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In recent years, the development of high-throughput screening (HTS) technologies and 
their establishment in an industrialized environment have given scientists the possibility 
to test millions of molecules and profile them against a multitude of biological targets in 
a short period of time, generating data in a much faster pace and with a higher quality 
than before. Besides the structure activity data from traditional bioassays, more complex 
assays such as transcriptomics profiling or imaging have also been established as 
routine profiling experiments thanks to the advancement of Next Generation Sequencing 
or automated microscopy technologies. In industrial pharmaceutical research, these 
technologies are typically established in conjunction with automated platforms in order to 
enable efficient handling of screening collections of thousands to millions of compounds. 
To exploit the ever-growing amount of data that are generated by these approaches, 
computational techniques are constantly evolving. In this regard, artificial intelligence 
technologies such as deep learning and machine learning methods play a key role in 
cheminformatics and bio-image analytics fields to address activity prediction, scaffold 
hopping, de novo molecule design, reaction/retrosynthesis predictions, or high content 
screening analysis. Herein we summarize the current state of analyzing large-scale 
compound data in industrial pharmaceutical research and describe the impact it has had 
on the drug discovery process over the last two decades, with a specific focus on deep-
learning technologies.

Keywords: Artificial intelligence, deep learning, Chemogenomics, Large-scale data, pharmaceutical industry

INTRODUCTION
Digital data, in all shapes and sizes, are growing exponentially. According to the National Security 
Agency of the United States, the Internet is processing around 1.8 billion GB of data per day 
(Macarron et al., 2011). In 2011, digital information has grown nine times in volume in just 5 
years (Mayr and Bojanic, 2009) and by 2020, its amount in the world is expected to reach 35 
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trillion GB (Borman, 1999). The recent development of deep 
learning and other artificial intelligence methods is fuelled by 
the desire to seek greater insight among the ever-increasing 
amount of data in several key industries and powered by 
technological advancements as in, for example, computer 
vision, natural language processing, internet of things (IoT), or 
computer hardware.

Over the past decade, there has been a remarkable increase 
in the amount of available compound activity, biomedical 
(Borman, 1999; Mayr and Bojanic, 2009; Schamberger et al., 
2011), and genomics data (Guyer and Collins, 1995; Human 
Genome Project Results; Wilson and Nicholls, 2015) thanks 
to the rapid development of high-throughput screening (HTS) 
and gene sequencing technologies. Typically, databases in 
pharma companies contain around 1–4 million compounds with 
biological data for several thousands of biological end-points 
such as targets or activities in cellular assays. Furthermore, 
due to the increasing level of automation and standardization, 
larger data sets of consistent conditions have become available. 
All chemical compounds synthesized and/or extracted from 
publications represent around 96 million compounds (Kim et al., 
2019). Even though only a small fraction of them have associated 
biological information (Wang et al., 2014; Kim, 2016), these 
chemogenomics data sets alone already represent a formidable 
task for predictive modelling work.

The usage of new automation technologies resulted in a large 
volume of data, which has promoted the usage of machine learning 
(ML) methods. ML methods such as support vector machine 
(SVM), random forest (RF), or neural networks (NNs) have been 
used for data modelling in cheminformatics and bioinformatics 
for a long time. Only recently, various deep learning methods 
have become more popular due to the availability of large-scale 
training sets and high-performance computer hardware. An 
important difference between deep learning and previous ML 
methods is the flexibility of NN architectures and input/output 
data structures in deep learning methods and the automated 
extraction of features from raw data representations. This 
flexibility allows to design models that fit to the characteristics 
of the prediction problem (Wu et al., 2018; Xiong et al., 2019; 
Yang et al., 2019). Some of the popular NN architectures include 
convolutional NNs, recurrent NNs, autoencoders, and fully 
connected deep NNs. These deep learning methods have been 
applied (Ramsundar et al., 2017; Chen et al., 2018) on aspects 
of compound activity prediction (Dahl et al., 2014; Ma et al., 
2015; Koutsoukas et al., 2017), de novo molecular design (Brown 
et al., 2019), protein–ligand interaction prediction (Lenselink 
et al., 2017; Feinberg et al., 2018), predictive toxicity (Mayr et al., 
2016), and reaction prediction (Segler and Waller, 2017b). In this 
review, we will provide an overview on various types of large-
scale data sets that are available in pharmaceutical industry. Such 
data sets offer a wealth of information that are unavailable in 
the public domain and give rise to a broad range of applications. 
Furthermore, we will exemplify the applications of artificial 
intelligence, in particular deep-learning technologies, that are 
powered through these large data sets on various problems in 
drug discovery.

LARGE-SCALE COMPOUND DATA IN 
PHARMACEUTICAL INDUSTRY
The past two decades have seen an acceleration of compound data 
generation in pharmaceutical industry driven by the technical 
advancement of HTS (Mayr and Bojanic, 2009; Macarron 
et  al., 2011), parallel chemical synthesis (Borman, 1999), as 
well as the by the introduction of automation in sequencing 
and imaging. The various types of large-scale compound data 
in pharmaceutical research are illustrated in Figure 1. A small 
molecule database belongs to the core infrastructure of industrial 
pharma R&D in order to store the results of lead identification 
and optimization campaigns, which are used for, e.g., structure–
activity–relationship (SAR) analyses. The typical size of a 
compound collection at major pharma companies ranges from 
1 to 4 million compounds (Schamberger et al., 2011; Kogej 
et al., 2013). Compound activity data (including Administration 
Distribution Metabolism Excretion Toxicology (ADMET) end 
points) are the major part of the “Compound Data Estate” in 
pharmaceutical industry. Most of the SAR data come from the 
HTS campaigns carried out during the drug discovery projects, 
which typically comprise crude readouts generated from in vitro 
assays at single compound concentration—so called single-shot-
potency—in the primary screening stage, and more accurate 
concentration response data (IC50s, EC50s, etc.) derived from 
multiple compound concentration experiments. Pharmaceutical 
databases allow for in-depth studies that may not be achievable 
with public data. Indeed, structuration and curation of private 
databases are done with the inclusion of concepts such as screening 
campaigns or lead optimization programs, which make possible 
a faster and easier analysis of high-quality data. Occasionally, the 
overall number of SAR data points in pharmaceutical companies 
was disclosed in the past; some numbers reported in literature 
are listed in Table 1. Although this information is not up-to-date, 
it can still give a sense of the scale of experimental compound 
data in pharmaceutical industry.

