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Abstract

Convective transport is an important phenomenon for nanomedicine delivery. We present an 

imaging-based approach to recover tissue properties that are significant in the accumulation of 

nanoparticles delivered via systemic methods. The classical pharmacokinetic analysis develops 

governing equations for the particle transport from a first principle mass balance. Fundamentally, 

the governing equations for compartmental mass balance represent a spatially invariant mass 

transport between compartments and do not capture spatially variant convection phenomena. 

Further, the parameters recovered from this approach do not necessarily have direct meaning with 

respect to the governing equations for convective transport. In our approach, a framework is 

presented for directly measuring permeability in the sense of Darcy flow through porous tissue. 

Measurements from our approach are compared to an extended Tofts model as a control. We 

demonstrate that a pixel-wise iterative clustering algorithm may be applied to reduce the parameter 

space of the measurements. We show that measurements obtained from our approach are 

correlated with measurements obtained from the extended Tofts model control. These correlations 

demonstrate that the proposed approach contains similar information to an established 

compartmental model and may be useful in providing an alternative theoretical framework for 

parameterizing mathematical models for treatment planning and diagnostic studies involving 

nanomedicine where convection dominated effects are important.
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1. Introduction

The unique physiochemical and optical properties of nanoparticles make them ideal 

candidates for numerous biomedical applications including drug delivery, bioimaging, tissue 

engineering, and biosensors. Factors that influence the tumoral accumulation of 

nanoparticles remain an active area of interest [1,2]. Many delivery strategies for particulate 

systems have relied on the enhanced permeability and retention (EPR) effect for particles to 

passively cross the tumor endothelial barrier [3]. A common approach to improve the 

delivery of nanoparticles into the target site is by prolonging the retention time in the blood 

[4,5]. Relatively smaller size nanoparticles (<10 nm) are cleared by renal excretion directly 

and very large particles (>100 nm) are absorbed by liver cells [6]. Nanoparticles between 10 

and 100 nm can pass through the endothelial fenestrae in the liver and spleen and may reach 

the target organ via the blood vasculature. The relationship between nanoparticle circulation 

time and retention in tumors is complex [7]. Systemic delivery of nanoparticle accumulation 

in a target tumor results from both passive transport within the convection dominated effects 

of blood flow within the large vasculature as well as the active biological selection and intra-

endothelial transport once the particles are near the target. Recent studies have demonstrated 

that passive transport through inter-endothelial gaps is not responsible for the transport of 

nanoparticles into solid tumors [8]. Macrophages [9], as well as dendritic cells, neutrophils, 

and monocytes [1], have a significant role in the nanoparticle accumulation in tumors. This 

manuscript presents a pharmacokinetic model of nanoparticle transport within the scope of 

passive transport.

In particular, the pharmacokinetic model presented views the nanoparticle delivery problem 

as convective transport through a porous media. Imaging provides anatomical information 

that drives the clinical workflow and provides a natural setting for model developments and 

practical application. Here, model developments are with respect to computed tomography 

(CT). CT imaging is a widely accepted tool for use in a variety of medical imaging 

applications. Compared to other common imaging modalities such as magnetic resonance 

imaging (MRI), ultrasound (US), and positron emission tomography (PET), CT is regarded 

as being accessible, inexpensive, and well-tolerated by imaged subjects. The high spatial and 

temporal resolution makes CT a common first-line imaging modality for diagnosis and 

staging of primary and metastatic tumors, anticancer therapy prediction and delivery, and 

monitoring recurrence following therapy [10,11]. The wide availability of standardized 

imaging protocols enables reproducible results between scanners and institutions. In CT 

imaging, ionizing radiation is used to penetrate tissue with inherent contrast arising from 

differences in attenuation specific to each tissue type. This attenuation, expressed in 

Hounsfield units (HU), can be artificially increased with the addition of high-density 

contrast material. Measured HU values are directly proportional to the concentration of 

contrast in the defined area and provide the basis for quantitative CT applications [12]. 

