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Abstract

algorithms.

Background: Insertions/deletions (indels) are the second most common type of genomic variant and the most
common type of structural variant. Identification of indels in next generation sequencing data is a challenge, and
algorithms commonly used for indel detection have not been compared on a research cohort of human subject
genomic data. Guidelines for the optimal detection of biologically significant indels are limited. We analyzed three
sets of human next generation sequencing data (48 samples of a 200 gene target exon sequencing, 45 samples of
whole exome sequencing, and 2 samples of whole genome sequencing) using three algorithms for indel detection
(Pindel, Genome Analysis Tool Kit's UnifiedGenotyper and HaplotypeCaller).

Results: We observed variation in indel calls across the three algorithms. The intersection of the three tools
comprised only 5.70% of targeted exon, 19.52% of whole exome, and 14.25% of whole genome indel calls. The
majority of the discordant indels were of lower read depth and likely to be false positives. When software
parameters were kept consistent across the three targets, HaplotypeCaller produced the most reliable results. Pindel
results did not validate well without adjustments to parameters to account for varied read depth and number of
samples per run. Adjustments to Pindel's M (minimum support for event) parameter improved both concordance
and validation rates. Pindel was able to identify large deletions that surpassed the length capabilities of the GATK

Conclusions: Despite the observed variability in indel identification, we discerned strengths among the individual
algorithms on specific data sets. This allowed us to suggest best practices for indel calling. Pindel's low validation
rate of indel calls made in targeted exon sequencing suggests that HaplotypeCaller is better suited for short indels
and multi-sample runs in targets with very high read depth. Pindel allows for optimization of minimum support for
events and is best used for detection of larger indels at lower read depths.
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Background

Indels are the second most common type of genomic
variant and the most common type of structural variant
[1] with an expected ~1.6 million collective indel polymor-
phisms in the human population [2]. Between 0.13-0.4
million short indels are found per individual [3,4], and of
these, 192-280 are frameshift (1000 Genomes Project
Consortium et al., 2010). The presence of indels can be as-
sociated with disease when they disrupt the amino acid
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sequence of coding regions or the regulatory functions of
non-coding regions [5-8]. Next generation sequencing
(NGS) is a common and cost-effective method for iden-
tifying variation in the human genome. However, identi-
fication of indels can prove more challenging than
identification of single nucleotide variants (SNVs) [1,9]
especially with the presence of single nucleotide poly-
morphisms (SNPs), sequencing errors, and polymerase
chain reaction (PCR) enrichment bias [10]. While the
majority of indels are 1-10 bp long [1,11], known indels
that range up to 10,000 base pairs are present in the
human genome [12]. Detection of longer indels is espe-
cially challenging due to NGS short read length, making
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it difficult to identify indels larger than the read length.
Few studies have examined the indel calling capabilities
of available tools on multiple samples of human data.
We have run a comparison of commonly used indel detec-
tion tools: Pindel, the Genome Analysis Toolkit's (GATK)
UnifiedGenotyper, and GATK's HaplotypeCaller on a di-
verse set of targets in human NGS data.

GATK’s UnifiedGenotyper is a naive Bayesian genotyper
that uses pileup of sequence reads to determine the pos-
terior probability of each genotype. UnifiedGenotyper is
successful at calling SN'Vs, identifying variants on chromo-
some 1 with 99.76% concordance to sites in dbSNP and a
99.84% concordance figure with HapMap sites [13]. How-
ever, studies specific to indel calling are limited. One study
reported a 92% validation rate using UnifiedGenotyper for
indel detection in human whole exome data [14]. Another
study using simulated short indels reported high positive
predictive value for UnifiedGenotyper, but decreased sen-
sitivity at lower read depths (< 10x) [15].

A newer variant-calling tool, HaplotypeCaller, was in-
troduced in GATK version 2.0. HaplotypeCaller detects
variants using a combination of de novo assembly and a
Hidden Markov Model. Literature regarding the perform-
ance of HaplotypeCaller is limited. A study of GATK's
variant calling capabilities using a previous version of the
tool (2.2-2) reported lower validation of indels called by
HaplotypeCaller (55.9%) in comparison to UnifiedGenoty-
per (92.0%) [14]. This tool is under continuous develop-
ment, and a more recent version (2.6-4) was included in
our comparison.