Comparing with conventional HTS screening with a 
limited number of data readouts per compound, high-content 
screening (HCS) (Bickle, 2010) using automated microscopy 
generates images with multi-parameter readouts that provide 
an information-rich characterization of cellular phenotypic 
responses to small molecules. It has become an important tool 
for compound profiling and has led to a substantial increase in 
the amount of compound profiling data. For example, 460,800 
images were produced through a screen comprising 100 384-
well plates imaged with three fluorescent channels at four 
independent sites per well (Boutros et al., 2015). Hundreds 
of parameters can be extracted from each cell in the image 
quantifying information of morphological, geometric, intensity, 
and texture-based features. Recently Janssen reported (Simm 
et al., 2018) an image dataset for 524,371 compounds originally 
used for the detection of glucocorticoid receptor (GCR) nuclear 
translocation. For each cell in the image, 842 features were 
extracted, corresponding to roughly 440 million data points. The 
usage of image-based compound profiling data will be discussed 
in a subsequent section.
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High throughput mRNA expression profiling can be used to 
characterize the response of cell culture models to perturbations 
such as small molecules acting as pharmacologic modulators 
(Lamb et al., 2006; Iorio et al., 2013). These compounds induce 
transcriptional effects that can be used as gene signatures to 
discover new connections among compounds, pathways, and 
diseases. With one of these technologies, known as L1000™ 

Expression Profiling (profiling for 978 gene expressions) (De 
Wolf et al., 2016; Genometry), thousands of compounds can be 
screened per day at lower costs than conventional microarray 
techniques (Subramanian et al., 2017). Merck reported the 
screening of a set of 3,699 compounds using the Genometry 
L1000 platform to unveil a new target for compounds (Filzen 
et al., 2017). Janssen announced (How library-scale gene-
expression profiling is changing drug discovery; Pascale, 2015) 
that they will use Genometry’s L1000 platform to generate 
gene-expression profiles for 250,000 compounds from Janssen’s 
small-molecule screening library. It is expected that more 
pharmaceutical companies will adopt similar technologies and 
approaches to generate large-scale transcriptomics data for 
compound profiling.

With the continuous increase in the amount and heterogeneity 
of data that are generated and stored in large repositories, the 
question of how to ensure and sustain data integrity gained more 
and more attention. The generation and storage of large amounts 
of data require significant investments in IT infrastructure. These 
investments are justified not only by efficiency gains for ongoing 
projects through elimination of manual steps to compile and 
analyze project-relevant data that ultimately lead to decisions 

FIGURE 1 | Different categories of large-scale compound data in industrial pharmaceutical research.

TABLE 1 | Number of SAR data point in large pharmaceutical companies 
reported in literatures.

Company # of SAR point Date Reference

AstraZeneca 150 million single-shot 
SAR points, 14 milliona 
CR SAR points

Up to 2008 (Proffitt, 2008; 
Muresan et al., 
2011)

Boehringer 
Ingelheim

260 million single-shot 
SAR points, 7 million 
CR SAR points

Up to 2011 (Beck, 2012)

Pfizer 0.6 million CR SAR 
points

Up to 2005 (Paolini et al., 2006)

Johnson & 
Johnson

30 million SAR points Up to 2006 (Agrafiotis et al., 
2007)

a) This number includes external sources, up to 2012.

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1303

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Deep-Learning Industrial Pharmaceutical ResearchDavid et al.

4

on whether or not to pursue a certain molecule or compound 
class, but also perhaps even more so by the prospect to discover 
knowledge across projects as described for example in recent 
publications by Novartis (Wassermann et al., 2015a) or Boehringer 
Ingelheim (BI) (Beck, 2012). All this is only possible if the data 
context is provided alongside the data itself, and when there is 
a profound understanding of the data quality. One important 
aspect for consideration is the assay technology that is applied 
for compound testing. The direct interference of compounds 
with an assay technology is a source for systematic errors, which 
should be considered when analyzing the respective data sets. 
In a recent example at BI (Beck et al., 2015), the screening deck 
was assayed against an ion channel target for neuroprotection 
by means of a fluorometric imaging plate reader (FLIPR) assay 
(Sullivan et al., 1999). The screen yielded a high hit rate, and 
using a systematic overlap analysis with results from previous 
FLIPR campaigns, a large number of compounds most likely to 
be false positives were excluded from labor-intensive follow-up 
activities. Other important aspects regarding data quality are, for 
instance, compound purity, autofluorescence, or physicochemical 
properties such as aggregation propensity (Jadhav et al., 2010), 
which can have a significant influence on assay results and need 
therefore to be taken into account as decision-relevant context. 
This can be accomplished by computational surrogate parameters 
or auxiliary experiments such as high-throughput solubility 
determination via nephelometry (Fligge and Schuler, 2006).

Typically, data repositories within pharmaceutical companies 
evolve over years, and the best practices as to which data to store 
in such systems do so as well. This leads to situations in which 
legacy data are hardly comparable with present results, thereby 
limiting the chances to add value from mining data, which were 
generated at significantly different points in time. Efforts to set up 
data governance structures and to employ modern technologies 
around meta data management and central nomenclatures 
aim to address this issue and are currently underway in many 
companies (Proffitt, 2008).

