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ABSTRACT: In this paper, we propose a modeling framework for
pore-scale fluid flow and reactive transport based on a coupled
lattice Boltzmann model (LBM). We develop a modeling interface
to integrate the LBM modeling code parallel lattice Boltzmann
solver and the PHREEQC reaction solver using multiple flow and
reaction cell mapping schemes. The major advantage of the
proposed workflow is the high modeling flexibility obtained by
coupling the geochemical model with the LBM fluid flow model.
Consequently, the model is capable of executing one or more
complex reactions within desired cells while preserving the high
data communication efficiency between the two codes. Meanwhile,
the developed mapping mechanism enables the flow, diffusion, and
reactions in complex pore-scale geometries. We validate the
coupled code in a series of benchmark numerical experiments, including 2D single-phase Poiseuille flow and diffusion, 2D reactive
transport with calcite dissolution, as well as surface complexation reactions. The simulation results show good agreement with
analytical solutions, experimental data, and multiple other simulation codes. In addition, we design an AI-based optimization
workflow and implement it on the surface complexation model to enable increased capacity of the coupled modeling framework.
Compared to the manual tuning results proposed in the literature, our workflow demonstrates fast and reliable model optimization
results without incorporating pre-existing domain knowledge.

1. INTRODUCTION
Pore-scale numerical modeling for flow and reactive transport is
crucial to understand the underlying mechanisms of physical-
chemical interactions of numerous subsurface natural processes.
Advanced waterflooding enhanced oil recovery (EOR)1 and
CO2 injection and sequestration2 are two typical subsurface
reactive transport-associated scientific and engineering prob-
lems that involve complex physio-chemical processes. Mean-
while, they are by nature highly uncertain processes due to the
high complexity level of geological settings, which brings more
challenges to conducting high-resolution mechanistic modeling
studies compared to the reactive transport problems that happen
in an artificial structure or domain such as reaction beds or
combustion engine cylinders. Take advanced waterflooding or
low-salinity waterflooding EOR modeling as an example,
multiple underlying mechanisms are potentially working
together and affect the rock/mineral surface wettability, and
hence improve the recovery, but the actual underlying
mechanisms are not fully understood and still debatable.3−5

Meanwhile, the modeling approaches to simulate this process
have simplified the problems without incorporating all physio-
chemical processes in the pore-scale high-resolution fashion.6−9

To investigate the reactive transport and the relevant
multiphysics phenomenon associated with the abovementioned

scientific and engineering problems, a modeling framework
capable of handling high-resolution pore-scale single-/multi-
phase fluid flow with geochemical reactions and other known or
potential new physics is crucial for achieving the desired research
goals. The base of this type of modeling framework is the fluid
flow model, which preferably can handle complex flow channel
geometries, run in parallel CPUs/GPUs for performance, and
incorporate other physio-chemical models.

Besides the conventional computational fluid dynamics
(CFD) methods such as finite difference method, finite volume
method (FVM), and finite element method (FEM), lattice
Boltzmann method (LBM) is a unique modeling framework that
is constructed with particle collision and streaming in regular
lattice grids and solves macroscopic equations for the
mesoscopic fluid flow kinetics.10 LBM is proved to be a flexible
and practical framework for modeling pore-scale fluid flow and
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multiphysics behaviors.11−13 In addition to the single-phase fluid
flow model, multicomponent multiphase LBM models are
attributed to another major component of the LBM family as the
equivalent of other multiphase CFD methods, for instance, the
level set method,14 front-tracking method,15 and volume-of-fluid
method.16 The most popular multiphase LBM models used in
this community are the Shan−Chen model,11,17 the color-
gradient model,18 the free-energy model,19,20 and the He−
Chen−Zhang model.21