Pindel is a tool capable of identifying indels as well as
other structural variants in paired-end read data. Pindel’s
pattern-matching algorithm determines break points
using mate-pair reads where one end is mapped and the
other is unmapped. This is followed by reconstruction of
a complete read at the breakpoints to predict the pres-
ence of indels. On simulated data, Pindel identified up
to 80% of deletions ranging from 1-16 bp in size with
less than 2% false negative rate. Insertions were also de-
tected at a rate of approximately 80% [16].

The performance of many currently available indel
calling tools has been compared primarily using simu-
lated data [15,17,18]. These studies are informative re-
garding the false positive rate and sensitivity of these
tools, but few studies have reported the performance of
these tools on a research cohort of human sequencing
data. We compared indel calling capabilities on human
target capture of 200 genes, whole exome sequence data,
and whole genome sequence data using Pindel, Unified-
Genotyper and HaplotypeCaller. The quantity, size, read
depth and other characteristics of called indels specific
to each program were compared, and the concordance
of the indels called across the various programs was de-
termined. This study can be useful to researchers when
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selecting an appropriate tool for their specific needs. We
clarify the overall ability of currently available indel callers
to detect these genomic variations in real human subject
data, and suggest best practices for the identification of
indels in human next generation sequencing data.

Results

Sequencing

We achieved mean read depth of 639x for the TES sam-
ples, 74x for the WES, and 24x for the WGS samples.

Characteristics of indels called

Pindel made significantly more (p < 0.0005) indel calls in
the TES and the WES samples than either of the GATK
tools. Pindel called 49 indels per sample in the TES and
847.6 indels per sample in the WES compared to 3.92
and 3.73 indel calls per sample in the TES and 435 and
321 indel calls per sample in the WES data made by
UnifiedGenotyper and HaplotypeCaller respectively. In
contrast, Pindel called significantly fewer (p = 0.013) indels
than either of the GATK tools in the WGS samples with
the settings we used throughout the three sequencing
datasets. These findings are summarized in Figure 1A.
When Pindel was run with -M reduced to 10, the number
of calls made by Pindel increased to 574,892 indel calls
per sample compared to UnifiedGenotyper's 620,190 indel
calls and HaplotypeCaller's 656805.5 calls. With -M set to
3, Pindel called 680785.5 indels, more than the other two
tools (Additional file 1: Figure S1).

The read depth over indels called by UnifiedGenotyper
was consistently higher than read depth over indels called
by HaplotypeCaller especially in the TES and WES runs.
Both GATK algorithms had higher mean allele depth in
support of the called variants than Pindel for both the
TES and WES samples. However, in the WGS samples,
Pindel called variants that had a higher allele depth than
either of the other algorithms (Figure 1B).

The mean indel size in TES and WES sequencing sets
was higher in Pindel (90.1 bp in TES and 317.1 bp in
WES) compared to both UnifiedGenotyper (7.6 bp in TES
and 4.0 bp in WES) and HaplotypeCaller (7.4 bp in TES
and 4.0 bp in WES). Pindel called 47 unique large dele-
tions (> 2000 bp) in the 45 WES samples. The largest of
these was 30,861 bp long (just below the maximum size
threshold parameter set for Pindel) compared to max-
imum deletion size of 59 bp by UnifiedGenotyper and
113 bp by HaplotypeCaller. HaplotypeCaller was capable
of calling the largest insertions (up to 108 bp long)
followed by UnifiedGenotyper (59 bp) and Pindel (57 bp).
Indels called by each algorithm in the TES and WES data
had median size in the range of 1-6.7 bp. The only signifi-
cant difference in median size was in Pindel TES samples
compared to the GATK algorithms (p < 0.0005).
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Figure 1 Performance characteristics of three indel calling algorithms applied to three human targets. (A) Comparison of number of
indels called. (B) Comparison of allele depth ratio across indels called. Pindel called more indels in TES and WES samples, but less indels in the
WGS samples than the GATK algorithms.