BIOLOGICAL PROFILING DESCRIPTORS 
FOR HIT EXPANSION
Traditionally, cheminformatic approaches focused on the use 
of molecular descriptors that are related to structure in order to 
describe the biological activities of compounds. Among them, 
structural fingerprints have been intensively used in similarity 
search, clustering, as well as in building SAR models (Willett, 
2011). This is largely based on the hypothesis that structurally 
similar molecules are likely to bind to the same group of protein 
and then—as a consequence—share similar biological profiles 
(Martin et al., 2002; Keiser et al., 2007; Willett, 2011). In the 
late 1980s, NCI pioneered the implementation of a biological 
fingerprint to access the similarity of compounds (Paul et al., 
1989). In contrast to structural fingerprints, biological activity 
data are utilized to describe a compound, neglecting structural 
features. Furthermore, with the recent advent of phenotypic 
screening, we observe an increasing awareness that the cellular 
effects of a compound can be described by its interaction 

with the proteome, without requiring the knowledge of the 
molecular structure.

Efforts have been devoted to transpose various types of 
biological responses into fingerprint format that could be used 
to access biological similarity of ligands (Kauvar et al., 1995; Fliri 
et  al., 2005a; Fliri et al., 2005b; Plouffe et al., 2008; Dixon and 
Villar, 2010). Recently, researchers of Novartis reported the use of 
the huge amount of in-house HTS data for this purpose (Petrone 
et al., 2012). The aggregated data from 195 biochemical and cell-
based assays for around 1.5 million of compounds have been 
employed to generate biological fingerprints, so called HTS-FP. 
They stressed the usefulness in mixing biochemical and cell-based 
data in detecting molecules that can produce similar phenotype 
without necessarily presenting the same mode of action (Petrone 
et al., 2012). They demonstrated the complementarity between 
the HTS-FP and a state-of-the-art molecular fingerprint [e.g., 
ECFP4 (Rogers and Hahn, 2010)] in similarity searches, 
especially in relation to the scaffold hopping potential of HTS-FP 
to identify structurally diverse hits. On the other hand, biological 
fingerprints were found to be more efficient in a study related 
to screening plate selection and hit expansion (Petrone et al., 
2012). Additionally, it was observed that biological fingerprint-
based clusters contain compounds that interact with targets 
that operate jointly in the cell. In further work, the combination 
of HTS-FP with structural fingerprints via the use of various 
machine-learning approaches has showed promising results in 
HTS hit expansion (Riniker et al., 2014). Other studies showed the 
usefulness of HTS-FP for iterative screening purpose (Paricharak 
et al., 2016). HTS-FP has one major drawback though, which is 
that predictions cannot be made for compounds that have not 
been previously tested in any HTS assays. In addition, HTS 
predominantly produces much more inactive than active, which 
consequently leads to quite sparse HTS-FP. To tackle these issues, 
Laufkötter et al. (2019) have developed a method where missing 
bioactivity data were compensated by considering structural data 
in a so-called combined fingerprint (CESFP) (Figure 2). They 
reported a significant improvement when using CESFP compared 
to the use of HTS-FP and Extended Circular Fingerprints (ECFP) 
alone in random-forest based activity prediction models. This 
indicates a clear synergistic effect between structural and biological 
fingerprints. HTS-FP have also been employed for multitask ML. 
In a recent study, it was observed that HTS-FP and ECFP based 
activity predictions, while comparable in performance, could 
return hits containing different chemotypes, suggesting that 
combining these approaches can be an efficient way to explore the 
bioactive chemical space (Sturm et al., 2019).

Leveraging the transcriptional data such as gene expression 
profile (gene signature) in a cell could be another way to 
construct a biological profile descriptor. The publicly funded 
CMap database (Connectivity Map; Lamb et al., 2006) initially 
contained profiles of 164 drugs and later expanded to 1,309 
FDA-approved small molecules. These small molecules 
were tested in five human cell lines, generating over 7,000 
gene expression profiles in the database (Lamb et al., 2006). 
Compound induced gene signature profiles have been used for 
finding diverse hits (Lamb et al., 2006) and drug repositioning 
(Ishimatsu-Tsuji et al., 2010; Sirota et al., 2011). Although 
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generating this kind of compound related cell perturbation 
data is still quite expensive, several pharmaceutical companies, 
as mentioned earlier, are moving in the direction of 
generating such data in a large scale. It can be expected that 
transcriptomics-based biological descriptors will be explored 
for hit identification in the future. Other biological descriptors 
derived from multiplexed image data have been reported and 
successfully used for several tasks, which will be discussed in 
the subsequent imaging section.

ANALYSIS OF IMAGE-BASED PROFILING 
DATA wITH MACHINE LEARNING
In the drug discovery process, biological imaging and image 
analysis are widely used at various stages ranging from 
preclinical research to clinical trials. Imaging techniques enable 
the visualization of phenotype and behavior at multiple levels, 
including full body of humans or animals, organs, tissues, cells, 
subcellular compartments, and single molecules. A wide range of 
available imaging techniques can help to reveal the distribution 
of a drug in the body, organ, and cell as well as its mechanism 
of action. Such techniques rely on image datasets obtained 
through automated microscopy. An example of a large-scale 
image dataset is given by The Cell Image Library (Bray et al., 
2017), which contains 919,265 five-channel fields of view related 
to 30,616 compounds. The most common imaging techniques 
are automated microscopy using several fluorescent markers 
as well as label free microscopy such as brightfield and digital 
phase contrast. These imaging techniques and the downstream 
data analysis produce a large amount of data and associated 
extracted features. For several decades, automatic analysis 
methods (Boutros et al., 2015) have been successfully applied to 
identify objects such as organs, tissue types, cells, and subcellular 
compartments. Effects of diseases and drugs could be quantified 

by applying statistics and ML methods on the features that were 
extracted from the images in post-processing efforts. However, 
recent developments in deep NNs and specifically convolutional 
NNs (CNNs) are revolutionizing the field and setting new gold 
standards for key tasks such as segmentation and classification 
(Kraus et al., 2016; Chen et al., 2016; Dürr and Sick, 2016; Kraus 
et al., 2017). These new methods not only achieve better results 
but also avoid the time-consuming manual work of designing 
features and searching analysis methods for specific tasks. To 
achieve this, relatively large annotated data sets and substantial 
computational resources as provided in modern GPU clusters are 
required for training.

