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Abstract

Glioblastoma (GBM) brain tumor is the most aggressive white matter (WM) invasive cerebral 

primary neoplasm. Due to its inherently heterogeneous appearance and shape, previous studies 

pursued either the segmentation precision of the tumors or qualitative analysis of the impact of 

brain tumors on WM integrity with manual delineation of tumors. This paper aims to develop a 

comprehensive analytical pipeline, called (TS)2WM, to integrate both the superior performance of 

brain tumor segmentation and the impact of GBM tumors on the WM integrity via tumor 
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segmentation and tract statistics using the diffusion tensor imaging (DTI) technique. The 

(TS)2WM consists of three components: (i) A dilated densely connected convolutional network 

(D2C2N) for automatically segment GBM tumors, (ii) A modified structural connectome 

processing pipeline to characterize the connectivity pattern of WM bundles, (iii) A multivariate 

analysis to delineate the local and global associations between different DTI-related measurements 

and clinical variables on both brain tumors and language-related regions of interest. Among those, 

the proposed D2C2N model achieves competitive tumor segmentation accuracy compared with 

many state-of-the-art tumor segmentation methods. Significant differences in various DTI-related 

measurements at the streamline, weighted network, and binary network levels (e.g., diffusion 

properties along major fiber bundles) were found in tumor-related, language-related, and hand 

motor-related brain regions in 62 GBM patients as compared to healthy subjects from the Human 

Connectome Project.

Keywords

Diffusion tensor imaging; Glioblastoma; Tract statistics; Tumor segmentation; White matter 
integrity

1. Introduction

Diffusion tensor imaging (DTI), a non-invasive diffusion-weighted imaging technique, has 

been widely used to delineate the white matter (WM) pathway in vivo Basser et al. 

(1994a,b). DTI processes the diffusion of water about the magnitude, degree, and orientation 

of diffusion anisotropy in a tensor model Brunberg et al. (1995). Furthermore, DTI can 

estimate the WM connectivity in a 3D model termed MR tractography Basser et al. (2000). 

DTI is sensitive to WM changes in many diseases and thus helps resolve neuroscience and 

clinical problems.

Recently, DTI has been widely used to detect abnormalities in various mild and moderate 

brain disorders, including Parkinson’s disease Zhang et al. (2011), autism Conturo et al. 

(2008), brain trauma Rutgers et al. (2008), and dementia Jin et al. (2017). All existing DTI 

analytical techniques can be roughly categorized into three classes including standard 

region-based analysis, voxel-based analysis, and tract-specific analysis. The region-based 

analysis Alexander et al. (2007); Conturo et al. (2008); Masjoodi et al. (2018) depends on 

summarizing statistical properties in pre-defined regions of interest (ROIs). Although it is 

convenient to observe abnormal regions, major weaknesses of region-based analysis include 

manually defined ROIs, and the difficulty in identifying meaningful WM bundles. Voxel-

based analysis Rutgers et al. (2008); Smith et al. (2006); Zhang et al. (2011) relies on 

spatially co-registering brain images across all subjects to a standard coordinate system and 

then statistically performing voxel-wise analysis. However, a significant limitation of voxel-

based analysis is that it cannot explicitly model the underlying fiber architecture of WM 

bundles. Tract-based spatial statistics (TBSS) Smith et al. (2006) project all the fractional 

anisotropy (FA) maps of individual subjects onto a standard mean FA skeleton. Tract-

specific analysis Jin et al. (2017); Mormina et al. (2015); Ormond et al. (2017); O’Donnell et 

al. (2017); Zhang et al. (2018) provides three desirable properties including visualization of 
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the detailed WM bundles, statistical analysis on the fiber architecture of WM bundles, and 

reflection of local alterations in brain disorders. All these existing techniques assume that 

brain lesions are relatively homogeneous across subjects such that a standard template can 

be established across patients and normal controls. However, since Glioblastoma (GBM) 

patients have the inherently heterogeneous appearance and shape of brain tumors, little has 

been done in the development of DTI analytical techniques for assessing WM integrity in 

GBM patients.

GBM develops from star-shaped glial cells Holland (2001) and is the most common type of 

WM invasive cerebral primary neoplasm. GBM brain tumors represent 80% of primary 

intracranial tumors and 28% of all types of tumors Deighton et al. (2010). GBM that began 

as a Grade IV tumor with no evidence of a lower grade precursor is classified as a high-

grade glioma. It is reported that the survival rate of these malignant tumors is only two years 

or less and immediate treatment is needed Ohgaki and Kleihues (2005). The low-grade 

glioma (Grade II or Grade III) may progress to malignant tumors.

GBM distinguishes from many mild and moderate brain disorders in two major aspects. 

First, GBM leads to potentially significant damages to WM. GBM tumors stem from WM 

and propagate through WM, and the cerebral neoplasm may influence WM tracts at either 

the cellular or gross anatomic level. Tumors may replace WM fiber tracts as they invade the 

surrounding tissues, and thus they may alter the position and orientation of WM fiber tracts. 

Moreover, neoplasm may infiltrate WM tracts between individual fibers without disrupting 

their directional organization. Diffusion tensor tractography renders the opportunity to study 

tumor-related WM integrity. Second, GBM patients have heterogeneous tumor location and 

shape. The standard region-based analysis is inappropriate for analyzing GBM tumors due to 

the need of manual delineation of tumors. Moreover, TBSS is also inappropriate since it is 

problematic to directly project the FA maps of brain tumors and their surrounding tissues, 

which differ from normal ones at both the cellular and gross anatomic levels, onto a healthy 

mean FA skeleton.