Concordance Discordant indels tended to have lower mean read depth
The concordance rate for indels called by the three than the mean read depth across all indels. The exceptions
algorithms was only 5.70% in TES, 19.52% in WES, and to these were Pindel WGS calls (with M =30) where the
14.25% in WGS (Figure 2). Indels detected by Pindel in  unique indels called had a mean allele depth of 47.3 reads
the TES data had the highest discordance with other al-  supporting variant alleles compared to a mean depth of
gorithms. Only 5.99% of TES indels and 32.21% of WES  19.9 supporting reads across all indels called by Pindel. Pin-
indels detected by Pindel were called by either of the del called a higher number of discordant indels per sample
GATK tools. In contrast, 98.36% of WGS indels called in the TES and WES than UnifiedGenotyper or Haplotype-
by Pindel at M = 30 were also identified by at least one  Caller. A percentage of these discordant indels (4.00% in
of the GATK tools. The GATK algorithms produced TES and 2.99% in WES>2000 bp) were large deletions
highly concordant results in TES (92.15%) and WGS  that were not captured by either GATK algorithm. We
(81.64%). The concordance between UnifiedGenotyper  found that with consistent parameter settings, Pindel called
and HaplotypeCaller in WES was not as high (57.55%). more indels in targets with high read depth, but of these
Running Pindel WGS samples with lower values for -M  only 28% in the TES and 21% in the WES validated.
resulted in increasing concordance. There was 24.37%

concordance in the three algorithms when -M was set  Effects of multi-sample runs

to 10 supporting reads, and 25.25% at the default setting  In our TES data, increasing the number of samples run
of 3 supporting reads. simultaneously resulted in a significant increase in the

A Pindel B Pindel C Pindel
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Figure 2 Concordance of indels called by Pindel, GATK-HC and GATK-UG in targeted exon capture (A), whole exome sequencing (B),
and whole genome sequencing (C) data sets without adjustment to software parameters. Concordance was low in the intersection of the
three tools across all targets. UnifiedGenotyper and HaplotypeCaller had higher concordance of calls, but did not detect many of the indels called
by Pindel in TES and WES.
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number of calls made by Pindel (p < 0.00005 comparing
results from 3 versus 48 samples) at a rate of 0.97 indel
calls with each additional sample (Figure 3A). Haploty-
peCaller showed a significant decrease in the number
of calls per sample with the addition of more samples
(p <0.00001 with 3 versus 48 samples) but at a slower
rate than Pindel. UnifiedGenotyper did not show any
significant changes in the number of calls. When only
three WES samples were analyzed simultaneously, Pin-
del still made a significantly higher number of calls
than both UnifiedGenotyper (p = 0.002) and Haplotype-
Caller (p =1.199e-7).

All three algorithms applied to the WES data showed
a positive correlation between the number of samples
analyzed simultaneously and the number of indel calls
(Figure 3B) and had an increase in the number of indel
calls in 3-sample runs compared to 48-sample runs.
Pindel was most affected by the addition of samples, in-
creasing at a rate of 10.72 indels with each additional
sample added to the analysis. The GATK algorithms also
showed an increase in indel calls as the number of
samples increased. This increase was smaller, with 1.66
indels per additional sample in UnifiedGenotyper and
0.78 indels per additional sample in HaplotypeCaller. In
all of the WES runs tested, Pindel called more variants
than either GATK tool regardless of the number of sam-
ples analyzed simultaneously.

Validation of calls made depending on target size

Only 30% of TES indels identified by Pindel were also
called in Pindel's corresponding WES data. A larger per-
centage (50%) of TES indels called by UnifiedGenotyper
and 73% of the TES indels called by HaplotypeCaller
were found in the corresponding WES runs. In our WES
data, only 21% of Pindel's WES indels were found in

Page 4 of 10

WGS data. UnifiedGenotyper identified 72% of the WES
indels in WGS, and 100% of the WES indels identified
by HaplotypeCaller were also identified in the WGS sam-
ples. Validation data are summarized in Figure 4.

Validation results with varied Pindel M values

Varying the minimum support for event (M) value upon
which Pindel bases its calls resulted in differing numbers
of indels validated across the targets. Analysis of a single
TES sample using Pindel with M =10 increased valid-
ation to 75%, and there was no benefit gained in valid-
ation with an increase to M =30 (Figure 5A). When we
analyzed three TES samples with Pindel, increasing the
M value to 30 resulted in validation rates from 60-100%
across the three samples (Figure 5B). Interpretation of
our WES and WGS sample validation should be cau-
tious, as we only had one WGS sample with correspond-
ing WES data, but in that sample varying M values
improved validation from 21% with M =30 to 78% with
M = 3 (Additional file 2: Figure S2).