Deep neural nets (typically CNNs) have now been successfully 
applied for most tasks occurring in automated cell and tissue 
microscopy image analysis, including denoising (Su et al., 
2015), super resolution (Nehme et al., 2018; Ouyang et al., 2018; 
Rivenson et al., 2018; Wang et al., 2019), stain normalization 
(Janowczyk et al., 2017), hit identification (Simm et al., 2018), 
protein localization (Pärnamaa and Parts, 2017), cell cycle phase 
classification (Eulenberg et al., 2017), mechanism of action 
classification (Kensert et al., 2019), focus quality check (Yang 
et al., 2018), segmentation both in 2D and 3D (often using some 
version of a U-net architecture (Ronneberger et al., 2015)), and 
modality estimation (Christiansen et al., 2018). Many tasks fall in 
the area of classification, including tasks such as quality control 
(Yang et al., 2018), object detection (Ren et al., 2017; Hung 
et al., 2018), or outcome classification (Cireşan et al., 2013). 
Classification can be performed either on the image level or on 
the object level. In the latter case, it is linked to a localization or 
detection task to identify objects in a given image. One common 
two-step approach used is to first select candidate regions and 
then classify them. Alternatively, the network output consists 
of a probability map, which is analyzed in a postprocessing step 
to identify the objects. A typical architecture for classification is 
shown in Figure 3.

FIGURE 2 | Illustration of applying HTS-FP for building multi-task learning models. A chemogenomic matrix represents the interactions between the compound 
collection and a panel of biological target. Such a matrix is very often sparsely filled activities and missing cells represent unknown activity for the compound/target 
pair. Employing machine learning and HTSFP is an example of how unknown activities can be predicted.
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Since large amounts of annotated data are often not available 
for a specific task, strategies such as transfer learning are often 
applied, e.g., for classification tasks (Kensert et al., 2019; Zhang 
et al.). This starts with a pretrained neural net from a different 
task where a large data set is available. The model is then used as 
an initialization for the new task and fine-tuned for the task at 
hand. The last output layers of the original network are often not 
reused but trained for the new task from scratch.

As mentioned above, HCS where cells are exposed to different 
compounds followed by automated multichannel microscopy 
and subsequent automatic feature extraction is producing much 
richer data for screening than traditional HTS. More advanced 
analysis of cells exposed to chemical perturbations allows to 
identify related spatial and temporal information. Different 
biological descriptors derived from multiplexed image data 

have been reported (Loo et al., 2007; Young et al., 2008; Feng 
et al., 2009; Caicedo et al., 2017). Reisen et al. (2015) derived a 
biological fingerprint from HCS. Their HCS fingerprints are 
based on an automatic analysis of a panel of imaging assays that 
recorded morphological changes within six different cellular 
compartments upon testing of 2,725 compounds with well-
characterized mode of actions. These fingerprints were then 
used in classifying the compounds into clusters, which were 
subsequently annotated with target activities from bioactive 
molecules from different databases such as ChEMBL, Gostar 
(Gostardb), Drug bank (Knox et al., 2011), Integrity (Thomson 
Reuters), or Metabase (Thomson Reuters). Phenotypic responses 
were successfully classified for 52% of the tested compounds, 
and different phenotypes were identified that could be linked 
to the modulation of individual targets, cellular pathways, or 

FIGURE 3 | Typical neural network architecture for image classification. Alternating convolutional and max pool layers are followed by a number of fully connected 
layers, and finally an output layer with either sigmoid or softmax functions, depending on the task (Gawehn et al., 2016).

FIGURE 4 | Process of reaction prediction on an exemplary target molecule [lidocaine (Reilly, 2009)]. Machine-learning methods are applied to, first, predict the 
synthetic feasibility of the molecule and, second, predict the chemical context leading to the best yield possible for the reaction.
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disease genes (Reisen et al., 2015). Later, Simm et al. (2018) built 
a supervised machine-learning model based on fingerprints 
obtained from morphological features extracted from high-
throughput (cell) imaging (HTI) screening data. Their method 
enabled the identification of additional hits that were diverse 
from those obtained in a primary screen. More recently, end-
to-end convolutional NNs (Hofmarcher et al., 2019) were used 
on cell-painting images to predict assay activity as a multitask 
prediction problem. A number of common architectures 
were compared to each other as well as to the baseline model 
constructed with CellProfiler (Carpenter et al., 2006) extracted 
features. End-to-end models were shown to be able to deliver 
better results without first extracting features from the images.

PREDICTING COMPOUND ACTIvITY 
USING LARGE CHEMOGENOMICS 
MODELS
One of the main purposes of chemogenomics (Caron et al., 2001) 
is to obtain a matrix containing all the possible and impossible 
interactions between compounds covering the entire chemical 
space and biological proteins. Despite the advances in HTS 
(Hertzberg and Pope, 2000) techniques, which made it possible 
to test hundreds of thousands of compounds against a biological 
target in very little time, it seems quite unlikely that we will ever 
obtain a full chemogenomic matrix due to the complexity of the 
chemical space (Reymond, 2015) and the cost and time such a 
task would require due to the sheer size of the chemical space. 
It is, however, possible to computationally predict interactions 
between chemical compounds and panels of biological targets. 
The generation of such chemogenomic models is enabled by large 
databases that contain compounds with annotated biological 
activities. An applied example of activity predictions relying 
on chemogenomic models is shown in Figure 2. As previously 
mentioned, a large amount of SAR datapoints from assays with 
constant conditions and well-characterized quality can be found 
in private pharmaceutical companies’ databases. In the public 
domain, the most known databases are ChEMBL (Davies et al., 
2015; Gaulton et al., 2016), PubChem (Kim et al., 2019), and 
BindingDB (Gilson et al., 2015). ChEMBL is a manually curated 
database of bioactive molecules with drug-like properties. 
PubChem is a repository for screening data and BindingDB 
contains affinity measurements data. ChEMBL and BindingDB 
data were manually extracted from peer-reviewed journal 
articles. Furthermore, large amounts data from publications and 
patents are available in commercial databases such as Reaxys 
(Reaxys Database) and SciFinder.