While CT imaging can be performed with or without contrast, the use of contrast enables 

quantitative dynamic and functional imaging when used with techniques such as CT 

perfusion imaging. Tracer kinetic models of imaging contrast motivate our modeling 

approach. Contrast enhancement observed during CT perfusion imaging is used as a 
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surrogate for tracking nanoparticle transport within this manuscript. Imaging measurements 

provide the data to calibrate our mathematical formulation.

High fidelity mathematical modeling of nanoparticle transport kinetics involves multiphysics 

fluid flow within large vessels and porous living tissue. Common mathematical formulations 

[13–17] consider the uptake and exchange of nanoparticles among major anatomical 

compartments including the liver, blood plasma, and tumor. For example, the plasma 

compartment represents particles in circulation and available to bind to the tumor. The liver 

compartment represents particles trapped by the liver to be excreted. Analysis of 

nanoparticle kinetics is commonly developed from first principle mass transport theory and 

results in a system of nonlinear ordinary differential equations describing the time-varying 

kinetics of the nanoparticle biodistribution. Such models incorporate several biological 

parameters that necessitate systematically-designed experimental data to calibrate these 

model parameters.

The widely applied Tofts model is a compartmental model that was designed for tissues with 

negligible blood volume [18]. Tofts models assume equilibrium of contrast media between 

the blood plasma and the extravascular-extracellular space (EES) as well as isodirectional 

permeability [19]. The notion of permeability in the Tofts’ approach is interpreted as the rate 

transfer constant between a blood vessel and the EES. The feeding vessels within the tissue 

are assumed to provide a spatially homogeneous arterial input function source term to the 

governing ordinary differential equation. Implicitly, this assumes that the time scale for the 

transport between imaging visible vessels and vessels not visible on imaging is less than the 

sequential time between a dynamic imaging acquisition. The extended Tofts models build 

upon the Tofts model and include additional parameters for intra-vascular signal 

contributions. However, permeability is still interpreted as the rate transfer constant between 

a blood vessel and the EES. Fundamentally, the governing equations for compartmental 

mass balance represent a spatially invariant mass transport between compartments and do 

not capture spatially variant convection phenomena.

In this manuscript, we view the transport problem as convective flow through porous tissue. 

While Darcy flow models have been applied to model mass transport in porous biological 

tissues [20–27], the key idea of this manuscript is to provide a framework for directly 

measuring permeability in the sense of Darcy flow through porous tissue. In the case where 

the porous media does not provide an imaging signal, NMR measurements may be applied 

to directly measure permeability and porosity [28] from an MR visible fluid. Here, the 

porous biological tissue provides an imaging signal. Obtaining permeability in the sense of 

Darcy flow is important for applications of nanotechnology in which the governing 

equations are dominated by convective transport [29,30]. Permeability measurements within 

the presented framework are obtained from the same convection dominated equations. 

Dimensional analysis of the parameters obtained are directly related to units of flow rates, 

pressure gradients, permeability, and, thus, have direct meaning for parameterizing 

mathematical models for treatment planning and diagnostic studies. Pixels parameter 

recovery results in high dimensional inverse problems that are computationally expensive 

[31]. An iterative clustering algorithm is applied pixel-wise and evaluated for data reduction 

[32].
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2. Methods

2.1. Signal model

A mathematical formulation for mass transport within vascularized porous living tissue 

shares much in common with the mathematics, aerospace, biomedical, geosciences, and 

petroleum engineering mixture theory literature [33–36]. Mixture theory provides a natural 

framework to consider nanoparticle transport through porous tissue. At each point in space, 

x ∈ Ω, we consider the mixture of porous tissue, φtissue, and blood that does, φnano, and does 

not, φblood, contain the nanoparticles:

φtissue  + φnano  + φblood  = 1      ∀x ∈ Ω . (1)

Mass is conserved for each component in the mixture with and without nanoparticles 

flowing with velocity, v m
s :

∂ριφι
∂t + ∇ ⋅ ριφιv = 0    ι ∈ nano, blood .