Large deletions called by Pindel

Looking at the WES large deletions (>2000 bp) called by
Pindel, we found that out of 46 unique deletions, 45
were detected in multiple samples. On average, each de-
letion was found in 24.78 of the 45 samples. As we had
trio WES data, we found that all large deletions found in
probands were inherited from a parent, and none were
de novo. Frameshift deletions comprised 65.22% of the
deletions called. Using UCSC’s RepeatMasker we found
that all 46 deleted regions overlapped with known gen-
omic areas of repeats. Every deletion also overlapped with
copy number variants found in the DGV database of
known structural variants. In the subset of 12 large dele-
tions in sample DB13-001, exon one of the protocadherin
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Figure 3 Variation in number of indel calls per sample depending on the number of samples analyzed simultaneously in targeted
exon capture (A) and whole exome sequencing (B) data. Pindel showed a dramatic increase in indel calls as more samples were added to
analysis. UnifiedGenotyper and HaplotypeCaller also showed variance in the number of indel calls depending on the number of samples analyzed
simultaneously. However, there was not necessarily a positive correlation.
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Figure 4 Validation of indels called by Pindel (A,B), GATK-UG
(C,D), and GATK-HC (E, F) in targeted exon sequencing with
whole exome sequencing, and whole exome sequencing with
whole genome sequencing using uniform parameter settings
across the targets. HaplotypeCaller performed the most reliably
across the different targets. Pindel indel calls had the lowest
validation rates when settings were unchanged across the targets.
Lower TES validation rates in all three tools suggest either more
false positives due to high depth of coverage in TES or insufficient
depth or coverage in WES to validate the TES calls.

alpha gene cluster (PCDHAS8,9,10) was found to map to

other genomic regions with sequence similarity.

Discussion

The analysis of insertions and deletions continues to be
a challenging area in analysis of next-generation sequen-
cing data. There is variability in the approach taken by
current algorithms, with GATK analyzing insertions and
deletions simultaneously, while Pindel performs this

Page 5 of 10

analysis separately. We observed variability across all three
indel calling algorithms when applied to a variety of real
human next-generation sequencing data sets. Others have
reported lack of concordance in indel calling tools when
applied to simulated data [15,17,18] and human WES data
[14]. Both GATK algorithms produced highly concordant
results in TES and WGS, but did not perform as well
when applied to WES data. Therefore, we concur with the
caution voiced in the literature regarding the high false
positive rate of indel calling in next-generation sequencing
data [14,19,20].

Opverall, we found that GATK’s HaplotypeCaller had the
highest concordance and validation. We recommend that
researchers use concordance between HaplotypeCaller
and Pindel with supporting read adjustment to optimally
call indels that validate. We observed the greatest variabil-
ity when these algorithms were applied to smaller NGS
targets. GATK’s HaplotypeCaller provided the most con-
sistently validated indel calls across all target sizes. In con-
trast, Pindel called a greater number of indels that were
not validated by the other algorithms when applied to the
same data obtained from the same sequencer. However,
Pindel’s calls from our WGS data were well validated.

Pindel made a significantly higher number of indel
calls per sample than the GATK tools except in the WGS
samples where the number of calls made by Pindel was sig-
nificantly lower. This was true even with adjustments to
Pindel's settings for higher stringency. Only 30% of calls in
the TES and 21% in the WES validated, indicating more of
these calls made in targets with high read depth were false
positives. Our findings are consistent with a comparison of
indel calling algorithms on simulated human chromosome
22 data suggesting that Pindel had higher false positive and
false negative rates for indels 1-5 bp long while GATK had
higher false-positive and false-negative rates for indels 30—
100 bp long at read depth > = 20x [17]. As 75.36% of our
called indels were in the 1-5 bp range, it is possible that
the high number of calls made by Pindel in the TES and
WES could be the result of more false positives in the
small indel category.

The larger mean indel size called by Pindel was likely
due to the identification of very large (>2000 bp) dele-
tions. Neither GATK algorithm is capable of identifying
these large deletions [17]. In the case of large insertions,
Pindel and GATK UnifiedGenotyper both identified in-
sertions just under 60 bp in length. In our data, Haploty-
peCaller identified the largest insertions out of the three
algorithms, and these did validate in WGS data. Indels
in our TES and WES analyses had median sizes within
the range of 1-6.7 bp, consistent with previous findings
that the majority of short indels (<60 bp) are less than
10 bp in length [11]. Pindel had a lower median indel size
than the GATK tools in the TES and WES data, and this
difference was significant in the TES run (p <2.2e-16).
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This is further evidence that Pindel may have called more
small (1-5 bp) false positive indels than GATK at very
high read depth while GATK may have called more false
positive large indels than Pindel.