A major topic that has been briefly addressed previously is the 
necessity of data standardization and curation prior to building 
a predictive model. Chemical structures can be represented by 
different types of notations (SMILES, InChI, etc.) (InChI and 
InChIKeys for chemical structures; Weininger, 1988; Weininger 
et al., 1989; Heller et al., 2015), and bioactivity data typically 
originate from different assay formats and are reported in a 
variety of units. One recent example of such a standardization 
exercise was reported by Sun et al. (2017) and resulted in the 

creation of a unified dataset, ExCAPE-DB, covering over 70 
million SAR data points coming from PubChem and ChEMBL. 
In another study, Mervin et al. (2015) mined ChEMBL active 
compounds and PubChem inactive compounds to construct a 
dataset of 195 million bioactivity data points and investigated the 
impact of inactive data on the performance of a predictive model.

Several models (Wang et al., 2013; Sushko et al., 2014; 
Hughes et al., 2016) employing various ML methods or virtual 
screening are available for target predictions and compound 
reactivity prediction, but only a few were derived from larger 
datasets. Studies on small-scale datasets (i.e., on very few assays 
or targets) can lead to misinterpretation of results or incorrect 
generalization as their applicability domain is limited. When 
using small dataset, there is a risk of investigating compounds 
that do not cover a wide range of the chemical space. In such a 
scenario, predictive models would show excellent performance 
when applied on structurally similar compounds but would fail 
to predict the activity of compounds pertaining to other series. 
Most compound-target profiles are sparsely filled. One method 
to compensate missing data is to combine bioactivity data with 
structural data as we have discussed in the previous section. 
Applying ML methods on large chemogenomic datasets has been 
reported in literature. Mervin et al. (2015) constructed a dataset 
of over 195 million bioactive data points and demonstrated 
that the inclusion of inactivity data improves the accuracy of 
predictive models. Another example for modelling large-scale 
chemogenomic data was reported by Martin et al. (2019) and 
produced activity predictions as accurate as an experimental 
4-concentration IC50s. A profile-QSAR (pQSAR) model based 
on 11,805 Novartis assays was applied on 5.5 million Novartis 
compounds, leading to a total of 50 billion predictions. This 
model is updated monthly. Recently, deep learning methods 
were also applied to build multi-task models. A study by Mayr 
et al. (2018) applied a variety of ML methods on a dataset 
of 45,000 compounds contained in more than 1,000 assays 
extracted from ChEMBL. It was shown that deep-learning 
outperforms all the other tested methods [i.e., RF (Breiman, 
2001), SVM (Cortes and Vapnik, 1995), K-Nearest-Neighbors 
(Silverman and Jones, 1989), Similarity Ensemble Approach 
(Keiser et al., 2007), Naïve Bayes (Zhang, 2004) statistics] for 
target predictions. The strength of this analysis relies on the 
fact that it was not biased by specific chemical structures or a 
particular structure representation of the compounds, as the 
dataset covered a wide range of target families, and various types 
of fingerprints were employed. This analysis showed that the 
performance of the predictive model increases with the training 
set size, confirming that effort should be put into creating large 
dataset for ML methods. Efforts for estimating prediction 
uncertainty of ML models have also been reported, for example, 
conformal prediction framework-based methods (Bosc et al., 
2019; Cortés-Ciriano and Bender, 2019) and Bayesian-based 
approaches (Zhang and Lee, 2019). A study (Tsubaki et al., 
2019) employed GNN and CNN to infer protein–compound 
interaction predictions and determine the importance of each 
subsequences of the proteins in the interaction. In Table 2, we 
summarized some studies in which DNN has been shown to 
outperform traditional ML approaches.
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Although it is crucial to have a sufficient amount of training 
data to infer target predictions, having high-quality data is also 
necessary. Indeed, available activity data can be erroneous due 
to the problematic nature of the compounds (Dahlin et al., 
2015) (e.g., reactivity, impurity, aggregation, technology hitters, 
etc.) or the experimental conditions in which they were tested 
(concentration, assay technology, plate type, etc.). The integration 
of such erroneous and heterogenous data can have an impact 
on predictive models. Various methods have been developed to 
detect such problematic compound behaviors, the most popular 
one being the Pan-Assay Interference Substructure (PAINS) 
filters (Baell and Holloway, 2010). A significant number of 
compounds that were initially considered as potential leads were 
found to be false positives. PAINS filters are substructures that 
were frequently observed among these compounds. It has now 
become usual to apply these filters when selecting compounds 
for follow-up studies. However, the PAINS filters were derived 
from compounds tested in only one specific HTS technology 
(namely, AlphaScreen) and do not cover the entire chemical 
space. Thus, these filters should be applied with care (Baell 
and Nissink, 2018). Stork et al. (2018, 2019) developed the Hit 
Dexter model to predict frequent-hitter, aggregator, PAINS, dark 
chemical matter (Wassermann et al., 2015b), and other potential 
nuisance compounds. The Hit Dexter model is based on a set 
of extensively tested compounds from PubChem represented 
by their 2D molecular fingerprints.  The  Badapple model (Yang 
et al., 2016) was developed to filter out promiscuous compounds 
based on a scaffold promiscuity analysis. Such predictive models 

and substructure filters are crucial for compounds triaging and 
data accuracy; however, the characteristics of the data under 
investigation and the aim of the screening project have to be taken 
into consideration when applying those filters. Promiscuous 
compounds, while giving rise to possible negative side effects 
due to their potential interactions with multiple targets, can 
still be of great interest because of their polypharmacology. In a 
similar manner, compounds interfering with an assay technology 
should not be discarded from a drug discovery process but should, 
however, be tested in a different technology based on dissimilar 
mechanisms. Sample impurity is another factor to consider 
regarding promiscuity. If the purity of each sample tested is known, 
it is easy to filter out everything that did not match the requested 
quality criterion. If this is not the case, one can use in-house data 
to detect promiscuous samples in the screening deck (Beck, 2012).

