, 
50–54, 55–59, 60–64, 65–69, and 70  years and above. 
Individuals with less than three years of continuous 
health coverage were excluded.

Identifying chronic health conditions in administrative 
health data
We selected 16 chronic health conditions for this study 
that include both physical health and mental health. The 
chronic health conditions include rare and common con-
ditions, those that affect a range of body systems; and 
conditions that can adversely affect health-related quality 
of life. Thus, the selected conditions provide a good rep-
resentation of the variety of health conditions captured 
by the ICD system. The chronic health conditions were 
selected from multiple chronic health conditions derived 
using Clinical Classification Software (CCS) [7]. The 
CCS, developed by the Agency for Healthcare Research 
and Quality in the US, has been adopted in many studies 
to provide clinically meaningful and interpretable statis-
tics such as disease prevalence, frequencies, and medi-
cal expenditures [30, 31]. Crosswalks of diagnoses codes 
to CCS categories are provided by Hamad et al. [7]. The 
selected chronic health conditions include mood and 
anxiety disorders, menstrual disorders, hypertension, 
osteoarthritis, anemia, diabetes, asthma, acute myocar-
dial infarction, heart valve disorders, acute cerebrovas-
cular disease, cataracts, breast cancer, colon cancer, lung 
and respiratory cancers, prostate cancer, and skin cancer.

Statistical analyses
 The analyses were conducted for each year in the 45-year 
study period (1974 to 2018). Descriptive statistics, 
including means, standard deviations, and percentages, 

Table 1  Characteristics of the study data

ICD International Classification of Diseases, N/A No diagnoses are recorded in Registry data

Years of Study Data Data Sources ICD Version

1974–1979 Medical Services Database (Physician billing claims) ICDA-8

Hospital Discharge Abstracts Database (Hospital records) ICDA-8

Manitoba Health Insurance Registry N/A

1980–2004 Medical Services Database (Physician billing claim) ICD-9-CM

Hospital Discharge Abstracts Database (Hospital records) ICD-9-CM

Manitoba Health Insurance Registry N/A

2005–2018 Medical Services Database (Physician billing claim) ICD-9-CM

Hospital Discharge Abstracts Database (Hospital records) ICD-10-CA

Manitoba Health Insurance Registry N/A
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were used to describe the study cohorts’ demographic 
characteristics. We fit negative binomial regression mod-
els (M1) , a generalization of Poisson regression models 
(M2) that loosen the restrictive assumption that the vari-
ance is equal to mean, to counts of the number of cases of 
each chronic health condition in each age group and sex 
strata for the jth year (j = 1,…, m; m = 45). Model good-
ness of fit was assessed using a likelihood ratio test with a 
nominal significance level of α = 0.01, to reduce the like-
lihood of a Type 1 error. We also compared the models’ 
ratio of residual deviance to degrees of freedom (df ) [32] 
for both the negative binomial and Poisson regression 
models. The natural logarithm of the population size in 
each age group and sex strata was the model offset. Sex 
and age group were the model covariates. We estimated 
the annual age- and sex-adjusted prevalence and annual 
regression coefficients  β̂ j =

(
bkj

)
, k = 0, 1, . . . , (p− 1) , 

where p = 10 is the number of estimated parameters. 
The regression model parameters for the jth year include 
the intercept ( b0j ) and the slopes 

(
b1j , . . . , b9j

)
 where the 

reference categories were female for sex and 40–44 years 
for age group.

We estimated the average annual rate of change, 
expressed as a percentage, in the age- and sex-adjusted 
prevalence for three time segments. In segment 1 (1974–
1979) diagnosis codes were defined using ICDA-8 in 
both data sources (i.e., physician billing claims and hos-
pital records). In segment 2 (1980–2004), diagnosis codes 
were defined using ICD-9-CM in both data sources. In 
segment 3 (2005–2018), diagnosis codes were defined 
using ICD-10-CA in hospital records, while in physician 
billing claims they were still defined using ICD-9-CM.