We also observed an interesting behavior by Pindel
where more indels were called in the TES and WES data
when multiple samples were analyzed simultaneously.
This may be because Pindel establishes calls in part based
upon the number of supporting reads. Running only two
samples together may have contributed to the low number
of indel calls made by Pindel in our WGS data. However,
even when only three WES samples were analyzed simul-
taneously, Pindel still made a significantly higher number
of calls than both UnifiedGenotyper (p = 0.002) and Hap-
lotypeCaller (p =1.199¢-7), and when three TES samples
were analyzed together, the number of indel calls made by
Pindel was within the range of the number of calls made
by UnifiedGenotyper and HaplotypeCaller. This suggests
that the number of samples is not the only factor contrib-
uting to the lower number of calls. The lower coverage in
the WGS data along with the settings used, especially the
number of supporting reads (-M) is likely to be the cause.
We conclude that with varying read depth, the value
of -M has an effect on the number of calls made and must
be adjusted accordingly. This can be problematic when
searching for indel calls found in only one sample in a
multi-sample run with lower coverage. Setting -M too
high will not detect low-coverage indels, while setting it
too low will call many indels in common among the sam-
ples. The solution is to set M to a lower value and filter
out these variants that are common to many samples.

GATK HaplotypeCaller and UnifiedGenotyper showed
less variation in number of indels called when more
samples were added to analysis, and in the case of our
TES data, there was not necessarily a positive correlation
between the number of indels called and the number of
samples analyzed. This variation in the number of calls
may reflect GATK's ability to identify indels more

accurately with added samples. GATK best practices sug-
gest running UnifiedGenotyper and HaplotypeCaller on
30 or more samples, as this increases the statistical power
and improves accuracy of variant calls [21].

Concordance across the three tools was low in all
of our targets. GATK-UnifiedGenotyper and GATK-
HaplotypeCaller produced calls with higher concordance
in TES and WGS than previously reported in earlier ver-
sions of HaplotypeCaller (54.1% in version 2.2-2 and
70.7% in version 2.4-9) [14]. Low concordance in TES and
WES in the intersection of the three tools is due to a high
number of indel calls by Pindel that were not detected by
the GATK algorithms. In the case of WGS, the high -M
setting resulted in relatively few indel calls by Pindel in
comparison to the GATK tools. 98% of these indels were
also identified by the other tools and likely to be high con-
fidence calls. However, the low number of calls made by
Pindel in WGS data resulted in lower concordance among
the three tools. The level of concordance in WGS samples
improved with adjustment to Pindel's parameters and was
highest for the WGS samples when Pindel was run at the
default value for M (3).

Validation of indels across their corresponding samples
in different targets varied among the three tools. The
validation rate in all three tools was lower from TES to
WES than WES to WGS. HaplotypeCaller had the most
reliable results when applied to the various targets. Pre-
vious studies on indel callers have found that the sensi-
tivity of variant callers is positively correlated with read
depth of the sequenced regions [15,17,22]. In combin-
ation with the increase in false positives that accompan-
ies increases in read depth, it is expected that some calls
in the high read-depth targets will not be found in tar-
gets with lower read-depth. Our findings suggest that
Pindel may be more affected by low or high read depth
than the GATK algorithms, either due to a higher rate of
false positives when depth is high, lower sensitivity at
the lower read depth, or a combination of the two. The



Ghoneim et al. BMC Research Notes 2014, 7:864
http://www.biomedcentral.com/1756-0500/7/864

low validation rate of Pindel's WES sample in WGS data
can be attributed to the low number of indels detected
in WGS due to lower depth of coverage coupled with
the stringent M parameter setting. Pindel's validation
rate in WES exceeded that of UnifiedGenotyper with
adjustments to M in the WGS run. We did not make
adjustments to UnifiedGenotyper or HaplotypeCaller to
maximize validation.

Adjustment of Pindel's minimum support for event
value (M) greatly improved both concordance and valid-
ation of indels called in our TES samples. In our analysis
of a single TES sample, validation improved with M = 10
compared to M = 3, but there was no benefit to analysis
with M = 30. In contrast, analysis of 3 TES samples sim-
ultaneously had higher validation rates when M was set
to 30 compared to M =10 or M = 3. From this, we con-
clude that for researchers analyzing smaller target capture
sequencing with higher read depth, varying M values will
improve the validation of indels called.