Other criterion to consider in HTS the druglikeness 
of a compound, which is determined by the compound’s 
physicochemical (PC) and toxicological properties. Various 
quality control pipelines created to filter out compounds employ 
straightforward filtering rules (Hsieh et al., 2015; Zhai et al., 
2016), while some other employ ML techniques such as deep-
learning (Liu et al., 2019) methods. In pharmaceutical companies 
and academic institutes, PC filters are tuned depending on the 
type of compounds found in the chemical libraries (Brenk et al., 
2008; Pearce et al., 2006; Cumming et al., 2013). PC properties-
based rules ensure that compounds have similar properties to 
other drugs based on historical data and have a good probability 
to be synthesizable and non-toxic. Furthermore, structural alerts 
have been created (Sushko et al., 2012) to flag potential toxic 
compounds in terms, for example, of mutagenicity (Tennant and 
Ashby, 1991) or skin sensitization (Barratt et al., 1994).

Very recently, a new consortium of pharmaceutical, 
technology, and academic partners has launched the 
“MELLODDY” (Machine Learning Ledger Orchestration for 
Drug Discovery) project (MELLODDY Consortium| Twitter; 
Pharma Companies Join Forces to Train AI for Drug Discovery 
Collectively). The project involves 17 partners from across 
Europe and receives funding from the EU Innovative Medicines 
Initiative (IMI) as a public–private partnership. MELLODDY 
aims to train chemogenomics models across multi-partner (10 
pharma companies) datasets while ensuring privacy preservation 
of both the data and the models by developing a platform using 
federated learning. It will be interesting to see their efforts 
regarding data standardization and generation of a large high-
quality data set and the results of such an approach.

MODELLING CHEMICAL REACTIONS 
FROM LARGE-SCALE SYNTHESIS DATA
It is of crucial importance in drug discovery to be able to predict 
the feasibility of chemical reactions (Engkvist et al., 2018). It ranges 
from predicting synthetic feasibility for compounds identified 
in virtual screening in early drug discovery as well as for hit 
expansion in the lead generation phase to late stage modifications 
during lead optimization and to predict possible synthetic routes 
for upscaling of the synthesis of clinical candidates (Figure 4). 

TABLE 2 | Performances comparison of traditional ML and DL in Drug Discovery.

Ref. Performance 
traditional ML

Performance 
deep-learning

(Koutsoukas et al., 
2017) (1)

RF: MCC = 0.89 DNN: MCC = 0.91

(Dahl et al., 2014) (2) RF: AUC = 0.78 MT NN: AUC = 0.82
(Lenselink et al., 2017) SVM: MCC = 0.50, 

BEDROC = 0.88
DNN_MC: MCC = 0.57, 
BEDROC = 0.92

RF: MCC = 0.56, 
BEDROC = 0.82

(Mayr et al., 2016) SVM: AUC = 0.71 ST: AUC = 0.72
MT: AUC = 0.75

(Feinberg et al., 2018) RF: Pearson = 0.783 GNN: Pearson = 0.822
(Segler and Waller, 
2017b)

LR: Acc = 0.86 
(reaction prediction)

NN: Acc = 0.92 (reaction 
prediction)

LR: Acc = 0.64 
(retrosynthesis)

NN: Acc = 0.78 
(retrosynthesis)

(Wu et al., 2018) (3) SVM: AUC = 0.822 GC: AUC = 0.829
(Xiong et al., 2019) (4) SVM: AUC = 0.792 Attentive FP: AUC = 0.832
(Yang et al., 2019) (5) RF: AUC = 0.619 FFN: AUC = 0.788
(Ma et al., 2015) (6) RF: R2 = 0.42 DNN: R2 = 0.49
(Ramsundar et al., 
2017) (7)

RF: R2 = 0.428 ST: R2 = 0.448

MT: R2 = 0.468

LR, ST, MT, GC, GNN, and FFN refer to Linear Regression, Single- and Multi-
Task, Graph Convolution, Graph, and Feedforward Neural Network, respectively. 
(1) Averaged performance on validation sets over 7 datasets. (2) Averaged 
performance on test sets over 19 datasets. (3) Performance on a test subset of the 
Tox21 dataset. (4) Performance on the HIV dataset. (5) Performance on the Tox21 
dataset. (6) Averaged performance over 15 datasets. (7) Model performance on a 
test set.
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Synthetic predictions have a long history dating back to rule-
based programs in the 1960s (Corey and Todd Wipke, 1969). 
Several aspects have made reaction informatics a field for active 
research during recent years. Besides established commercial 
products with reactions extracted from literature, reaction data 
have been extracted from electronic laboratory notebooks (ELNs) 
(Christ et al., 2012) and patents. Schneider et al. (2016) used text-
mining to extract 1.15 million unique whole reaction schemes, 
including reaction roles and yields, from pharmaceutical patents. 
The reactions were assigned to well-known reaction types such 
as Wittig olefination or Buchwald–Hartwig amination using an 
expert system. Also, large-scale reaction data can be generated 
from high-throughput experimentation. Schematically reaction 
informatics can be divided into two subfields, retrosynthetic 
analysis, where a molecule is analyzed and a set of reactions 
and building blocks are proposed to synthesize the molecule, 
and forward reaction prediction, where it is predicted if a set 
of building blocks will react or not and at which conditions a 
reaction will occur. In recent years, there has been a paradigm 
shift on how retrosynthesis routes can be predicted. While 
historically rule-based systems were the most popular method, 
more recently several studies using ML have shown superior 
results. One advantage of ML algorithms is that they are 
generalized methods and not dependent on rigid predefined 
rules for describing the exact reaction.