Mass density of each component is denoted ρι
kg
m3 . We rewrite the mass balance in terms of 

the saturation:

∂sι
∂t + ∇ ⋅ sιv = 0    ι ∈ nano, blood , (2)

snano + sblood = 1    φtissue = 1 − ϕ    φnano
= ϕsnano    φblood = ϕsblood, (3)

where ϕ represents the tissue porosity or void space. Saturation of a given constituent, s1, ι 
∈ {blood, nano}, represents the ratio of the void volume filled with the constituent to the 

total of the void volume in the porous medium. Summing the mass balance (2) for each 

constituent, ι ∈ {nano, blood}, and applying the constraint that the saturations sum to one,

(3), the flow is seen to be incompressible:

∇ ⋅ v = 0. (4)

Characteristic lines of convective transport are assumed in the direction of the normal to 

imaging visible vessels, n, that are the source of the flow. The speed of the flow along the 

characteristic lines is denoted a. The governing equation for tracking nanoparticle transport 

is a first order hyperbolic equation:

∂snano
∂t +

∂snano
∂n a = 0 a = n ⋅ v = v

snano(0, x) = s0(x) snano(t, 0) = sAIF(t)
.
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Here, the initial condition s0 may be obtained directly from the imaging data and is the only 

source of nanoparticle transport. The inlet boundary condition from the arterial input 

function, sAIF, is obtained by placing a region of interest (ROI) on the contrast enhancement 

observed in the aorta. The vector pointing from the vessel centerline implicitly defines the 

normal vector, n, from the centerline point of the closest feeding vessel, x0:

n =
x − x0
x − x0

.

A signed distance map [37] is used to estimate the closest perpendicular distance to the 

vessel input. This perpendicular distance approximation implicitly assumes that both 

imaging visible and non-visible vessels contribute to the flow and that vessel branches exist 

that are perpendicular to the imaging visible vessels. The feeding vessels within the tissue 

are assumed to supply the nanoparticle system input as initial conditions and boundary 

conditions for our system. Under these assumptions, the solution is analytic and of the form 

s(x, t) = f(x−at). The function, f, is arbitrary and is determined by the initial conditions and 

boundary conditions:

snano(t, x) = s0(x − at) = sAlF ( − x/a + t) . (5)

The flow speed, a[m/s], is obtained as the distance value, ||x–x0||, divided by the contrast 

bolus arrival time (BAT). The bolus arrival time is computed from the peak-gradient method 

available in the 3 D Slicer PkModeling extension [38]. Flow speed is assumed piecewise 

constant to allow for tissue heterogeneity:

a(x) = ∑
i

αiψi(x) . (6)

A superpixel model [32] is used to obtain piecewise constant imaging regions. A linear 

iterative clustering algorithm with a grid size of 20 voxels is used to generate the super-pixel 

model.

2.2. Flow model

Following Darcy’s law, the flow speed a is the assumed result of a pressure gradient along 

the flow direction:

v ⋅ n = − κ
μ ∇p ⋅ n = a . (7)

The flow velocity, v, is proportional to the pressure gradient, p, across the tissue and in the 

direction of the normal, n, from the source vessel. Tissue permeability is denoted κ[m2]. The 

viscosity of blood is known, μ = 3.5 · 10−3 [Pa · s]. Poiseuille’s law [39] provides a 

relationship between the flow rates and pressure gradient in the vessels:
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Q = πR4

8μ ∇p ⋅ n . (8)

Flow rates, Q, in rabbit liver have been measured as 177[ml/min] [40]. The average vessel 

radius, R, was extracted from image Hessian based filters applied to the image subtraction of 

the pre-contrast image from the maximum intensity projection image [39]. The pressure 

gradient is assumed spatially homogeneous across the tissue and vessels. Substituting 

Equation (8) into Equation (7) provides an estimate of the tissue permeability:

κ = aπR4

8Q . (9)

Within this manuscript, Equation (9) estimates the permeability as proportional to the flow 

speed. However, for further comparison with existing literature, it is worth noting that 

alternative measurements of the flow rate, Q, may be obtained from indicator dilution theory 

[41] and blood volume measurements [42]. Flow rates are derived from the conservation of 

flow across the tissue and vessel interface. The flow rate input is equal to the flow rate out of 

the tissue. A constant velocity over each interface, ∂Ω, is assumed. The flow rate, Q is 

derived from the integral form of mass conservation applied to constituent ι at the tissue 

interface:

mι(T ) − mι(0) = ∫
Ω

ρφ(x, T )dV − ∫
Ω

ρφ(x, 0)dV

= ∫
0

T∫
∂Ω

ρφv ⋅ n    ι ∈ nano, blood .
(10)

Under the assumption that the time interval t = 0 represents the time prior to the nanoparticle 

arrival and t = T is less than the transit time out of the tissue Ω, outflow is not considered. 