Regarding the pore-scale advection−diffusion and reactions,
the LBM framework is flexible to adapt the conventional
advection−diffusion equations and place the species concen-
tration in scalar fields coupled with a fluid flow lattice.22 Various
studies have focused on the LBM reactive transport modeling,
for example, LBM chemical transport,23−25 reactive transport
with mineral reactions,25 mineral dissolution and dissolution-
induced rock mechanical property changes,26,27 CO2 reactive
transport,28 reactions between immiscible fluids,29 and con-
vection and heat transfer-associated problems.30,31 More studies
for the LBM multicomponent reactive transport models can be
found in the review by Yoon et al.32

On the other hand, to enhance the flexibility and capabilities
of LBM models in solving complex fluid flow and reactive
transport problems, numerous studies have focused on coupling
other or external models to different applications. For instance,
the proposed applications include but are not limited to the
coupled models that incorporate FVM with LBM;33−35

multiscale coupling for heat, mass transfer, and reactions using
a general reconstruction operator;36 mass transport;37 mineral
dissolution and phase transition-associated multiphase reactive
transport;25,38−41 and hydrodynamic property evolution with
mineral dissolution.40,42

Among those external solvers, PHREEQC43 developed by
USGS and its variants IPhreeqc44 and PHREEQCRM45 have
been used extensively for reactive transport coupling due to their
strong capabilities for solving complex reactions.46 IPhreeqc
utilizes the Microsoft component object model (COM)
interface to communicate with the outside code. Numerous
studies have used IPhreeqc for reactive transport modeling,
including LBM-based models.47−56 However, the data commu-
nication efficiency is limited for large-scale simulations.
PHREEQCRM works as a C++ library at a lower level with a
significantly improved data exchange speed, which is suitable for
reactive transport coupling. There are a few notable applications
coupled with PHREEQCRM used in reactive transport
modeling.57−60

In recent years, with fast-paced progress in data analytics,
artificial intelligence (AI), and machine learning (ML), AI has
been extensively implemented in solving various scientific and
engineering problems. For subsurface pore-scale modeling
specifically, AI/ML models are used for different applications,
for example, microstructure synthesis and pore space
reconstruction using generative adversarial network-based
models,61−66 image segmentation for rock and flow,67−70

petrophysical property and other physical property estima-
tion,71−79 prediction of fluid flow,80 and effective reaction
rates.81 More applications of ML and geoscience-associated
studies can be found in the thorough review studies by
Tahmasebi et al.82 and Wang et al.83 According to their
comprehensive review and many other studies, advanced AI/
ML models have shown great capabilities in analyzing big data,
complex pattern recognition and extraction, and knowledge
discovery for physical science problems. AI/ML models are

known for building surrogate models for property estimation.
Meanwhile, the AI/ML models also demonstrate strong
capabilities in assisting optimization of the numerical models.

However, the existing literature in pore-scale reactive
transport usually suggests that, in the presence of multiple
physical-chemical processes in porous media, the current
models lack flexibility or extensibility to solve such complex
conditions. For instance, in the advanced waterflooding EOR
process, multiple reactions, including but not limited to
equilibrium, kinetic, and surface complexation (SCM) reactions,
happened simultaneously, which causes dynamic changing
fluid−fluid, fluid−solid interaction, and electrokinetics on the
rock surface. To comprehensively study and model such
complex processes, it is critical to develop an effective framework
to properly incorporate the aforementioned factors in the
modeling process. In addition, the developed model should be
able to scale up and go beyond the demonstration purposes in a
parallel computing scheme to solve real-world problems.
Furthermore, numerical fluid flow and reactive transport models
usually involve tedious and time-consuming parameter tuning,
which is computationally expensive. A good integrated model/
parameter optimization tool that does not require too much
human intervention would be greatly beneficial for obtaining
optimum model and model parameters.