Previous studies utilized tract-specific analysis to qualitatively and quantitatively analyze 

GBM tumors Mormina et al. (2015); Ormond et al. (2017); O’Donnell et al. (2017). In 

Mormina et al. (2015); O’Donnell et al. (2017), they focused on automatically identifying 

several major WM fiber tracts (e.g., corticospinal tracts and arcuate fasciculus tracts) for 

neurosurgical planning. However, the impact of GBM tumors on WM integrity is poorly 

understood. Recently, Ormond et al. Ormond et al. (2017) used a deterministic fiber tracking 

algorithm in diffusion spectrum imaging (DSI) studio to reconstruct fiber tracts in order to 

analyze the impact of GBMs on WM integrity globally. This method suffers from three 

significant drawbacks, including bias in streamline reconstruction (caused by the seeding 

strategy, the stopping criterion, and the tractography parameters Girard et al. (2014)), 

ignoring the local information around tumors, and the use of manual delineation of tumors.

A major drawback of current tract-specific analysis of GBM tumors is the manual 

delineation of GBM tumors by experts. Thus, it is very desirable to develop an automatic 

method to segment GBM tumors. Developing an automatic GBM tumor segmentation 

method is very challenging due to the inherently heterogeneous appearance, location, shape, 
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and size of brain tumors. Furthermore, the tumor area is often defined based on the changes 

of MR image intensity, so significant controversy exists in the precise definition of brain 

tumors among experts due to the degree of signal changes, partial volume effects, and bias 

field artifacts. Moreover, the surrounding tissues of tumors can be damaged through necrosis 

and hypoxia Raza et al. (2002). Generally, various modalities of MRI scans, including T2-

weighted (T2), T1, T2-weighted fluid attenuated inversion recovery (Flair), and T1-weighted 

contrast-enhanced (T1c) MRI, are integrated to delineate tumor-induced tissue changes 

accurately. All existing segmentation methods Bakas et al. (2018) including both machine 

learning Menze et al. (2015a) and deep learning Isensee et al. (2017); Islam and Ren (2017); 

Jesson and Arbel (2017); Shaikh et al. (2017); Soltaninejad et al. (2017); Zhao et al. (2018) 

focus on pursuing segmentation precision and the prediction of patient’s overall survival 

time. However, none of these methods can provide a comprehensive profile that delineates 

the impact of GBM tumors on WM tract integrity and its association with clinical variables 

of interest.

In this paper, we propose a comprehensive analytical pipeline for integrating both the 

superior performance of brain tumor segmentation and the impact of GBM tumors on the 

WM integrity through automatic tumor segmentation and tract statistics ((TS)2WM). Fig. 1 

presents the path diagram of (TS)2WM. It consists of three main components. The first one 

is a dilated densely connected convolutional network (D2C2N) for automatically segmenting 

GBM tumors. The second one is the modification of a structural connectome processing 

pipeline, called PSC Zhang et al. (2018), for simultaneously characterizing the structural 

connectivity patterns of a large amount of WM bundles. The use of PSC allows us to extract 

diffusion-related, endpoint-related, and geometry-related features. Automatic segmentation 

of GBM tumors and extraction of WM features through PSC are implemented in parallel. 

The third one is a functional analysis of tract statistics to investigate the association between 

DTI measurements (e.g., FA and mean diffusivity (MD)) and a set of covariates (e.g., age, 

gender, and diagnostic status). Some hypothesis tests are conducted to reveal both local and 

global significant WM structural differences between GBM patients and normal controls. 

The integration of all three components in (TS)2WM distinguishes this work from existing 

GBM tumor studies. The package for (TS)2WM, along with its documentation, is freely 

accessible from the website https://github.com/BIG-S2.

2. Method

2.1. Materials

Three image data sets were used in this study including the Multimodal Brain Tumor 

Segmentation (BRATS) 2017 Bakas et al. (2017); Menze et al. (2015b), GBM DTI, and 

Human Connectome Project (HCP).

BRATS 2017 dataset: In total, 75 patients with lower grade glioma and 210 patients with 

GBM were provided for training. Moreover, 46 cases with unknown grades and without 

ground truth labels were provided for validation. The image data were acquired on 3T multi-

modal MRI scans with different parameters, including T2, T1, Flair, and T1c. Expert board-

certified neuro-radiologists manually revised the ground truth labels. The specific 
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parameters are summarized in Bakas et al. (2017). The main pre-processing steps consisted 

of co-registering to the same anatomical template, interpolating to 1 mm3 isotropic 

resolution, and skull stripping.

GBM DTI dataset: Sixty-two GBM patients (mean age 59.97 ± 11.04 years, range 28 ~ 83 

years, 39 males, and 23 females) were retrospectively enrolled. Each patient has at least one 

MRI protocol image (totally four multi-modal MRI scans as in BRATS 2017 dataset) and 

one DTI image.

DTI images were acquired on 3T GE Medical systems Signa HDxt or 1.5T Siemens Aera. 

The diffusion space (q-space) was acquired along 21 ~ 93 directions with a diffusion 

weighting factor of b = 1000 s/mm2 and a single reference image b0 = 0 s/mm2. Specific 

MRI scan parameters include 3.5 mm slice thickness with an acquisition matrix of 128 × 

128 over a percent phase field of view (FOV) of 100 mm, repetition time (TR) 5700 ~ 

10,250 ms, and echo time (TE) 83 ~ 89.8 ms.