In the following, we will focus on recent examples of 
predicting how to synthesize molecules by mining large corpora 
of experimental synthesis data. For more general reviews, we 
refer to recent publications (Warr, 2014; Coley et al., 2018). 
Segler and Waller (2017b) used reaction fingerprint descriptors 
to classify reactions. Both hand-coded and automatically 
extracted reaction rules were used to classify reactions from 
literature. Three million reactions were classified with the hand-
coded rules, while almost 5 million reactions were classified with 
the automatically extracted reaction rules. Reaction classification 
models were built with artificial NNs (ANNs). ANNs were found 
to be superior in predicting reactions than a rule-based system. In 
another article, they showed that reaction graphs with reactions 
extracted from literature can be used to predict novel reactions 
(Segler and Waller, 2017a). A knowledge graph consisting of 14 
million molecules was generated, and 8 million reactions and 
probable novel reactions could be inferenced from. Studies were 
also published for predicting the reactivity of protecting groups 
(Lin et al., 2016); 142,000 catalytic hydrogenation reactions 
were extracted from literature. The reactions were described 
with condensed graphs of reaction fingerprints. The models 
showed high accuracy (90%) for predicting optimal conditions 
for deprotection of protecting groups. The models were also used 
to identify contradictions in reactivity charts created manually 
by experts. Coley et al. (2017) developed predictive ML models 
using 15,000 reactions extracted from US patents. They created 
a set of candidate reactions based on enumeration of a set of 
reactants and reaction templates. In a second step, the candidate 
reactions were described by a set of reaction descriptors, and a 
NN model was trained to prioritize the candidate reactions. The 
model predicted the correct reaction in 72% of the cases, the 

correct reaction was found in 87% of the cases among the top 
three predicted reactions, and it was found to be among the top 
five predicted reactions in 91% of the cases. A recent example of 
predicting reaction conditions with a large data set was published 
by Gao et al. (2018). They developed a NN model to predict the 
chemical context [catalyst(s), solvent(s), reagent(s)] and the 
most suitable temperature for any particular organic reaction. 
Reactions were extracted from Reaxys and filtered according 
to various criteria, resulting in ~10 million example reactions. 
The models were trained on these reactions and were able to 
propose conditions where a close match to the recorded catalyst, 
solvent, and reagent was found within the top 10 predictions 
in 69.6% of the cases. Another noteworthy development in the 
reaction prediction field is the construction development of a 
retrosynthesis system using deep learning technologies. Segler 
et al. (2018b) reported such a system, in which the system 
reaction DNN models derived from literature reaction data were 
combined with Monte Carlo Tree Search (MCTS) to identify a set 
of reactions and building blocks that could be used to synthesize 
the desired molecule. While most studies have used a reaction 
template to describe the reaction, it has been shown recently 
that a template free seq-2-seq approach (i.e., directly translate 
product SMILES to the predicted reactants in reaction SMILES 
format) also can give promising results for synthesis prediction 
(Schwaller et al., 2018a; 2018b). An alternative way of predicting 
the synthetic pathway exploiting through learned policies has 
just been published (Schreck et al., 2019).

DATA DRIvEN DE NOVO MOLECULE 
DESIGN THROUGH GENERATIvE 
MODELS AND DATA AUGMENTATION
Even though industrial compound-bioactivity datasets have 
millions of data points, many assay results for specific compound 
series (typical for the lead optimization stage of a drug discovery 
project) have much less SAR data. However, these datasets 
can still be augmented and be further exploited with deep 
learning approaches, such as QSAR and generative modelling. 
Data augmentation is the process of adding noise or artificial 
perturbation to the samples in the dataset before training 
the model in order to make the final models more robust to 
overfitting (Arús-Pous et al., 2019b). Moreover, in some cases, 
data augmentation can give additional information to the model. 
A simple analogy can be found in building image classification 
models. For instance, a single image with a “dog” will still be 
recognizable even if it is rotated, cropped slightly, changed in 
terms of contrast or lightness, etc. Therefore, a single labelled 
image can be multiplied into multiple training set entries, thus 
expanding the dataset.

Similar approaches have also been used in areas relevant 
to pharmaceutical research such as predicting concentrations 
of chemical compounds from spectroscopy data (Bjerrum 
et al., 2017) and building QSAR models from chemical images 
(Goh et al., 2017). In molecular deep learning models, many 
architectures use the SMILES as molecular representation 

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 1303

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Deep-Learning Industrial Pharmaceutical ResearchDavid et al.

10

(Bjerrum, 2017), which is obtained by assigning a unique 
number to each atom in the molecule and then traversing the 
molecular graph using that order. Commonly, a canonical 
SMILES representation of each molecule is used, which is 
obtained by calculating a unique numbering for molecules 
(Weininger et al., 1989). This representation is served as a 
way of uniquely identifying molecules. Nevertheless, most 
molecules can have more than one SMILES representation 
obtained by only changing the numbering of the atoms, 
meaning that different SMILES start in different atoms of 

the molecule and traverse it in different ways (Figure 5). 
Randomized SMILES for the same compound can thus be used 
for data augmentation.

A great surge of interest in cheminformatics applications 
of deep learning has happened in recent years when NNs were 
used to generate molecules represented by SMILES strings 
(Olivecrona et al., 2017; Gómez-Bombarelli et al., 2018; Segler 
et al., 2018a). Recurrent NN (RNN) trained with a set of SMILES 
strings can generate molecules that are not present in the training 
set but that have similar properties as the training samples. These 

FIGURE 5 | Canonical (A) and randomized (B) SMILES representations of Aspirin. Numbers represent the atom numberings assigned by the canonicalization 
algorithm (A) or randomized (B). Green arrows indicate how the molecular graph is traversed. Both SMILES strings represent the same molecule but, as the atom 
numbering changes, the generated SMILES strings do too. Figure extracted with permission from Arús-Pous et al. (2019b).