In this work, to address the issues mentioned above, a coupled
modeling framework based on LBM fluid flow and advection−
diffusion models using the PALABOS package is proposed.84

The framework incorporates the geochemical reaction solver
PHREEQC85 to handle complex reactions within the porous
medium. To gain access to the lower level of the reaction solver
for better computational efficiency, the PHREEQC variant
PHREEQCRM45 is selected in the coupling model, and it works
as a C++ library that can be compiled together with the LBM
flow solver. A coupling interface is developed to connect the two
solvers by adding other capabilities, for example, the cell
mapping system that handles different physical-chemical
property fields within the flow domain. The framework enables
a flexible setup for various chemical reactions both in the
aqueous phase and on a solid surface and utilizes the unique
capabilities of the two codes as much as possible. In addition, an
AI-assisted automatic model optimization workflow is devel-
oped that integrates and works with the coupled numerical
model. The optimization method is applied to the SCM
adjustment for investigating low salinity waterflooding mecha-
nisms. In this paper, Section 2 (Methodologies) includes the
detailed model descriptions and coupling mechanisms and the
AI-assisted optimization workflow. Four model validation cases
in Section 3 (Model Validation and Results) are presented,
including simple fluid flow, diffusion validation against the
analytical solutions, reactive transport benchmark with calcite
dissolution, and AI-optimized SCM results. Section 4 provides
conclusions of the work and future research and development
directions.

2. METHODOLOGY
2.1. Overview of the Proposed Modeling Workflow. To

investigate the pore-scale fluid flow and physiochemical
processes effectively and comprehensively, a numerical model-
ing framework that couples fluid flow models (LBM-based) and
geochemical reaction solvers (PHREEQCRM) is proposed in
this study. A tailor-made coupling interface connects the two
major components for data communications.
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The major development goal of the coupled modeling
framework is to efficiently and effectively study various pore-
scale reactive transport-associated scientific problems, while
preserving the flexibility of the future extension in terms of
multiphase flow and new add-on physical or chemical models.
Figure 1 illustrates the overall workflow of the modeling
framework.

2.2. LBM Fluid Flow Model. 2.2.1. LBM Fundamentals.
LBM represents a generic CFD modeling framework. LBM is
not only capable of modeling single-phase and multiphase fluid
flow but also of building complex flow-based multiphysics
systems such as the advection−diffusion−reaction system and
complex fluid−fluid and fluid−solid interaction scenarios with
high parallel computational efficiency.10

One of the most widely used LBM models was proposed by
Bhatnagar, Gross, and Krook (BGK)86 with the approximation
of the non-linear collisional dynamics by introducing the
collision operator as

f f1
( )k i i

EQ=
(1)

where τ stands for the relaxation time used to reach the local
equilibrium and f iEQ represents the particle distribution function
at equilibrium. By assuming the existence of a local attractor and
considering its impact on the collision process, the BGK model
linearizes the collision term to reach local equilibrium using a
fixed relaxation time and fluid viscosity. The BGK model utilizes
single relaxation time τ in the evolution function (eq 9). Future
research and model development will include the two-relaxation
time or multi-relaxation time models for improved model
stability purpose.

Fluid flow macroscopic quantities are calculated in the BGK
model based on the instantaneous status of particle distribution
function within a specific grid block. For example, in a D2Q9
model (2D and 9 velocities), the lattice density ρLB(x,t) is
obtained by summing the particle distribution function on all
points within the given grid block

x xt f t( , ) ( , )
i

iLB
0

8

=
= (2)

where f i(x,t) represents the particle distribution function for
velocity i. Meanwhile, the lattice pressure PLB is recovered by

P x t C x t( , ) ( , )LB s
2

LB= (3)

where Cs is a constant value for the lattice speed of sound,87

which varies for different models. For instance, in the D2Q9
model, as mentioned, C 1/ 3s = , and the lattice velocity vector
uLB(x,t) is obtained by

u x
x

x et
t

f t( , )
1
( , )

( , ) i
i

iLB
LB 0

8

=
= (4)

where ei represents the relative locations of the points within the
specific grid block pointing to the adjacent grids, whose values
are 0, 1, or −1; i is the index for the points within the grid block
for the given model; x stands for the location of the grid block in
the 2D or 3D simulation domain; and t describes the time step in
the simulation for time-dependent particle distribution function
evolution.