Multi-modal MRI scans were acquired on 3T GE Medical systems Signa HDxt or 1.5T 

Siemens Aera. Each patient has at least one T1 or T1c MRI scan. The specific T1 MRI 

parameters included the following: slice thickness 5 mm, pixel spacing 0.69 × 0.69 mm2 or 

0.43 × 0.43 mm2, TE 11 ~ 13 ms, TR 465 ~ 783 ms, and flip angle 90°. The parameters of 

T1c MR images are: slice thickness 1 ~ 1.8 mm, pixel spacing 0.94 × 0.94 mm2 or 0.55 × 

0.55 mm2, TE 2.1 ~ 4.7 ms, TR 6.7 ~ 8.0 ms, and flip angle 20°. The parameters of T2 MR 

images are: slice thickness 5 mm, pixel spacing 0.43 × 0.43 mm2 or 0.49 × 0.49 mm2, TE 89 

~ 102.96 ms, TR 5670 ~ 6267 ms, and flip angle 90°. The Flair MRI parameters were listed 

as: slice thickness 2 or 5 mm, pixel spacing 0.69 × 0.69 mm2 or 0.86 × 0.86 mm2, TE 82 ~ 

92 ms, TR 9000 ~ 10,170 ms, and flip angle 150°.

Human Connectome Project (HCP) dataset: The HCP aims to study and freely share 

data from 1200 young adult (ages 22 to 35 years) subjects. In this project, only 1064 

subjects (mean age 28.74 ± 3.67 years, males 489, and females 575) with both pre-processed 

DTI and T1 MRI were chosen within the HCP dataset Van Essen et al. (2012). The HCP 

data were acquired on 3T Siemens Skyra with echo-planar imaging sequence (Acquisition 

matrix = 168 × 144, TR = 5520 ms, TE = 89.5 ms, FOV = 210 × 180, slice thickness = 1.25 

mm, and b value of 1000, 2000, 3000 s/mm2). The DTI protocol includes 6 runs and 3 

gradient tables (90 diffusion weighting directions plus 6 b0 acquisitions) with each table 

acquired once and with right to left and once with left to right phase encoding. More details 

about HCP data acquisition and pre-processing can be found in Sotiropoulos et al. (2013); 

Van Essen et al. (2012).

2.2. Pre-processing

Pre-processing is necessary for all three datasets. The BRATS 2017 dataset was distributed 

after their pre-processing, but it was suffered from both intensity range variation and bias 

field inhomogeneity. Thus, N4 Bias Field Correction (N4) Tustison et al. (2010) was used to 

remove bias field inhomogeneity, and a robust intensity normalization method Zhao et al. 

(2018) was adopted to normalize the intensity of MR images within [0, 255].
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Then, the same pre-processing procedure Bakas et al. (2017); Menze et al. (2015b) was 

applied to our GBM dataset for better transferring the trained D2C2N model. Specifically, 

N4 was first performed on each patient’s MRI images (except DTI data). FLIRT in FSL1 

was first used to rigidly co-register the T1c MRI to b0 image, and a non-linear registration in 

ANTS2 was used to refine the registration. By following Menze et al. (2015b), the image 

volumes of each patient were rigidly co-registered to the processed T1c MRI using FLIRT, 

and all images were re-sampled to 1 × 1 × 1 mm3 using linear interpolation in ANTS and 

skull stripped using BET in FSL.

2.3. Auto-segmentation of brain tumors

Given a 3D image I, we aim to obtain its segmentation S through training image patches T = 

{I1, I2,…,In} with the ground true segmentation ς = {S1, S2,…, Sc}, where n is the number 

of training samples and c is a specific label. Let c = 0,1,2, and 3 denote healthy tissue, 

necrosis and non-enhancing core, edema, and enhancing core, respectively, and xi is a 

possible label of c ∈ {0, 1, 2, 3} in the i-th voxel. The marginal probability of xi is given by

P xi = c ∣ I; T , ς       for c ∈ 0, 1, 2, 3 . (1)

These marginal probabilities can be estimated by training a patch-based deep convolutional 

neural network. The receptive field, model complexity, and memory consumption are three 

key components of developing a powerful 3D deep learning framework. Ideally, the full size 

3D images with 4 channels as the input of the neural network would achieve superior 

performance. However, since the training of large 3D images is memory-expensive, 

restricting image resolution and the number of feature maps, and results in low model 

complexity and representation ability. Thus, we propose a D2C2N model to automatically 

segment the brain tumors consisting of two major components. The first one is the 3D 

D2C2N model that generates segmented probability maps. The second one is a 3D 

conditional random field (CRF) technique Krähenbühl and Koltun (2011) that enforces 

constrained regularization on the output segmentation probability maps and generates final 

hard segmentation labels.

2.3.1. D2C2N—Our proposed D2C2N framework illustrated in Fig. 2 integrates two 

important methods including dilated convolution in Yu and Koltun (2015) and dense block 

in Huang et al. (2017b).

Dilated convolution.: In Yu and Koltun (2015), the convolutional kernel is dilated by 

inserting zero holes between the non-zero values of each kernel. The dilated kernels can 

enlarge the receptive field without introducing additional parameters. This type of network 

does not need to downsample feature maps to increase the receptive field, and then upsample 

feature maps to match the input size Badrinarayanan et al. (2015); Ronneberger et al. (2015). 

Moreover, the dilated convolution is also appropriate for solving the voxel-wise 

segmentation problem.