We used Hotelling’s T2 control chart [33] to monitor 
and signal changes in the regression model parameter 
estimates for each year of the study period. We hypoth-
esized that stability of the model parameters is an indica-
tor of stability in the prevalence estimates. Hotelling’s T2 
statistic simultaneously monitors the regression model 
parameter estimates; an out-of-control signal occurs if 
the statistic is greater than a pre-specified control limit 
value [17]. This approach had been described previously 
[34–37]; Woodall et al. [35] noted that since the estima-
tors of intercept and slope are dependent, it is reasonable 
to monitor them together.

We used the Durbin-Watson test statistic to detect the 
presence of autocorrelation (and to estimate the autocor-
relation coefficient) between years [38], because the same 
individuals may be captured in prevalence estimates for 
subsequent years. Noorossana et al. [39] performed a sim-
ulation study to illustrate a significant decrease in control 
charts performance when autocorrelation is overlooked. 
To reduce the impact of autocorrelation, we used a U-sta-
tistic method (see U-Statistic Definition in Additional 

file 1), where the estimate for the jth year is adjusted for 
correlation in the preceding (i.e., j – 1) year [38, 40].

Hotelling’s T2 statistic [17, 41] for the jth year is 
defined as.

and plotted against an upper control limit (UCL) of.

and a lower control limit (LCL) of zero. In Eq. 1, Uj is 
the vector of adjusted regression model parameters that 
are assumed to be independently and normally distrib-
uted with mean  µU and covariance matrix �U . In Eq. 2, 
F is the critical value of the F distribution with degrees 
of freedom p and m—p, and α is the nominal level of sig-
nificance. The control limit was 19.8 when α = 0.01. The 
mean vector µU and covariance matrix �U can be esti-
mated from a reference sample (or a training dataset) [20, 
42]. In the absence of a reference sample, the mean vector 
and covariance matrix can be estimated from Uj [20, 42] 
by finding the mean and covariance of Uj across all j . The 
test statistic is said to be an in-control observation when 
it is within the bounds of LCL and UCL, otherwise it is 
an out-of-control observation. The presence of at least 
one out-of-control observation in a transition period 
was used to decide if changes in the ICD version affected 
the prevalence estimate of a chronic health condition. A 
transition period was defined as ±2 years around a tran-
sition year, where the transition year was 1979 when 
transitioning from ICDA-8 to ICD-9-CM and the transi-
tion year was 2005 when transitioning from ICD-9-CM 
to ICD-10-CA. Thus, the first transition period was from 
1977 to 1981 and the second transition period was from 
2003 to 2007. In a sensitivity analysis, we defined a transi-
tion period as ±1 year around a transition year. Since the 
DAD was the only data source that contains diagnoses 
recorded using ICD-10-CA, we also conducted separate 
analyses for each of the data sources (i.e., in physician 
billing claims, we focused on the transition period from 
ICDA-8 to ICD-9-CM, while in hospital records, we 
focused on the transition periods from ICDA-8 to ICD-
9-CM and ICD-9-CM to ICD-10-CA).

Results
Characteristics of the study cohorts
The demographic characteristics of the study cohorts are 
described in Table 2 for selected study years. The annual 
cohort sizes increased from 360,341 in 1974 to 824,816 in 
2018, while the average age increased from 37.3 years to 

(1)T 2

j = (�j − �U )
�

�−1

U
(�j − �U )

(2)UCL =
p(m− 1)(m+ 1)

m(m− p)
Fα,p,m−p
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48.0 years, reflecting the growth and ageing of the Mani-
toba population over time.

Goodness of fit tests for regression models
We compared the goodness of fit of M1 (negative bino-
mial model) and M2 (Poisson model) for each year in the 
study period using a likelihood ratio test and rejected the 
null hypothesis (dispersion parameter is infinity) for all the 
chronic health conditions because the resulting p-values 
were less than 0.01 . This implies that the data was over-dis-
persed and M1 was a better fit to the data. Also, the ratios 
of residual deviance to df were small and close to one for 
M1 , unlike for M2 where the ratios were high (see Fig-
ure S1, Additional file  1). This indicates that M2 did not 
account for the standard errors of the over-dispersed data.