The particle distribution function for the equilibrium status
f ieq is given based on the two local macroscopic lattice properties:
lattice velocity u(x,t) and lattice density ρLB(x,t). To ensure the
mass and momentum conservation during the collision and
streaming process, specific equations and weights ωi are required
for different models.88,89 In the D2Q9 model, the equilibrium
distribution functions are written as
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2 2

= + ·

+ [ · ]
(6)

where ωi represents a series of weights of a given lattice model to
maintain the isotropy of the fourth-order tensor of velocities and
the Galilean invariance.88 The weight distribution of the points
within a single lattice grid for three widely used lattice models is
described in Table 1.

Figure 1. Schematic plot of the modeling framework. The framework has six major components, including initialization of the domain, fluid, and
reactants based on both solvers; advection−diffusion process handled by PALABOS; coupling interface that connects the two solvers; chemical
reactions handled by PHREEQCRM; electrical property calculations using PHREEQCRM; and model evaluations and visualizations. The simulation
integrates all components dynamically in a loop shown in the figure.
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Take the D2Q9 model used in this work as an example; ω0 =
4/9 in eq 5 describes the equilibrium function for the center
point within the grid block, where the rest of the 8 points are
given by eq 6 with ωi = 1/36 or 1/9 depending on the
geometrical position of the point with respect to the grid block.

Figure 2 demonstrates the lattice arrangement and velocity
vectors for a D2Q9 model. The center point is labeled as 0, and

indexes 1, 2, 3, and 4 indicate the velocity directions to the center
of four sides, where 5, 6, 7, and 8 point to the four corners of the
lattice grid.

The ei is determined by
l
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Equation 7 is converted to the following form
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The overall BGK LBM model is given by the following
evolution equation

x e x x

x u x

f t f t f t

f t t

( , 1) ( , ) ( , )

( , ), ( , )

ii i i

i LB
eq

LB

+ + = [

[ ]] (9)

where Ωτ is the relaxation frequency defined by Ωτ = 1/τ; the
relaxation time τ indicates the time used for the system to reach
equilibrium during each streaming-collision cycle, which is
associated with the lattice kinematic viscosity νLB

88

C( 1/2)LB s
2= (10)

A typical iteration cycle of an LBM BGK model starts with the
initialization of the lattice velocity and lattice density to an
equilibrium state based on the initial condition. Furthermore,
the macroscopic quantities (e.g., lattice pressure, density,
velocity) are obtained for the initial equilibrium state using
eqs 2−4. Meanwhile, the calculated quantities for the current
time step are used for computing the equilibrium function f ieq

based on eqs 5 and 6 (for the D2Q9 model in this case). Next,
the collision and streaming processes based on the evolution eq
9 are executed. Specifically, the local particle distribution
function f i(x,t) is altered by the current equilibrium function f ieq

within the relaxation time τ described in the evolution function.
Followed by the collision step, the streaming step simply
transfers the updated distribution functions to adjacent nodes,
and a full iteration is completed. Boundary treatments are
executed after the full cycle if applicable.

The general steps of the BGK LBM model can be described in
Figure 3.
2.2.2. LBM Advection−Diffusion Model. A series of

advection−diffusion types of problems can be formed within
the LBM modeling framework, for instance, chemical trans-
port,24,25 heat transfer,30,91 multicomponent reactive transport
in porous media,25 and reactive transport associated solid
dissolution modeling.92 Some of the studies coupled the LBM
flow model with a third-party reaction solver to model the
complex pore-scale reactive transport scenarios.50,51,93−96 More

Table 1. Weights ωi for Lattice Models D1Q3, D2Q9, and
D3Q19

Model center horizontal/vertical diagonal

D1Q3 2/3 1/6 0
D2Q9 4/9 1/9 1/36
D3Q19 1/3 1/18 1/36

Figure 2. Lattice arrangement and velocity vectors for the D2Q9
model.