FIGURE 6 | Sampling process of a pre-trained recurrent neural network. The generation process starts with a GO token, and at each step, the model computes a 
probability distribution of all possible characters. Then, the next character is sampled from it and fed back to predict the next character. The internal memory in the 
long short-term memory (LSTM) cells enables the predictions to take previous characters into account when generating the next character.
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deep learning-based generative models are entirely data driven 
and do not rely on any predefined reaction/transformation rules, 
in contrast to the traditional library enumeration methods for 
generating chemical structures (Schneider and Fechner, 2005). 
Molecules are generated character by character as SMILES 
strings by randomly sampling the probability distribution of the 
next character to sample (Figure 6). This process generates a very 
high ratio of valid SMILES, especially thanks to the use of Long 
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 
1997) or Gated Recurrent Unit (GRU) (Cho et al., 2014) cells 
that capture long-range relationships such as ring closures and 
branches. Additionally, pre-training on a large set of chemical 
structures [such as ChEMBL, ZINC (Sterling and Irwin, 2015), 
etc.] and the subsequent application of transfer learning to 
smaller datasets can be used to generate focused datasets with 
an enrichment of active compounds (Segler et al., 2018a). The 
pre-trained RNNs can also be used to directly optimize toward 
desirable properties (Olivecrona et al., 2017). This triggered the 
development of a plethora of novel architectures and techniques in 
the last years, such as Variational AutoEncoders (VAEs) (Kingma 
and Welling, 2013; Polykovskiy et al., 2018b; Zhavoronkov et al., 
2019), Differentiable Neural Computers (DNCs) (Putin et al., 
2018), Generative Adversarial Networks (GANs) (Guimaraes 
et al., 2017; Prykhodko et al., 2019), and Bayesian optimization 
method for structure optimization (Pyzer-Knapp, 2018). Besides 
the SMILES string based de novo structure generation methods, 
algorithms of generating molecules based on molecular graphs 
have also been proposed and, by using them, methods molecules 
can be directly generated step-by-step as molecular graphs (Jin 
et al., 2018; You et al., 2018; Elton et al., 2019; Xu et al., 2019).

Data augmentation techniques have also been applied in 
molecular generative models. For example, they have shown to 
improve the quality of the chemical space generated in VAEs 
(Bjerrum and Sattarov, 2018) and RNNs (Arús-Pous et al., 
2019b) in terms of performance of latent vector-based QSAR 
models (Bjerrum and Sattarov, 2018) and coverage of targeted 
chemical space (Arús-Pous et al., 2019b). However, there is no 
consensus on how to measure and compare the performances 
of generative models. Some approaches have been published, 
such as MOSES (Polykovskiy et al., 2018a) and Guacamol 
(Brown et al., 2019), but they are not able to fully characterize 
the complete chemical space generated. To solve this problem, an 
approach using the negative log-likelihood (NLL) of generated 
molecules was recently described (Arús-Pous et al., 2019a). 
It is able to characterize the models by their completeness, 
i.e., how many molecules from the target chemical space are 
sampled, uniformity, i.e., how uniform are those being sampled, 
and closedness, i.e., how many molecules outside of the target 
chemical space are being sampled. More specifically, it was found 
that models trained with 1 million molecules sampled randomly 
from GDB-13 (Blum and Reymond, 2009), an enumerated 
database containing 970 million drug-like compounds with up 
to 13 heavy atoms, are able to generate up to 68% of the entire 
database when the canonical SMILES representation is used for 
model training, while the coverage increases to 83%, when non-
canonical randomized SMILES are used. It indicates that data 
augmentation based on randomized SMILES generation has an 

impact on what models can learn. Moreover, models trained with 
randomized SMILES generate a much more uniform and closed 
chemical space than those trained with canonical SMILES.

Deep-learning-based generative model has been applied 
successfully for prospective design of new druglike molecules 
with desired activities (Merk et al., 2018). Compounds were 
generated using a recurrent NN trained on a large set of bioactive 
compounds. By transfer learning, this general model was fine-
tuned on recognizing retinoid X and peroxisome proliferator-
activated receptor agonists. The five top-ranking compounds 
were synthesized and investigated in cell-based assays. Four of 
these compounds showed a strong affinity toward the targets, 
with nanomolar to low-micromolar receptor modulatory 
activity. Generative modelling can also be applied to other 
chemical entities, such as peptides (Grisoni et al., 2018; Müller 
et al., 2018), but no method for data augmentation has been 
described up to now. A potential challenge might be that it is 
not possible to simply permute the amino acid sequence of 
peptides as it is done with the arbitrary atom order in SMILES 
strings, although it may be possible to integrate data from larger 
unlabelled datasets. PSI-BLAST similarity searching has been 
used to expand the prior dataset of known active compounds 
before generation and selection in iterative optimization 
rounds (Yoshida et al., 2018). This suggests that bioinformatics 
approaches area a viable way to find the natural variation for the 
amino acid substitutions and thus enable data set expansion. 
The drug-like chemical space is estimated to have at least 1024 
molecules (Bohacek et  al., 2010), and  it is not feasible to fully 
enumerate. Nevertheless, deep-learning-based generative 
models combined with data augmentation techniques have the 
potential to provide a way to sample large regions of the drug-like 
chemical space. In combination with synthesis routes prediction, 
this would deliver a tremendous boost for compound design in 
pharmaceutical research.

CONCLUSION
Over the past years, large amounts of heterogeneous data 
characterizing the biological action of small molecules have 
been accumulated in pharmaceutical R&D, stored in both 
proprietary and publicly available data bases. The origin of these 
data ranges from biochemical or cellular assays to experiments 
that investigate the impact of compounds on transcriptomics 
signatures and assays with imaging readouts. These fast-growing 
data have fuelled the application of data-savvy ML methods, 
and in particular deep learning, in order to detect patterns that 
allow to derive hypotheses for compound-mediated effects on 
biological (model) systems or to generate predictive models 
that can be employed at various stages during identification 
and optimization of new drug candidates. Together with deep-
learning-based approaches to sample the drug-like chemical 
space that—depending on the use case—can be applied with 
or without predictions of synthetic accessibility, a plethora of 
potential high-impact applications is emerging. It offers the 
opportunity to accelerate early drug discovery and to enable a 
much more comprehensive exploration of the chemical space 
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and the biological effects of its members than traditional wet lab 
and virtual screening approaches.
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