Within the time interval [0, T], the flow rate into the tissue may be obtained:

mnano(T ) = ∫
0

T
ρφnanodt∫

∂Ω
vin ⋅ ndA         Q

= ∫
∂Ω

vin ⋅ ndA = m(T )
∫0

T ρφnanodt
.

(11)

Here, steady state input velocity, vin, is assumed so that the velocity may be factored out of 

our the integral in time. The tracer distribution is assumed homogeneous across the feeding 

vessel such that the concentration factors out of the spatial integrals. At this step, the various 

analysis methods depart in assumptions for calculation of the flow rate, Q. Indicator dilution 

theory [41] assumes that the mass in the tissue is known from the injected concentration 

bolus, m(T) = m0. Calculations of blood volume (BV) measurements use the area under the 

curve for the concentration in the tissue [42]. Dimensional analysis of the units of each term 
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are used to guide the algebraic relationships seen in the literature. The average flow rate, Q, 

may be related to BV as

Q ≡ 1
Δt∫0

T
Q = 1

Δt∫Ω
BV (x)dV     BV (x) ≡

∫0
T φnano(x, t)dt
∫0

T ρφnanodt
. (12)

2.3. Compartmental model

In the assessment of tumor biology and angiogenesis, compartmental analysis of CT 

perfusion imaging provides a noninvasive volumetric assessment of tumor vasculature 

[11,43–46]. Correlation between parametric maps obtained from compartmental analysis 

and microvessel structure has been used as a predictor of disease severity and treatment 

outcomes [47–50].

We apply the PkModeling extension for 3 D Slicer [51] to compute the extended Tofts 

compartmental model parameters as a control for our speed recovery in Equation (5):

snano (t) = Ktrans∫
0

t
Saif (u)e− Ktrans

ve
(t − u)du + fpvsaif(t) . (13)

The solution to the compartmental model was obtained from a nonlinear least square curve 

fit to the extended Tofts model analytical solution parametrized by Ktrans, ve, and fpv. Here, 

Ktrans[1/s] represents the influx forward volume transfer constant (into EES from plasma), ve 

is the fractional volume of EES per unit volume of tissue, fpv represents the fractional 

plasma volume of the arterial input present at each voxel [19]. Contrast enhancement is 

linearly proportional to the concentration of contrast agent in the tissue [42]:

φnano ∝ I(x, t) − Ib(x), (14)

wherelb(x) represents a baseline value of the tissue before contrast enhancement. The 

correlation between the Tofts model parameters and speed a estimates are measured.

2.4. Experimental methods

Animal procedures were performed following a protocol approved by the MD Anderson 

Cancer Center Institutional Animal Care and Use Committee per recommendations in the 

National Institutes of Health Guide for Care and Use of Laboratory Animals. Four male 

New Zealand White rabbits (Charles River Laboratories, Massachusetts, USA) weighing 

2.4–3 kg underwent VX2 tumor inoculation in the left lateral lobe of the liver. The four 

animals are identified as id1, id2, id3, and id4 in our analysis. Tumor implantation was 

performed via the administration of freshly harvested and prepared VX2 tumor fragments 

from an in-house VX2 donor line. VX2 fragments 3–4 mm in diameter were implanted in 

the liver at a single site through an 18 GA needle attached to a 1 ml syringe. Tumors were 

allowed to grow for 1014 days until the tumors reached approximately 1 cm diameter. 

Following sufficient tumor growth, all animals underwent a sham procedure involving the 
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insertion and removal of a catheter (20 GA × 1.88 in). CT imaging occurred at the time of 

the sham procedure and 24 h post-procedure.