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
2http://stnava.github.io/ANTs/
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Dense block.: The DenseNet architecture Huang et al. (2017b) was developed for general 

2D image classification. It addresses not only dense connection in order to avoid the gradient 

vanishing and exploding problem, but also reduces computational complexity by reusing the 

previously computed feature maps. The dense block of DenseNet can make the deep model 

easy to optimize while improving the parameter efficiency. Given an output Xl of the ltℎ

layer in the dense block, the output feature map Xl can be defined as follows:

Xl = Hl Xl − 1, Xl − 2, …, X0 , (2)

where Xl − 1, Xl − 2, …, X0  and X0 denote the iterative concatenation of all feature maps 

and the input of the dense block, respectively, and Hl denotes the composite function of 

operations.

Here the original 2D dense block is extended to a 3D dense block. To overcome the large 

memory limitation of linear increment of features without downsampling spatial resolution, 

we remove the concatenation between the input X0 and the output Xl Jégou et al. (2017) in 

the original dense block (Fig. 3). To improve the rate of convergence, we replace the 

rectified linear unit Nair and Hinton (2010) by a parametric rectified linear unit (PReLU) He 

et al. (2015). Moreover, the 3D spatial dropout is used to substitute the normal dropout for 

improving the independence between feature maps. Similar to Jégou et al. (2017), the first 

layer H1 is used to create k feature maps and the number of output feature maps becomes 4k 

by concatenating the output of 4 layers Hl l = 1
4 . Also, l × l × l convolutions are used in 

each branch to compress the associated features, and then concatenate them together.

Generalized dice loss.: A crucial step in our D2C2N model is to balance appropriate classes 

based on their voxel-wise distributions. The generalized dice loss Sudre et al. (2017) was 

used as a loss function at the training stage to evaluate multi-class segmentation with a 

single score. The loss function can be written as

D = 1 − 2
∑c = 1

N wc∑i pcipci

∑c = 1
N wc∑i pci + pci

, (3)

where pci and pci represent the one hot encoding for the ground truth label and the softmax 

output probability for class c at voxel i, respectively, and wc provides the corresponding 

invariant properties.

2.3.2. Implementation details—The input size of our network is 64 × 64 × 16 × 4, 

where the last dimension was supplemented by duplicating images when training with the 

incomplete MRI modalities. The training dataset was randomly split (80% for training and 

20% for validation). The network was trained by minimizing the generalized dice loss Sudre 

et al. (2017) function using a stochastic gradient descent (SGD) optimizer Bottou (2010) 

with the momentum of 0.9, batch size of 2, weight decay of 1 × 10−6, an initial learning rate 

of 0.01, and totally 100 epochs. Data augmentation of the training dataset was added into the 

network implementation. To further refine the results of segmentation, our D2C2N model 

Zhong et al. Page 7

Neuroimage. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and a 3D fully connected conditional random field (CRF) Krähenbühl and Koltun (2011) 

was applied to refine the segmentation results. The detailed algorithm for 3D CRF method is 

introduced in the Supplementary Material.

2.4. Mapping population-based fiber tracking

In our proposed (TS)2WM method, automatic segmentation of GBM tumors and extraction 

of WM features through PSC method are executed sequentially. We use PSC Zhang et al. 

(2018) to quantify various damages to WM caused by GBM tumors. First, we use the 

tractography algorithm Girard et al. (2014) to white matter tracts in each individual brain. 

Second, we warp the Desikan-Killiany parcellation Desikan et al. (2006) to an individual 

T1-weighted image using FreeSurfer in order to build a coarse parcellation of an individual 

brain and then define the nodes of the structural connectivity network across subjects. Third, 

after the segmentation of GBM tumors, we overlay the automatically generated tumors with 

the parcellation of each individual brain. In this case, for a specific subject, each ROI in the 

Desikan-Killiany parcellation may contain a portion of tumors. Fourth, even with the 

presence of tumors in each ROI, we group each tractography dataset into different bundles 

depending on the regions that each streamline connects. Fifth, we extract various tract-

related features, such as the count of streamlines, for each ROI pair. The use of PSC allows 

us to measure WM integrity within each ROI or each pair of ROIs.

2.5. Statistical methods for quantifying white matter integrity

We quantify white matter integrity at the binary network, weighted network, and streamline 

levels as follows:

• At the binary network level, we threshold the streamline count matrix into a 

binary matrix, each element of which indicates the presence or absence of a 

connection for a specific ROI pair.

• At the weighted network level, we quantify how different region pairs of interest 

are connected through white matter tracts by using some features that measure 

their coupling strength for two ROI pairs. For example, the commonly used 

metric is the count of streamlines. In addition, we propose to include multiple 

features of a connection to generate a tensor network for each brain. Specifically, 

some important diffusion-related features include mean FA, max FA, mean MD, 

max MD, the mean of generalized FA (GFA), max GFA, the average length, 

shape, cluster, configuration, the number of end points, and the total connected 

surface area (CSA) for either each ROI or each ROI pair.

• At the streamline level, we calculate the WM integrity measures, such as FA and 

GFA, along all streamlines for each ROI pair. The diffusion profile along with 

those tracts combines both the geometric and diffusion properties of a 

connection.

In either each ROI or each ROI pair, brain regions and their associated streamlines are 

aligned to a template Zhang et al. (2018). Thus, the WM integrity measures (e.g., FA, MD) 

can be directly calculated and statistical analyzed according to the following three main 

scientific questions:
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(Q1) At the binary network level, we are interested in detecting any change of a 

specific binary connection for each specific ROI pair and the whole connection 

structures across all ROI pairs between GBM patients and healthy subjects.

(Q2) At the weighted network level, we are interested in detecting any change of the 

diffusion features in terms of the count of streamlines and connected surface 

area (CSA), among others, in a specific ROI or across all ROIs between GBM 

patients and healthy subjects.