Age‑ and sex‑adjusted prevalence
Table  3 presents the age- and sex-adjusted prevalence 
(per 1,000 population) and the average annual rate of 

change (%) in prevalence for the chronic health condi-
tions during the three time segments in which different 
ICD versions were used in the administrative data. Mood 
and anxiety disorders were the most common health 
condition in segments 1 and 2 with prevalence esti-
mates of 74.4 and 138.8 in 1974 and 2004, respectively, 
and hypertension was the most prevalent health condi-
tion in segment 3 with prevalence estimates of 142.6 and 
223.6 in 2005 and 2018, respectively. Skin cancer was the 
least diagnosed health condition in all the segments, with 
prevalence estimates of 0.3 and 2.1 in 1974 and 2018, 
respectively.

The highest average annual rate of change (%) in 
prevalence was recorded for hypertension in seg-
ment 1 (14.6; 95% confidence interval [CI]: 13.9, 
15.2), asthma in segment 2 (7.4; 95% CI: 7.3, 7.5), and 
skin cancer in segment 3 (5.9; 95% CI: 5.6, 6.1). The 
lowest average annual rate of change in prevalence 
was recorded for menstrual disorders in segment 1 

Table 2  Demographic characteristics of the study cohorts in selected study years

SD Standard Deviation

Characteristics 1974 1984 1994 2004 2018

N 360,341 554,894 656,290 726,005 824,816

Age, mean (SD) 37.3 (13.0) 38.5 (15.1) 42.0 (16.7) 45.2 (17.6) 48.0 (18.8)

Female (%) 49.0 50.0 50.8 51.4 51.2

Table 3  Prevalence and average annual rate of change (%) in prevalence for chronic health conditions

Note: Age- and sex-adjusted prevalence per 1,000 population

Chronic Health Condition Segment 1: 1974—1979 Segment 2: 1980—2004 Segment 3: 2005—2018

Prevalence Average annual rate 
of change (95% CI)

Prevalence Average annual rate 
of change (95% CI)

Prevalence Average annual 
rate of change 
(95% CI)1974 1979 1980 2004 2005 2018

Mood and anxiety disorders 74.4 74.0 8.0 (7.1, 8.9) 84.8 138.8 4.5 (4.4, 4.5) 138.8 165.7 3.0 (2.9, 3.1)

Menstrual disorders 63.5 59.1 2.4 (2.0, 2.8) 51.2 34.8 1.9 (1.7, 2.1) 32.7 26.2 0.0 (-0.1, 0.1)

Hypertension 40.5 62.5 14.6 (13.9, 15.2) 64.5 141.1 2.9 (2.8, 3.0) 142.6 223.6 3.9 (3.8, 4.0)

Osteoarthritis 15.7 18.4 9.4 (8.5, 10.2) 16.5 47.1 5.1 (5.0, 5.2) 52.0 55.5 0.8 (0.6, 0.9)

Anemia 15.3 13.0 2.6 (0.7, 4.5) 12.6 22.7 3.5 (3.3, 3.7) 21.2 26.5 3.8 (3.4, 4.2)

Diabetes 11.4 14.9 10.8 (10.3, 11.4) 14.7 57.3 6.3 (6.2, 6.4) 60.1 96.8 4.4 (4.3, 4.5)

Asthma 8.2 9.4 8.3 (7.4, 9.3) 10.3 35.3 7.4 (7.3, 7.5) 34.8 47.6 5.5 (5.3, 5.6)

Acute myocardial infarction 3.0 2.9 3.5 (3.0, 4.1) 2.9 4.1 0.9 (0.7, 1.0) 4.1 3.0 -1.6 (-1.8, -1.4)