Before imaging, rabbits were anesthetized with isoflurane (1–5%)/oxygen (1.5L/min) 

administered via endotracheal tube and laryngeal mask. CT imaging was performed using a 

multislice detector CT (SOMATOM Definition Edge, Siemens Healthineers, Erlangen, 

Germany) to determine contrast transport through the liver and tumor. A vac fix 

immobilization device was used to maintain supine positioning on the scanner table. 

Perfusion imaging was acquired with 4, 6, or 8 ml of 320 mg/ml iodixanol contrast 

(Visipaque, GE Healthcare, Cork, Ireland) injected at a rate of at 2 ml/sec into the marginal 

ear vein using a power injector (Medrad Envision, CT, Connecticut, USA). Scan parameters 

were 80 kVp, 264 mA, 570 ms rotation time, and pitch of 0.5. Scans were acquired over the 

entire liver before contrast injection began, and at delays of 2, 4, and 6 s following the 

injection start; the total scanning time was 87 s. A 15 cm field-of-view was reconstructed 

from the raw projection data with a slice thickness of 1.5 mm and an interval of 1.0 mm with 

a B20f reconstruction kernel.

3. Results

Transport of iodinated contrast agent is used as a surrogate for nanoparticle transport in the 

tissue. Datum used in the in vivo evaluation of our model is shown in Figure 1. Figure 1(a) 

illustrates the time history of the contrast uptake at the aorta used for as the arterial input, 

sAIF. Regions of interest used in the data analysis are outlined in Figure 1(b). Imaging 

visible vessels are outlined in red. Pixel-wise distance is measured from the perpendicular 

distance of the closest vessel outlined. The blue region outlines the VX2 tumor growth. 

Green outlines liver parenchyma tissue.

Linear iterative clustering segmentation of the rabbit liver resulted in 174, 176, 111, and 156 

super-pixel regions within the livers of animal id1, id2, id3, and id4, respectively. Two 

iterations of iterative clustering were performed in each data set for convergence. The 

average volume of each superpixel was 960 ±26 mm3. A representative example of the 

pixelation of the liver is shown in Figure 2. Super-pixel regions form the piecewise constant 

basis for inversion of the tissue heterogeneity.

Figure 3 provides a visualization the data input to our algorithm as well as a visualization of 

the extended Tofts model results. Figure 3(a) illustrates spatial variations in the fractional 

plasma volume, fpv. Fractional plasma volume is a dimensionless quantity [1]. Negative 

values of the fractional plasma volume are seen in the curve fit of the extended Tofts model 

(13) to the data. Figure 3(b) illustrates the pixel-wise bolus arrival time in seconds. Voxel 

neighborhoods of pixels are seen to have the same arrival time. Figure 3(c) illustrates surface 

of the imaging visible vessels. Flow speed is estimated as the distance to the nearest vessel 

surface divided by the arrival time. Correlations between the extend Tofts model parameters 

and our measurement flow speed are summarized in Table 1. The fractional plasma volume, 

fpv, extended Tofts parameter shows a positive correlation with our flow speed 

measurements for all animals.
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Figure 3(d) plots the average pixel flow speed against the flows speed recovered directly 

from superpixel domain decomposition for animal id1. The x-axis represents the pixel-wise 

speed averaged across a given super pixel illustrated in Figure 2. The y-axis represents the 

speed recovered from our model fits applied to the raw data averaged across a super-pixel. A 

Pearson correlation of 0.95 (p <.05) was observed and indicates that the superpixel domain 

decomposition is a good approximation of the tissue heterogeneity. Table 2 provides a global 

summary of the pixelwise average permeability estimate with each animal liver, id1, id2, 

id3, and id4. Permeability was calculated according to Equation (9). The average vessel 

radius extracted from the surface of the imaging visible vessels shown in Figure 3(c) was 

1.09mm, 1.07mm, 1.10mm, and 1.09mm for animal id1, id2, id3, and id4; respectively. 