(Q3) At the streamline level, we are interested in detecting any statistically significant 

difference in terms of diffusion properties (e.g, factional anisotropy) along major 

fiber bundles for each ROI pair between GBM patients and healthy subjects.

As for question (Q1), statistical analysis of such binary networks can be done for each ROI 

pair by using logistic-type regression models and across all ROI pairs by correcting multiple 

comparisons. Furthermore, statistical analysis of such binary networks can be carried out by 

treating all ROI pairs as a network-valued data Durante et al. (2017).

As for question (Q2), a statistical approach, called tensor network principal components 

analysis (TN-PCA) Zhang et al. (2019), was used to quantify the changes of brain structural 

connectomes between GBM patients and healthy subjects across all ROIs.

To address question (Q3), FADTTS Zhu et al. (2011), a pipeline that describes the variability 

of DTI measurements along major WM fiber bundles with a set of covariates (age, gender, 

diagnostic status) Zhu et al. (2011, 2010), was performed on GBM patients and normal 

controls. Instead of using only scalar mean DTI quantitative values or a skeleton line, 

FADTTS can localize and reveal the detailed changes in a specific region of a tract. For a 

specific WM tract of the i-th subject for i = 1,… ,N, let sj denote the j-th grid point along the 

fiber tract for j = 1,…, M and let yi(sj) be its associated DTI measurement (e.g., FA, MD) at 

sj. A varying coefficient model can be written as:

log yi sj = γ0 sj + γ1 sj xi1 + γ2 sj log xi2 + γ3 sj xi3 + ηi sj + ϵi sj , (4)

where ϵi(sj) is a random noise following N 0, σϵ2(s) , and xi1 and xi2 denote gender and age, 

respectively. Moreover, a dummy variable xi3 is used to indicate whether an individual 

belongs to GBM patients or normal controls. The ηi(sj) is a stochastic process following 

N(0, ση (s, s′)), which measures both subject and location variabilities, where ση(s, s′) is a 

covariance function.

The comparisons between the two groups can be investigated globally and locally based on 

the following local and global hypotheses:

Local:      H0  :   γ3(s) = 0      vs.      H1  :   γ3(s) ≠ 0; (5)

Global: H0  :   γ3(s) = 0 for all s   vs.   H1  :   γ3(s) ≠ 0  for some s . (6)
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As in Zhu et al. (2011), the local test statistic G(s) and the global test statistic G can be 

defined as:

G(s) = γ3(s) ση(s, s)e3
T ∑

i = 1

N
xixiTe3

−1
, (7)

G = ∫s0

sM
G(s)ds ≈ 1

M ∑
j = 1

M
G sj , (8)

where e3 = (0,0,1)T, and γ3(s) and ση(s, s) are the estimates of γ3
2(s) and ση(s, s), respectively. 

A wild bootstrap method is used here as well to compute the p-value Huang et al. (2017a).

3. Experimental results

In this section, we evaluated six aspects of the (TS)2WM framework including (i) 

segmentation performance on the BRATS dataset with different combinations of MRI 

modalities, (ii) comparison of D2C2N model with other state-of-the-art segmentation 

methods, (iii) robustness of (TS)2WM, (iv) analysis of binary network patterns in GBM 

subjects, (v) analysis of weighted network patterns in GBM subjects, and (vi) analysis of 

streamline in GBM subjects.

The Keras Chollet et al. (2015) with Tensorflow Abadi et al. (2016) as backend was used to 

implement our D2C2N model. The training and testing processes were conducted via 24-

core E5–2643 Intel Xeon and a 12 GB TITAN Xp NVIDIA GPU. Two metrics including 

Dice score and Sensitivity Zhao et al. (2018) are used to evaluate the results of tumor 

segmentation.

3.1. Segmentation performance on BRATS with different combinations of MRI modalities

Due to incomplete MRI modalities in our GBM DTI dataset, different combinations of MRI 

modalities were needed to be trained based on the BRATS 2017 training set. Subsequently, 

we evaluated the effectiveness of the segmented results using different modalities of MRI 

images in the BRATS validation dataset3. The output results were further evaluated by using 

CBICA’s Image Processing Portal4. Fig. 4 (a)–(c) show the segmentation results for a 

randomly selected subject from the BRATS 2017 validation dataset for three different 

modalities. Table 1 summarizes the evaluation metrics including dice ratio and sensitivity 

based on segmentation results for different combinations of MRI imaging modalities. We 

consider enhancing tumor (ET), whole tumor (WT), and tumor core (TC). As shown in 

Table 1, reasonable segmentation results based on the three modalities of MRI images 

(Flair/T1c/T2) can be obtained by using our proposed method. Moreover, among all four 

modalities, T1c is the most important one since its corresponding results are slightly worse 

than those for the best Flair/T1c/T2 combination. The well trained D2C2N model can be 

3https://www.med.upenn.edu/sbia/brats2017.html
4https://ipp.cbica.upenn.edu/
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transferred from the BRATS 2017 dataset to our GBM DTI dataset for auto-segmenting 

GBM tumors. Fig. 4 (d)–(f) show the segmentation results for one selected subject in our 

dataset with three different imaging modalities. The results of Fig. 4 demonstrate that the 

proposed D2C2N model may be able to segment the GBM tumors precisely.

3.2. Comparison of d2c2n model with other state-of-the-art segmentation methods

To explore the feasibility of the proposed D2C2N model, we compared it with some existing 

state-of-the-art segmentation methods based on their segmentation results for the BRATS 

2017 validation dataset. Considering flexibility and practicability, we do not include the 

methods that ensembles multiple deep learning models to obtain the final segmentation 

results here. See Table 2 for the comparisons of different methods. As shown in Table 2, 

compared with those state-of-the-art methods, our proposed method for the ”Flair/T1c/T2” 

combination achieves comparable tumor segmentation precision in terms of both dice ratio 

and sensitivity.