When analyzing smaller targets with higher read depth,
researchers should keep in mind the possibility of more
false positive calls made by indel-calling software in these
targets. The percentage of TES indels that are not identi-
fied in the WES runs by all three algorithms also raises
questions about the ability of current sequencing tech-
nology to achieve sufficient read depth over large gen-
omic regions to capture all indels successfully. This is a
paradox, since large indels spanning genomic regions
may not be visible by smaller target captures, yet read-
depth in WES and WGS may not be sufficient to allow
current software (including those tested) to identify these
indels with confidence.

Best practices recommendations

Our comparison of multiple indel calling algorithms
across targets of varying size in human subject data allows
us to make several best practices recommendations to re-
searchers undertaking similar analyses (Table 1). We rec-
ommend the use of HaplotypeCaller to detect small indels
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less than 10 bp long. For indels in the 10 bp-100 bp range,
HaplotypeCaller in combination with Pindel can be used
for indel detection with higher confidence. It is important
to adjust the number of supporting reads for Pindel to suit
the target size and the number of samples in the run.
Default settings are optimal for WGS data or other se-
quencing data sets with relatively lower read depth. Multi-
sample TES or WES runs with higher read depth require
adjustment of M to at least 10. Pindel may not be optimal
for detection of low read depth indels that occur in a sin-
gle sample in a multi sample run. To detect these elusive
indels, Pindel can be run with a low value for M, and re-
sults can then be filtered. Pindel is the only tool of the
three capable of detecting larger deletions. Pindel may also
be the tool of choice for datasets that require higher
sensitivity at the potential expense of concordance and
validation. If researchers are aware of the strengths and
weaknesses among the three algorithms tested and adjust
for them accordingly, optimal results in terms of concord-
ance and validation will be obtained. There is continuous
development of new tools for indel and structural variant
detection, including Platypus [23], a new variant-calling
tool developed for use on whole exome sequence and
whole genome sequence data. Further testing will be re-
quired to determine the strengths and weaknesses of the
most recent tools.

Conclusions

Variability in indel calls was high across the three indel
detection tools tested. Understanding the strengths of
each tool can improve identification of indels in sequen-
cing data. GATK’s HaplotypeCaller had the best valid-
ation of indels found across different sequencing targets.
While GATK UnifiedGenotyper and HaplotypeCaller are
both well suited for very small indels, HaplotypeCaller
identifies more indels in low depth of coverage than
UnifiedGenotyper. Pindel has the ability to detect larger
deletions as well as break points for larger insertions that
are not identifiable by either of the GATK algorithms.

Table 1 Best practices for optimal identification of indels in human next-generation sequencing data

Target Small (1-10 bp) indels Mid-sized (10-100 bp) indels Large (>2000 bp)
deletions**
Human 200 gene TES capture (1.5-1.6 Mb) with GATK-HC Run both GATK-HC and Pindel with Pindel
read depth ~600x Validate with Pindel helpful if adjustments to parameters*.
analyzing <6 samples
Human WES capture (65-75 Mb) with read GATK-HC Run both GATK-HC and Pindel with Pindel
depth ~100x Validate with Pindel helpful if adjustments to parameters*.
analyzing <6 samples
Human WGS capture (3.2 Mb) with read GATK-HC Run both GATK-HC and Pindel Pindel

depth ~30x

with M =3.

Validation with Pindel may be

helpful, but run with M=3

*Adjust Pindel M value to 10 if analyzing single sample; adjust M to 30 if analyzing multiple samples.
**Pindel does not identify large insertions, but can identify the breakpoints for these insertions. These were not included in this analysis.
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However, Pindel was the most sensitive to skewing of re-
sults depending on the read-depth of the target and the
number of samples analyzed simultaneously. Adjusting
Pindel’s minimum support for event (M) value depending
on the number of samples analyzed greatly improved the
validation of indels called and illustrates the importance of
adjusting software parameters to suit the read depth and
coverage of datasets. This is the first comparative analysis
of indel calling algorithms on a research cohort of human
next generation sequencing data.

Methods

Human subject ascertainment

All human subjects sequenced underwent informed
consent as part of protocols approved by the Research
Subjects Review Board of the University of Rochester
Medical Center.