Figure 4 provides a comprehensive quantitative summary of the correlations measured 

between the pixelwise average speed and the extended Tofts fpv parameter

4. Discussion

Families of tracer kinetic models may be grouped as model-independent based on Fick’s 

Law, deconvolution analysis, compartmental modeling, and modeling that accounts for 

convective transport [42]. Each has assumptions appropriate for domain-specific 

applications. Here we assume that convective transport from the vessels directly supplies the 

flow within the tissue. Importantly, our approach allows us to recover permeability 

properties with respect to porous media flow. Table 2 presents initial steps and demonstrates 

the feasibility in the recovery of convection related properties from imaging data. As a 

reference, permeability measurements on the order of 1e−7m2 are similar to gravel or 

fractured rock within the oil and gas communities [52]. Tofts model proposes a spatially 

invariant compartmental formulation. The resulting measurements of the Tofts formulation 

have different units, [1/s] for Ktrans and dimensionless for ve and fpv, with respect to 

transport equations within porous tissue. Calibrating and validation of the same governing 

equations have the benefit of direct interpretability. Although our approach applied the 

model to contrast-enhanced imaging, imaging visible measurements of nanoparticle 

concentrations may be used to directly recover permeability measurements of interest for 

transport within porous tissue.

This manuscript presents a pharmacokinetic model of nanoparticle transport within the 

scope of passive transport. Permeability estimates (Table 2) are with respect to contrast flow 

through porous tissue. Antibody targeting and interactions with the immune system [1] are 

not considered in this approach. However, the key ideas of the framework may also be 

coupled with mechanisms for active transport of nanoparticles into the target tumor. This 

may be modeled as a sink term with appropriate rate constants within our governing 

equations. For example, within a mixture theory framework, the concentration of immune 

cells may be included as an additional constituent within Equation (1). Rate constants for the 

uptake of the nanoparticles by the immune system formulates the interaction as a first-order 

relationship between the presence of nanoparticles and uptake by the immune system. 

Additional model complexity may incorporate nanoparticle interactions with blood cells, 

plasma proteins and complement proteins. Serum proteins present in the bloodstream bind to 

the nanoparticles and results in their rapid recognition and uptake of nanoparticles by the 

mononuclear phagocyte system. Premature clearance of nanoparticles by the mononuclear 
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phagocyte system due to their size and nonspecific binding limit the delivery efficacy of 

nanoparticles into a specific target site [4]. Additional constituents couples additional 

equations and parameters to our governing equations. Solution of the governing equations 

coupled with immune cells share much in common within the field of tumor growth 

modeling [53]. These models are based on the conservation laws of continuum physics 

complemented by source and flux characterizations that trigger and control cancer 

development and decline through mathematical representations of the events listed in the 

Hallmarks of Cancer [54].

The presented methodology is applicable to flow rates characteristic of systemic delivery as 

well as convection-enhanced delivery. Convection enhanced delivery applied to 

nanomedicine utilizes direct injections of the nanotechnology into the interstitial space to 

achieve the desired therapeutic or diagnostic effect. Planning software for convection-

enhanced delivery is likely to be useful in guiding in deciding catheter placement [26]. Our 

parameter recovery approach provides a methodology to recover patient-specific transport 

parameters with direct meaning with respect to convection-dominated governing equations. 

Either a literature value for pressure may be used to recover the permeability, or the 

framework may be applied with patient-specific blood pressure measurements. The direct 

correlation between flow speed and permeability is expected to provide a reliable 

reproducible methodology for Darcy’s Law based predictions.

Limitations in these measurements arise from the tradeoffs in computational efficiency and 

model fidelity. The analytical solution in Equation (5) facilitates an efficient numerical 

solution but is inherently one-dimensional from the closest perpendicular distance to the 

nearest vessel source. Sufficiently near a vessel source, this approximation is likely to be 

appropriate. Future efforts will evaluate tradeoff of increase model fidelity. Finite element 

methods are needed to curve fit the 4 D enhancement data to the partial differential 

equations for mass balance, Equation (2), coupled with incompressible flow, Equation (4). 