3.3. Robustness of (TS)2WM

We conducted a simulation study to assess how well our (TS)2WM pipeline can detect the 

changes of brain connectomes in the simulated tumors of 40 randomly selected HCP 

subjects. As illustrated in Table 3, the regions around the left parahippocampus (L12) have 

the highest probability of GBM tumorigenesis, so simulated tumors were introduced by 

randomly distorting the intensities in the left hippocampus region of both the DTI image and 

the T1-weighted image for each subject. Moreover, the areas of simulated tumors were 

dilated 6, 12, and 18 pixels to assess the impact of tumor sizes on the performance of our 

(TS)2WM. Fig. 5 shows the true DTI and T1 images, the corresponding DTI and T1 images 

with simulated tumors, and the numbers of streamlines in connection (R7, L12) before and 

after introducing tumors in L12 for one randomly selected subject, in which the area of 

simulated tumors was dilated for 18 pixels. As shown in Fig. 5, the number of streamlines in 

connection (R7, L12) decreases greatly from 1273 to 157 due to simulated tumors. To assess 

the impact of the extent of damage on the robustness of our (TS)2WM, we focus on 

visualizing the brain connection patterns of L12 across all 40 subjects. Fig. 6 presents the 

mean CSA connectivity and the mean fiber count connectivity of all healthy HCP subjects 

and their corresponding images with the simulated tumors in L12. As shown in Fig. 6, the 

significant reduction of the numbers of CSA and fiber count between L12 and other ROIs 

can be observed in the images with simulated tumors compared with their original images. 

Furthermore, we choose ROIs that have the top 10 largest reduction of the mean of fiber 

counts connecting with L12 and, present their histograms of mean FA, max FA, mean MD, 

and max MD before and after introducing tumors in Fig. 7. Inspecting Fig. 7 reveals the 

reduction of mean/max FA and the increase of mean/max MD before and after introducing 

tumors. Therefore, according to Figs. 5–7, our (TS)2WM pipeline may be able to robustly 

distinguish the change of brain connectomes, indicating the ability of assessing the 

differences of brain structural connectomes before and after introducing tumors.

3.4. Analysis of binary network patterns in GBM subjects

Besides the GBM tumor segmentation in our dataset, statistical analysis of WM integrity at 

the binary network level is another focus in this study. In our (TS)2WM pipeline, the 
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Desikan-Killiany atlas Desikan et al. (2006) is used to combine the tracts with labels and 

partition the connectivities. Details of Desikan-Killiany ROIs are provided in the 

supplemental materials. Table 3 shows the top nine ROI pairs with the highest probability of 

GBM tumorigenesis. As illustrated in Table 3, most patients have GBM tumors in the frontal 

lobe that controls motor function, problem solving, spontaneity, memory, language, 

initiation, judgment, impulse control, and social and sexual behavior Stuss et al. (1992). Fig. 

8 shows whole brain fiber tracts, the fiber connections among ROIs with tumors, and fiber 

tracts connecting six selected ROI pairs for one randomly selected GBM patient. Inspecting 

Fig. 8 reveals that some fiber connections remain among the tumor ROIs.

3.5. Analysis of weighted network patterns in GBM subjects

In our (TS)2WM pipeline, each type of diffusion features for each individual can be 

represented as a weighted adjacency matrix of the brain connectome. We quantified the 

changes in different weighted network matrices between the GBM group of all 62 patients 

and the healthy group of all HCP subjects as follows. Specifically, we applied TN-PCA 

Zhang et al. (2019) to visualizing variation among individuals in their brain connectomes 

and the statistical analysis of studying differences between the GBM group and the healthy 

group. Fig. 9 presents the principal component (PC) scores of the GBM patient group and 

those of the HCP healthy group based on the count of streamlines, CSA, mean and max 

values of FA, and the mean and max values of MD. Clear separation can be observed 

between the GBM patient group and the HCP healthy group in these plots, indicating 

different brain connection patterns between the two groups. The principal brain network, 

which exhibits major patterns of structural connectivity, was used to further explain the 

changes of network structure across all ROIs between the two groups. Fig. 10 shows the 

connection structures derived from the CSA network and the count of streamlines network. 

Only the top 100 most connected ROI pairs were selected to improve presentation. 

Inspecting Fig. 10 reveals that there is a remarkable variation of the connection structures 

between the GBM group and the HCP group.

3.6. Analysis of streamline in GBM subjects

As reported in Roberts et al. (2005), GBM tumors result in reduced FA. Fig. 11 presents the 

boxplots of four DTI measurements over the nine tumor-related ROI pairs in Table 3 across 

the GBM and normal groups. In each ROI pair, the values of mean/max FA for the GBM 

group are smaller than those for the healthy group, whereas those of mean/max MD reverse. 

It may be due to the fact that some portion of fiber tracts may be entirely damaged by GBM 

tumors Jellison et al. (2004). Moreover, both local and global hypothesis tests were used to 

detect significant differences along WM bundles between the GBM and normal groups for 

three types of ROI pairs. Specifically, both ROIs in each ROI pair are either tumor-related, 

language-related, or hand motor-related. In each ROI pair, FADTTS was applied to the fiber 

bundles of FA and MD values Zhang et al. (2018). At the global and local levels, we 

conducted the hypothesis testing in both (5) and (6). At the local level, we set the number of 

grid points to be M = 100. Fig. 12 (a) shows the local percentage of significant grid points, 

each of which has the FDR corrected p < .05, over the total 100 grid points within each ROI 

pair. Most ROI pairs have more than 90% of significant grid points except that (R11, L14) 

and (R34, L34) have 45% and 18% significant grid points, respectively. Fig. 12 (b) shows 
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the global p-values of all 15 ROI pairs. Inspecting Fig. 12 reveals that most ROI pairs are 

significantly different between the GBM and normal groups.