Heart valve disorders 2.4 3.5 13.6 (12.5, 14.7) 2.7 3.6 1.3 (1.1, 1.4) 3.4 4.8 2.6 (2.5, 2.7)

Acute cerebrovascular disease 1.9 2.4 9.6 (8.4, 10.9) 2.4 6.9 4.3 (4.2, 4.5) 7.1 7.4 1.5 (1.4, 1.7)

Cataracts 1.7 2.4 10.3 (9.5, 11.2) 2.7 24.4 6.4 (6.3, 6.6) 24.5 25.9 1.5 (1.3, 1.6)

Breast cancer 1.3 1.8 10.0 (9.3, 10.7) 1.8 6.7 5.3 (5.1, 5.5) 6.9 6.0 -0.8 (-0.9, -0.7)

Colon cancer 0.5 0.6 8.8 (7.4, 10.2) 0.7 2.8 6.5 (6.4, 6.6) 2.8 2.9 1.5 (1.4, 1.7)

Lung & respiratory cancers 0.4 0.6 11.7 (10.3, 13.1) 0.6 1.9 4.3 (4.2, 4.5) 2.0 2.3 1.1 (0.9, 1.2)

Prostate cancer 0.3 0.5 9.3 (7.5, 11.0) 0.5 5.1 5.8 (5.0, 7.0) 5.1 6.2 2.4 (2.3, 2.6)

Skin cancer 0.3 0.3 10.5 (8.9, 12.1) 0.3 0.9 5.4 (5.2, 5.5) 0.9 2.1 5.9 (5.6, 6.1)
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(2.4; 95% CI: 2.0, 2.8); acute myocardial infarction 
in segment 2 (0.9; 95% CI: 0.7, 1.0); and acute myo-
cardial infarction in segment 3 (-1.6; 95% CI: -1.8, 
-1.4). Acute myocardial infarction and breast cancer 
showed a significant decline in prevalence during 
segment 3, while other health conditions showed an 
increase (Table 3).

Control chart results
Figure 1 displays the chronic health conditions with sig-
nificant changes in regression model parameter estimates 
when transitioning from one ICD version to another. 
Within the first transition period, there was at least 
one out-of-control observation (i.e., at least one Hotel-
ling’s T2 statistic greater than the UCL) for each of the 

Fig. 1  Chronic health conditions with significant changes in regression model parameter estimates within transition periods. Legend: Data sources 
are physician billing claims and hospital records; A transition period was defined as ±2 years around the transition year of 1979 for the transition 
from ICDA-8 to ICD-9-CM and around the transition year of 2005 for the transition from ICD-9-CM to ICD-10-CA; Horizontal dashed line represents 
the upper control limit of 19.8; Vertical solid lines represent transition years (1979 and 2005); Vertical dashed lines represent the beginning and end 
of the transition periods (1977—1981 and 2003—2007)
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investigated chronic health conditions. The maximum 
Hotelling’s T2 statistics for mood and anxiety disorders, 
menstrual disorders, and hypertension in the first transi-
tion period were 29.0, 22.5, and 20.9, respectively, which 
are greater than the UCL (Table  4). However, in the 
second transition period, there were no out-of-control 
observations for any chronic health conditions.

Figure  2 displays the chronic health conditions with 
no out-of-control observations in any of the transition 
periods: acute myocardial infarction, acute cerebro-
vascular disease, colon cancer, and lung and respira-
tory cancers. Their respective maximum Hotelling’s T2 
statistics were 16.0, 19.5, 17.2, and 17.3 during the first 
transition period and 10.4, 12.8, 9.5, and 13.7 during the 
second transition period; these values are lower than 
the UCL (Table 4).

In the sensitivity analysis, in which a transition 
period was defined as ±1 year around a transition year, 
the results were similar to the results for the main 
analysis when a transition period was defined as ±2 
year around a transition year. The exceptions were for 
osteoarthritis, asthma, and breast cancer. These health 
conditions had no out-of-control observations within 
the transition periods (see Figure S2, Figure S3, and 
Table S1, Additional file 1).