Figure 3. Schematic plot for the evolution of the BGK LBM model within a single time step. The orange box demonstrates the optional step, whereas
the blue box indicates the necessary step during the evolution, modified from ref 90.
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related studies on LBM reactive transport-associated applica-
tions can be found in review papers.46,97

A typical advection−diffusion formulation is shown below

u
C
t

C D C q( ) ( )+ · = · +
(11)

where C represents a scalar field for quantities that can be
transported by the flow while diffuse based on the concentration
or temperature gradient, u stands for the flow or advection
velocity vector, D is the diffusion coefficient, and q is an optional
source term which can be used to represent the locally destroyed
or produced chemical species (if C is for chemical concentration
field) or represents the consumption or production of heat (if C
is the temperature field). These behaviors can be attributed to
the mechanisms such as chemical reactions. In terms of the
diffusion process, the associated LBM formulation can be
written as the following evolution function

f x c t t t f x t x t

Q x t

( , ) ( , ) ( , )

( , )
i i i i

i

AD AD+ + =

+ (12)

The Qi(x,t) represents the same meaning as the source term q
in eq 11 in a “discretized” form with respective to lattice space
and time. For example, if we have an additional reaction solver to
“produce” or “destroy” chemical species in each lattice grid at
each lattice time step, this would be added in the “Q” source
term of the LBM evolution equations to incorporate the
advection−diffusion process.

The relaxation frequency is calculated as

x t f x t f x t( , )
1

( , ) ( , )i i i
f AD

AD AD
eq= [ ]

(13)

The concentration or temperature term C is recovered by the
equation below similar to the lattice density ρ in the BGK LBM
flow model

C f
i

iAD=
(14)

Meanwhile, the diffusion coefficient D is obtained by the
following equation in light of the lattice kinematic viscosity (ν)
in the BGK LBM flow model

i
k
jjj y

{
zzzD C

t
2s

2
f AD=

(15)

The associated lattice equilibrium distribution function is
written as
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(16)

The advection and diffusion coupling can be achieved by
explicitly linking the concentration or temperature field C with
another fluid flow lattice with a unified solving time step.
2.2.3. PALABOS LBM Solver. LBM is chosen as the fluid-

solving model due to its advantages, including but not limited to
parallel, coupling, and complex boundary treating capabilities.
The PALABOS (parallel lattice Boltzmann solver) package is
selected as the base of the modeling framework for the fluid flow
component.

PALABOS98 is an open-source LBM-based fluid flow solver
built with the C++ programming language, developed and
maintained by the University of Geneva. It is capable of solving

single/multiple-phase fluid flow and convection−diffusion type
problems in open or closed geometry. It also features parallel
computing capabilities by utilizing a few to thousands of CPUs
to speed up the simulations. Meanwhile, PALABOS provides
flexible application programming interfaces (APIs) to extend the
existing capabilities, such as modeling fluid−solid interactions
by coupling a large-scale atomic/molecular massively parallel
simulator,99 or simulating blood cell behaviors by coupling
structural solver npFEM.100,101

Regarding the extensive APIs, PALABOS supports conven-
ient non-local operations by “data processors” in addition to in-
place LBM particle collision and streaming operations. Data
processors enable robust outside algorithm implementation on
either lattices or additional layers of data fields. Examples of this
type of implementation include advection−diffusion coupling,
multiphase flow, and solid−fluid interactions.

2.3. Geochemical Reaction Model. 2.3.1. Geochemical
Reaction Solver. Similar to the selection of the fluid flow solver,
the widely used open-source geochemical reaction solver
PHREEQC (pH-Redox-EQuilibrium)102 developed and main-
tained by the United States Geological Survey (USGS) is
selected in this work as the geochemical solver. PHREEQC is a
scripting input-based reaction solver written in C and C++
languages for equilibrium, kinetic, ion-exchange, surface
complexation reactions, solid solutions, and 1D reactive-
transport solving capabilities.