4. Discussion

Due to its ability of tracking water diffusion, DTI has been widely used to investigate the 

integrity of WM structure. However, the use of DTI for analyzing the impact of GBM 

tumors on WM fiber bundles has not been fully explored yet. Recently developed GBM-

related methods have either pursued the precision of tumor segmentation or detected 

abnormalities in various brain disorders with manual delineation of GBM tumors by experts. 

Instead, we propose the (TS)2WM pipeline to perform the statistical analysis of the effects 

of GBM on WM integrity.

The auto-segmentation of GBM tumors is a critical step in our (TS)2WM pipeline. Pre-

processing the GBM DTI dataset appropriately is critical for transferring the trained D2C2N 

model based on the BRATS 2017 data set to our GBM DTI dataset. As discussed in Menze 

et al. (2015b), the BRATS 2017 data set was collected from different centers, different MR 

scanners vendors, different field strengths (1.5T and 3T), and different MRI parameters. The 

key parameters of our GBM DTI data set are similar to those of the BRATS 2017 data set, so 

we follow the same pre-processing steps Menze et al. (2015b) to homogenize our GBM DTI 

dataset. In Zhang et al. (2018), the T1 or T1c images were needed for segmenting different 

types of tissues to provide the soft criterion for guiding the growth and termination of 

streamlines. Since our GBM DTI dataset does not have all MRI modalities, we trained 

different combinations of MRI modalities to address this issue based on the BRATS 2017 

data set. As illustrated in Table 1, our method can achieve competitive performance even for 

only three imaging modalities (Flair, T1c, and T2). The Dice scores of ET and TC using 

Flair + T1 and T2 + T1 are low because the enhancing core and the necrotic and non-

enhancing core are segmented by T1c Menze et al. (2015b). Recently, the ensembles of 

multiple deep learning models Kamnitsas et al. (2017); Wang et al. (2017) and the k-fold 

cross-validation ensembles in training dataset have become popular for boosting the 

precision of segmentation. In terms of pursuing the precision of GBM segmentation, our 

D2C2N model can be further improved. However, we aim to develop a pipeline including 

both the brain tumor segmentation and WM tract statistics. Although ensemble strategies 

may lead to about 1% improvement Kamnitsas et al. (2017), it is computationally extensive. 

Given the computational complexity and implementation effectiveness of ensemble 

strategies, we do not include them in our (TS)2WM pipeline. As shown in Table 2, our 

proposed method can achieve competitive precision of tumor segmentation, while 

facilitating the tumor-based statistical analysis of WM bundles.

The geometry related features, including the average length of streamlines, the number of 

streamline clusters, and deviations of streamline shapes, can be extracted in our (TS)2WM 

pipeline for characterizing the geometric information of streamlines. As demonstrated in 

TN-PCA Zhang et al. (2019), the geometry related features are poorly related to the brain 

structural connectomes. Thus, at the weighted network level, the geometry related features 

are excluded for detecting any change in a specific ROI or across all ROIs between GBM 
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patients and healthy subjects. Moreover, at the streamline level, the diffusion profile along 

with those tracts combines both the geometric and diffusion properties of a connection.

Table 3 shows the top nine pairs of tumor-related ROIs Zhang et al. (2018) with high 

probability of GBM tumorigenesis. The regions around the left hippocampus have the 

highest probability. Since few patients have the DTI data before being diagnosed as GBM, 

we randomly selected 40 HCP subjects to conduct a simulation to assess how well our 

(TS)2WM pipeline can detect the changes of brain connectomes. Due to inherently 

heterogeneous appearance, location, shape, and size of GBM, it is difficult to strictly 

simulate all appearances and shapes of GBM. To maintain the robust analysis, the area of 

simulated tumor was dilated 18 pixels to assess the impact of the extent of damages. As 

shown in Figs. 5,6, 7, our (TS)2WM pipeline may be able to robustly distinguish the change 

of brain connectomes.

We investigate the sensitivity of our coarse brain parcellation based on Freesurfer in our 

pipeline. We conducted a simulation study that simulates tumors with different sizes and 

locations on 40 randomly selected HCP subjects. The simulated tumors were introduced by 

randomly distorting the intensities in a randomly selected region with different sizes in the 

T1-weighted image for each subject. Several example brains are shown in Figure S1 of the 

supplementary material. The mean dice score between the parcellation of brain using the 

original HCP brains and their corresponding tumoral brains is 0.89 ± 0.01, which indicates a 

high similarity between their corresponding brain parcellations. In this study, we focus on 

segmenting GBM tumors and quantifying the impact of tumors on the connectivity pattern 

of WM bundles, so only a coarse brain parcellation for each individual is needed in our 

pipeline Zhang et al. (2018). Our nodes are those relatively large cortex surface regions so 

that they should be robustly to GBM tumors with relatively small and moderate sizes. In 

addition, we agree that it is notoriously difficult to accurately register brains with large GBM 

tumors, which would have large impact on WM bundles, leading to big signal-to-noise ratio. 

Therefore, our pipeline is sensitive enough to capture such large impacts.

DTI has major limitations in characterizing complex tissue microarchitecture. Advanced 

diffusion imaging sequences, including diffusion kurtosis imaging (DKI) and diffusion 

spectrum imaging (DSI), have been developed to overcome the limitation of DTI Duc et al. 