We conducted separate analyses for physician bill-
ing claims and hospital records. For  the former,  there 
were 10 chronic health conditions (i.e., mood and anxi-
ety disorders, hypertension, anemia, diabetes, asthma, 
acute cerebrovascular disease, cataracts, breast can-
cer, prostate cancer, and skin cancer) with significant 
changes in regression model parameter estimates within 
the transition period from ICDA-8 to ICD-9-CM (see 
Figure S4 and Figure S5, Additional file  1).  For  hospi-
tal records,  there were six chronic health conditions 
(i.e., menstrual disorders, acute cerebrovascular dis-
ease, breast cancer, colon cancer, lung and respiratory 
cancers, and skin cancer) with significant changes in 
regression model parameter estimates within the first 
transition period and one chronic health condition 
(i.e., skin cancer) with a significant change in regression 
model parameter estimates within the second transition 
period (i.e., when transitioning from ICD-9-CM to ICD-
10-CA; see Figure S6 and Figure S7, Additional file 1).

Discussion
We used control charts to monitor the estimated 
regression model parameters for 16 chronic health 
conditions during a 45-year period (1974–2018) when 
three different ICD versions were used to record diag-
noses in administrative health data. We focused on the 
effect of changes in the ICD version on the prevalence 
of chronic health conditions, which can result in real 

changes in the usage, meaning, and interpretation of 
diagnosis codes [7].

Our results showed that the estimated regression 
model parameters for most of the investigated chronic 
health conditions changed significantly during the tran-
sition from ICDA-8 to ICD-9-CM. There was no sig-
nificant changes in the estimated regression model 
parameters during the transition from ICD-9-CM to 
ICD-10-CA when both data sources (i.e., physician bill-
ing claims and hospital records) were combined. Simi-
lar results were obtained when we examined trends in 
physician billing claims and hospital records separately. 
However, the exception to this was that we did detect a 
significant change in the estimated regression model 
parameters for skin cancer during the transition from 
ICD-9-CM to ICD-10-CA in hospital records.

These findings may also have occurred because there may 
have been less standardized training in diagnosis coding 
methodologies in the late 1970s than in the 2000s, and also 
less opportunity to communicate amongst healthcare cod-
ers, particularly in rural and remote areas of the province 
of Manitoba, to share information about coding practices.

Table 4  Summary of Hotelling’s T2 statistics for chronic health 
conditions in the transition periods

Data sources are physician billing claims and hospital records; Boldface font 
indicates a test statistic value greater than the upper control limit of 19.8; The 
transition period was defined as ±2 years around the transition year of 1979 for 
the transition from ICDA-8 to ICD-9-CM, and around the transition year of 2005 
for the transition from ICD-9-CM to ICD-10-CA

Chronic Health 
Condition

Transition period 
from ICDA-8 to ICD-
9-CM

Transition period 
from ICD-9-CM to 
ICD-10-CA

Max T2 Average T2 Max T2 Average T2

Mood and anxiety 
disorders

29.0 17.7 10.8 7.0

Menstrual disorders 22.5 16.5 9.7 7.3

Hypertension 20.9 11.9 10.9 7.6

Osteoarthritis 20.0 13.6 12.3 7.1

Anemia 28.4 15.3 11.0 8.6

Diabetes 21.7 15.9 9.8 6.9

Asthma 20.1 12.3 12.8 8.1

Acute myocardial infarc‑
tion

16.0 10.2 10.4 9.5

Heart valve disorders 23.0 13.9 12.9 8.5

Acute cerebrovascular 
disease

19.5 14.5 12.8 8.0

Cataracts 24.1 16.4 10.5 6.9

Breast cancer 26.2 13.7 8.8 6.0

Colon cancer 17.2 12.7 9.5 7.9

Lung & respiratory cancers 17.3 12.0 13.7 10.2

Prostate cancer 29.9 18.2 10.5 5.0

Skin cancer 27.3 20.2 12.2 6.5
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Databases that include more than one ICD version 
represent a challenge for trend analyses because sig-
nificant change in the prevalence estimates of chronic 
health conditions could emerge solely from the change 
in coding version, independent of true change in pop-
ulation health [43]. In other to mitigate the effect of 
change in ICD version on trend analysis, Janssen and 
Kunst [44] examined five ICD revisions in six European 

countries and recommended aggregating ICD codes 
into broader, clinically meaningful groups to reduce the 
impact of discontinuities in individual codes on trend 
estimates.