Sequencing

Target capture of 200 genes using the Agilent SureSelect
Custom 2.9 Mb capture kit was performed on 48 human
DNA samples (a combination of blood and saliva derived).
Whole exome capture of 45 saliva-derived human DNA
samples was performed with the Agilent SureSelect V5 +
UTR capture kit. Whole genome capture was performed
on two saliva-derived human DNA samples using the Illu-
mina TruSeq DNA PCR-free kit. All paired-end sequen-
cing was performed on the same Illumina HiSeq2500.

Analysis pipeline

Demultiplexing and cleaning of raw reads were per-
formed with bcltofastq-1.8.4, seqclean-x86_64 1, fastqc-
0.10.1, and fastx_toolkit_0.0.13. The sequencing reads
were mapped with bwa-0.6.2 to the hgl9 reference gen-
ome and were then sorted and converted to bam with
samtools-0.1.17. In preparation for variant-calling, the
reads were soft-clipped and duplicates marked using
Picard-1.84. Gatk -2.3-9 was used for IndelRealignment
and base quality score recalibration according to GATK
best-practices [21]. The resulting bam files were then
run through Pindel, GATK UnifiedGenotyper, and GATK
HaplotypeCaller for indel calling. Each program was run
in a multi-sample run containing all 45 samples for whole
exomes, 48 samples for the 200 gene targeted capture, and
2 samples for the whole genome sequencing. Each tool
was run using identical parameter settings across the
three targets.

UnifiedGenotyper was run with default settings as docu-
mented in GATK Best Practices, except the confidence
(phred-scaled) threshold for variants emission was lowered
to 10.0 (default stand_emit_conf is 30.0) and the coverage
was down-sampled to 1000 per sample (default d_cov is
250). The target list (-L) option was removed for variant
calling in the WGS samples. GATK HaplotypeCaller was
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run using a newer version of GATK (2.6-4) with similar
parameters to UnifiedGenotyper. Once again, the -L
target list option was omitted for variant calling in the
WGS samples.

Pindel was also run using default settings except for
the minimum supporting reads (-M) across samples
were increased to 30 and the minimum mismatches to
map candidate reads to the reference was increased to
three to control the large number of indels called by Pin-
del. To adjust for low calls made by Pindel in the WGS
due to these stringent setings, WGS samples were also re-
run through Pindel with -M set to 3 and 10. Pindel's short
insertions(_SI) and deletions(_D) output were used in our
analysis. Pindel output was converted to vcf using pin-
del2vcf (included in Pindel distribution) and annotated
using Annovar. Command line parameters for GATK
UnifiedGenotyper, HaplotypeCaller, and Pindel are listed
in Additional file 3: Table S1.

Characteristics of indels called

In order to characterize the types of indels that were
identified by each tool, indel size, allele and read depth,
proximity to known segmental duplications, as well as
whether the indels were frameshift or nonframeshift indels
were observed.

Concordance of calls

Concordance of the indel calls from the three tools was
determined by the number of identical calls made in
each sample. Two calls were determined to be identical
if they had the same start and end positions +/- 10 bp.
The predicted content of the called indels was not used
to determine concordance.

Effect of multiple-sample runs

To determine the effect of the number of samples per
run on indel calling capabilities, TES samples were run
through each of the three tools with 3, 6, 12, 24, and 48
samples per run, and WES samples were run with 3—4
samples per run, 20-21 samples per run, and 45 samples
per run. The number of indels called per sample for
each run was compared.

Validation of indel calls

Indel calls from 3 TES samples were validated by com-
paring to the corresponding WES data for those sam-
ples. Similary, indels called in one WES sample were
validated through calls in the WGS data for that sample.
The three TES samples and their corresponding WES
samples were also run through Pindel in 3-sample runs
using various -M values (minimum reads supporting an
event) to determine the effect of this parameter on valid-
ation rates. The values tested were 3, 10, and 30. The
single WES sample and its corresponding TES and WGS
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samples were run through Pindel as single-sample runs
using the three different values for —M. Validation rates
were compared.

Large deletions called by Pindel

Large Deletions (> 2000 bp) called by Pindel in the WES
data were evaluated using UCSC’s RepeatMasker and the
Database of Genomic Variants (DGV) to determine if these
calls contained domains with known repeats or duplica-
tions. Vista was used to identify overlap with coding and/
or conserved regions of the human genome. In a subset of
12 large deletions in WES sample DB13-001, Blastn of the
50 bp flanking regions was used to determine if mapping
to multiple genomic regions occurred.

Availability of supporting data
The data sets supporting the results of this article are avail-
able at https://paciorkowski-lab.urmc.rochester.edu/data.
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