In addition to the original version of PHREEQC, which is
equipped with a graphical user interface, other variants are
developed to be able to couple with thirty-party codes. For
example, IPhreeqc44 utilizes the Microsoft COM interface for
communicating with outside models, which is widely used in
modeling reactive transport.47,51,54,55 Another variant
PHREEQCRM45 is used in this study, enabling most of the
low-level APIs to be exposed to developers for deep code
integrations while preserving a flexible scripting input system.
Meanwhile, the reactions can be solved in parallel by utilizing
mature interfaces such as OpenMP and MPI schemes. The
implementation of PHREEQCRM library includes FEFLOW,59

USGS PHAST,57,58 and modeling ionic transport.60

2.3.2. PHREEQCRM Geochemical Reaction Models. One of
the appealing features of PHREEQCRM is the “batch reactor”
functionalities, which allow one or multiple geochemical
reactions to be calculated within a single grid block at a time.
Also, it is possible to enable different types of reactions flexibly
by using their scripting input system. The available reaction
types (keywords) include: (1) solutions, (2) Equilibrium_-
Phases, (3) exchange, (4) surface, (5) Gas_Phase, (6)
Solid_Solutions, and (7) kinetics. Before executing different
reactions, PHREEQC takes user-defined reactions and initi-
alizes the “batch reactor” to equilibrium with the initial chemical
components.45 In this study, three reaction types were
considered: solutions, kinetics, and surface for aqueous phase
equilibrium reaction, kinetic reactions, and surface complex-
ation reactions (SCM) on the solid surface.

A discretized 2D/3D simulation domain contains thousands
or millions of grid blocks that are considered parallel batch
reactors in PHREEQCRM. They are independent of one
another. The transport of chemical species is executed by a third-
party flow model (PALABOS LBM model in this study) and
moves in or out of species within a reaction cell. PHREEQCRM
solves the equilibrium reactions and returns the updated species
concentrations back to the flow model.102
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2.4. Model Coupling Interface. A coupling interface is
developed to connect the LBM flow solver PALABOS and the
geochemical reaction solver PHREEQCRM in a dynamic
fashion to solve pore-scale reactive transport problems. Both
of the solvers are written in the C++ programming language,
with APIs exposed to users to implement new functionalities, so
the target of this task is to build an interface that is easy to use
while maintaining high communication efficiency.
2.4.1. Data Pre-/Post-Processing and Script Input. The data

preprocessing includes a series of functions for preparing the
simulation data for fluid flow or chemical reaction domains. For
instance, one of the functions is used to process the micro-CT
scanned images to the simulation model readable ASCII/binary
format data structure. Other functions are used for simulation
parameters’ determination based on the model constraints. Also,
a unified XML format-based script reading system is developed
to preprocess the user inputs. The user input script includes
various parameters for PALABOS and PHREEQCRM as well as
other auxiliary features. Meanwhile, the code loads the “.pqi”
PHREEQC input script with detailed chemical reaction
definitions at the model initialization stage. The data post-
processing includes various help functions to execute the main
simulations, result analyses, and visualizations.
2.4.2. Model Initialization. The model initialization stage

includes two steps: (1) simulation domain and reaction-type
assignment; (2) initial equilibrium of the flow and reaction
models. In the first step, the coupled model establishes the
simulation domain from loaded porous media geometry
information and creates cells mappings from the initial fluid−
solid distribution. In addition to setting up the inlet/outlet flow
and chemical flux boundary conditions, the “Bounce-Back” or
“No-Flow” conditions are assigned within the “solid” grid blocks
in LBM flow and diffusion lattices. Furthermore, the associated
“solid” cells in PHREEQCRM are treated as “inactive” for
geochemical reactions.