The finite element method further requires a computation mesh that accurately conforms the 

tissue anatomy. Adjoint methods [31] are needed to provide analytic gradients with respect 

to the domain decomposition for efficient model calibration to the data. The presented 

results are a theoretically sound simplification of the 4 D partial differential equation 

constrained optimization using a finite element approach. Here, we hypothesize that any 

solution bias induced by our simplified approach may be reconciled with appropriate 

calibration and cross-validation to imaging data. Thus, the overall correlation between the 

recovered permeability and permeability of a high fidelity finite element approach is 

anticipated to be high but with much less cost.

Future work will also incorporate numerical simulations of the flow through the vessels into 

the transport problem. The problem of particle flow through the vasculature has been 

considered for varying particle diameters. Navier-Stokes computational fluid dynamic 

simulations are considered for flow through the vasculature. For large particle size relative to 

the vessels, perturbations of the fluid flow from the presence of the particles should be 

considered. However, for nanomedicine, the particles are small relative to capillary 

diameters (≈ 10 μm). The fluid force on the particle should be considered, however, the 

inverse particle momentum exchange is not considered. This one-way coupling approach has 
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been shown to save significant computational resources while providing accurate results in 

this small nanoparticle to vessel diameter setting [55]. For systemic delivery, tracking of 

flow streamlines from the fluid flow simulations provides a mechanism for downstream 

targeting of the desired delivery [56]. Runge-Kutta methods are used to solve the differential 

equations with a varying time step. Ultimately, for a given application and data quality, 

multiple models may be considered feasible to describe the data. Future efforts will apply 

Bayesian model selection approaches to a family of models to balance model complexity 

with the goodness of fit [18].
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Figure 1. 
In vivo data. (a) The time history of the contrast in the aorta illustrates the bolus of contrast 

arrival time. The different lines illustrate three representative pixels. (b) The labeled regions 

illustrate the imaging visible vessels (red), the tumor (blue), and the liver parenchyma tissue 

(green). Pixelwise distance from the nearest vessel boundary provides the spatial length 

scale for our governing hyperbolic equation for convective transport.
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Figure 2. 
Domain decomposition of liver anatomy with simple linear iterative clustering (SLIC) 

segmentation. An (a) axial view and (b) 3 D visualization of the domain decomposition is 

shown.
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Figure 3. 
An overview of our algorithmic approach is shown for animal id1. (a) The extended Tofts 

model provides a control for the proposed approach. Spatial variations in the tissue 

fractional plasma volume parameter fpv within the parenchyma and vessels is shown. 

Negative values are the result of the curve fit of the analytical model in Equation (13) to the 

time-intensity data at each pixel. (b) Spatial variations in the bolus arrival time is measured 

in seconds. (c) Distance information is computed with respected to imaging visible vessels. 

An example of the 3 D vessel segmentation used to calculate the signed distance transform x
−x0 is shown. (d) The bolus arrival time combined with the distance information provide 

estimates of the flow speed. Correlation between the super pixel recovered speed and the 

average of the pixelwise is shown. Within these pixels the average speed represented by the 

super pixel is expected to provide dimension reduction of the parameter optimization space 

while maintaining accuracy of the solution field.
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Figure 4. 
Tofts model, fpv, versus flow speed estimates are provided. The fractional plasma volume is 

a dimensionless [1] parameter. Animal id1, id2, id3, and id4 are shown in (a), (b), (c), and 

(d); respectively. The correlation, r, between the fractional plasma volume and flow speed is 

provided within each dataset.
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Table 1.

Summary of extended Tofts analysis.

id1 id2 id3 id4

r(a, Ktrans) −0.27 −0.32 0.35 −0.05

r(a, ve) −0.16 −0.30 0.23 −0.38

r(a, fpv) 0.43 0.42 0.73 0.41

The observed correlation, r, between the measured flow speed (6) and the Ktrans, ve, fpv, extended Tofts model parameters (13) are shown for 

each animal: id1, id2, id3, and id4.
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Table 2.

Summary of permeability measurements.

id1 id2 id3 id4

κ[m2] 1.74e–07 1.72e–07 2.83e–07 2.79e–07

The pixelwise average permeability estimates with the liver parenchyma tissue is shown for each animal: id1, id2, id3, and id4.
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