(2018). DKI, which is an extension of DTI, can be used to assess microstructure properties 

of tissue Van Cauter et al. (2012). DKI has been widely used in distinguishing the pathologic 

grading of glioma for selecting an appropriate treatment and improving patient prognosis 

Falk Delgado et al. (2018); Raja et al. (2016); Van Cauter et al. (2012). As compared with 

DTI, DKI can more accurately quantify diffusion limits. Besides, DSI has the capacity to 

resolve crossing fibers and to accurately reconstruct confluence of pathways. However, due 

to high demands in scanner performance and in-scanner subject time, the clinical 

applicability of DKI and DSI remains very limited. Moreover, it has been demonstrated that 

combining high angular resolution diffusion imaging (HARDI) and Q-ball imaging (used in 

our pipeline) can improve the resolution of tractography in regions with crossing fiber 

populations. We will extend our work to DKI in a future study and combine the DKI into 

assessing the WM integrity of glioma.
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There are some limitations to be addressed in our future work. It is time-consuming for PSC 

method to construct whole brain structural connectomes. The reconstruction of tracts by 

using our PSC method is affected by edema and infiltration. Once tumors wholly disrupt the 

tracts, the diffusion parameters change. This will inevitably lead to missing the regions. 

Moreover, disrupted tracts make it challenging in presurgical planning. A possible solution 

is to develop a robust method that can track through edema and reconstruct partial tracts. 

Moreover, validating the impact of different MRI parameters on the performance of tumor 

segmentation is also an important topic for our future research.

5. Conclusion

In this paper, we proposed a comprehensive pipeline to analyze the effects of tumors on WM 

integrity and its association with clinical variables of interest via tumor segmentation and 

tract statistics. Our proposed deep learning model can effectively segment the GBM tumors 

with competitive accuracy. Our (TS)2WM pipeline is more stable in tumor based 

tractographic reconstructions as compared to two widely used DTI post-processing 

techniques. Our statistical analysis method depicts the local and global variability in 

diffusion properties along the tracts, as well as the changes of diffusion features and 

connection structures between the GBM patients and the healthy subjects. Our framework 

will be further extended to develop a robust method to track trough edema and reconstruct 

partial tracts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The path diagram of the (TS)2 WM pipeline.
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Fig. 2. 
The network structure of our D2C2N.
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Fig. 3. 
The detailed structure for dense block.
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Fig. 4. 
Segmentation results from one randomly selected subject in the BRATS 2017 Challenge 

dataset (a)-(c) and that in our GBM DTI dataset (d)-(f): four rows from top to bottom are 

raw Flair, raw T1c, raw T2, and their corresponding segmentation results.
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Fig. 5. 
The original DTI image (the first column) and T1 image (the third column) for one 

randomly selected HCP subject, the corresponding DTI image (the second column) and T1 

image (the fourth column) with simulated tumors introduced by randomly distorting the 

intensities in the left hippocampus region (L12), and streamlines in the (R7, L12) connection 

before (the fifth column) and after introducing tumors with dilating 18 pixels of left 

hippocampus region (the sixth column).
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Fig. 6. 
Results from DTI images with simulated tumors in L12: the left parahippocampus related 

connectome patterns in terms of CSA connectivity and the fiber count before (panel (a)) and 

after introducing tumors with dilating 6, 12, and 18 pixels of left hippocampus region in 

panels (b)-(d), respectively. The HCP1, HCP2, and HCP3 correspond to the dilation with 

6,12, and 18 pixels, respectively. The thickness of lines represents either the average number 

of CSA or that of fiber count for each connection between ROI and L12.
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Fig. 7. 
Results from DTI images after introducing tumors with dilating 6, 12, and 18 pixels of left 

hippocampus region in L12: The histograms of mean FA in panel (a), max FA in panel (b), 

mean MD in panel (c), and max MD in panel (d) before and after introducing tumors across 

the 10 ROIs that have the top 10 largest reduction of the mean of fiber counts connecting 

with L12. The HCP1, HCP2, and HCP3 correspond to the dilation with 6, 12, and 18 pixels, 

respectively.
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Fig. 8. 
Results from one randomly selected GBM subject: the whole brain fiber tracts, fiber tracts 

among ROIs with tumors, fiber tracts connecting two tumor-related pairs (L29, L31) and 

(L29, R31), and fiber tracts connecting language-related ROI pairs including (L24, R24), 

(L4, R4), (L34, R34), and (L30, R30).
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Fig. 9. 
Results from the TN-PCA analysis of comparing between the GBM group and the HCP 

group: the top three PC scores of six diffusion properties including the count of streamlines, 

CSA, mean and max values of FA, and mean and max values of MD for the GBM group and 

the healthy group.
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Fig. 10. 
Results from comparing between the GBM and HCP groups: the CSA network and the fiber 

count network of the GBM group and the HCP group, in which only the top 100 most 

connected ROI pairs are presented.
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Fig. 11. 
Results from comparing between the GBM and HCP groups: the boxplots of the mean FA, 

max FA, mean MD, and max MD values of the 9 ROI pairs in Table 3.
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Fig. 12. 
Results from comparing between the GBM and HCP groups: the global and local test 

analyses of GBM tumor tracts within the three type of ROI pairs including tumor-related, 

language-related, and hand motor-related ROI pairs. Panel (a) shows the percentage of 

significant grid points over the total 100 grid points across all ROI pairs; panel (b) shows the 

global p-values (− log 10 scale) across all ROI pairs.
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