One of the strengths of this study is the population-
based data that were used in trend estimation, which 
ensure generalizability of the results across the entire 
population of this Canadian province. Also, this study 

Fig. 2  Chronic health conditions with no significant changes in regression model parameter estimates within transition periods. Legend: Data 
sources are physician billing claims and hospital records; A transition period was defined as ±2 years around the transition year of 1979 for the 
transition from ICDA-8 to ICD-9-CM and around the transition year of 2005 for the transition from ICD-9-CM to ICD-10-CA; Horizontal dashed 
line represents the upper control limit of 19.8. Vertical solid lines represent transition years (1979 and 2005); Vertical dashed lines represent the 
beginning and end of the transition periods (1977 – 1981 and 2003—2007)
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has a long time span, which captured data coded using 
three ICD versions. These strengths provide an oppor-
tunity for longitudinal research covering multiple ICD 
versions and a unique ability to examine changes within 
these ICD versions. The inclusion of ICDA-8 in this 
study aids in filling a knowledge gap; previous studies 
have focused on the transition from ICD-9 to ICD-10 
only [45–48]. Tracking chronic health conditions across 
multiple decades can contribute to answering questions 
related to generational impacts of chronic health condi-
tions [49, 50]. We considered 16 chronic health condi-
tions that vary in prevalence and encompass multiple 
body systems, unlike previous studies that only focused 
on a single health condition or a single category of 
health conditions [51–53]. Finally, our methodology can 
be applied to other health conditions and to data from 
other Canadian provinces/territories, as well as to data 
from international jurisdictions.

This study is not without its limitations. Transi-
tions between ICD versions may not be the only factor 
responsible for the significant changes in prevalence 
estimates. Prevalence of chronic health conditions 
derived from administrative health data may be influ-
enced by changes in healthcare providers, including 
the number of primary care providers, the number and 
types of specialists, and the availability of other types of 
care (e.g., emergency departments, long-term care) [54–
57]. Also, we limited our attention to modelling trends 
in prevalence and not trends in incidence of the selected 
chronic health conditions; different results might have 
arisen if we had focused on incidence. Furthermore, 
an out-of-control signal in our control charts analy-
sis indicates a significant change in at least one of the 
regression model parameters; the specific coefficient(s) 
responsible for the signal is (are) not directly identi-
fied. However, this is not disadvantageous to our study 
since we were interested in detecting out-of-control 
signal(s), not the specific parameter responsible for sig-
nal detection.

Administrative health data have a number of strengths 
for research about chronic health conditions; they are 
relatively inexpensive to access and process and many 
data repositories now capture multiple decades of 
data [58, 59]. However, when integrating chronic dis-
ease information that arises across different versions 
of the ICD, there is the potential for misinterpretation 
of changes in trends if changes in ICD version are not 
accounted for. Changes in ICD versions captured in 
administrative health data require crosswalks of the 
diagnoses if data sources are to be integrated. Cross-
walks between three ICD versions (ICDA-8, ICD-9-CM, 
and ICD-10-CA) for multiple chronic health conditions 
were recently developed [7].

Conclusion
In conclusion, we observed that the prevalence estimates 
of most of the investigated chronic health conditions were 
significantly affected when transitioning from ICDA-8 to 
ICD-9-CM, but not when transitioning from ICD-9-CM 
to ICD-10-CA. The findings of this study will benefit 
researchers and public health decision makers that rely on 
administrative health data spanning multiple decades to 
estimate change in chronic health condition prevalence.
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