In the second step, the PHREEQCRM executes the initial sets
of reaction calculations based on the user-defined equations in
those reaction “active” cells, then obtains one or more scalar
fields with the initial species concentration. It is worth noting
that only the kinetic and surface complexation reactions on a
type of cells called “solid interface cells” (see more details in
Section 2.4.3, Cell Mapping Model) are enabled, where no flow
exists but diffusion is enabled for mass transfer between the solid
surface and outside aqueous phase cells.

On the other hand, the model initializes the fluid flow lattice
from the initial and flow boundary conditions and obtains the
initial velocity distribution. The initial velocity distribution fields
were coupled with one or multiple concentration fields from
PHREEQCRM, and the main simulation is ready to launch.
2.4.3. Cell Mapping Model. A unified cell mapping model

was proposed to handle the fluid−fluid and fluid−solid
interactions and geochemical reactions within different cell
types. A dynamic mapping system is built on top of the porous
media geometry, which initializes before the main simulation.
The system includes four cell types:

(1) Fluid cells: cells represent the void space in the porous
media

(2) Fluid interface cells: cells belong to “fluid cells” and are
positioned at the outer surface layer cells of the “fluid
cells”

(3) Solid cells: cells without any fluid flow and reaction
enabled, defined from the initial input geometry

(4) Solid interface cells: cells belong to and occupy the outer
surface layer of the “solid cells”

The fluid cells host the LBM advection−diffusion and the
PHREEQC equilibrium reactions. No flow or reactions happen
within the solid cells. However, the equilibrium, kinetics, and
surface complexation reactions on the outer layer (solid surface
cells) are enabled. Meanwhile, the solid dissolution and
precipitation processes are implemented within solid interface
cells. The solid interface layer is still considered as “solid” due to
the disabled fluid flow, but the diffusion is enabled for
information exchange between them and aqueous cells since
the solid might be partially dissolved. Another type of cells called
fluid interface cells are also defined to handle future potential
applications when complex fluid−fluid interactions are involved
and in cases where the pore-scale geometry changes due to
mineral precipitations.

Table 2 summarizes the advection−diffusion and reaction
availability within the proposed four cell types.

2.4.4. PALABOS Data Processor. PALABOS has a flexible
and powerful built-in data processor function, utilizing the C++
template programming features. The data processor allows the
user to create flexible operations between lattices, scalar fields,
and tensor fields in parallel. This function provides the
foundation for coupling other models within PALABOS or
from the third-party code. Various customized data processors
are developed to couple the chemical concentration fields with
the fluid flow lattice. In this work, a cross-lattice data processor is
built to connect the fluid flow velocity field lattice and multiple
advection−diffusion field lattices. Hence, in each simulation
time step, the displacements caused by fluid flow are imposed on
the concentration fields for all chemical species in the aqueous
phase.
2.4.5. PHREEQCRM Basic Function Feature. PHREEQCRM

shares a majority of the functionalities and features with the
standalone version of PHREEQC, including a basic function
input interpreter. Under specific formatting standards, the
interpreter loads the user-defined input script (.pqi file). In
addition to the pre-defined keywords followed by different
reaction equations, basic mathematic operations and arithmetic
functions can be defined in the script for a single reaction cell in
PHREEQCRM. Furthermore, the defined operations are
optimized in parallel similar to the reaction solver. Thus,
customized analytical or numerical analysis on concentration

Table 2. Compatibility of the Physics Processes and the Four
Mapping Cellsa

fluid
cells

fluid interface
cells

solid
cells

solid interface
cells

fluid flow yes yes no no
diffusion yes yes no yes
equilibrium

reaction
yes yes no yes

kinetic reaction no no no yes
dissolution no no no yes
precipitation no yes no yes
surface

complexation
no no no yes

aThe solid cells are inactive, whereas fluid cells only host advection−
diffusion−reaction in the aqueous phase, and the interface cells are
located at the boundary of the solid−fluid interfaces, hosting the
fluid−solid interaction-associated processes except for the fluid flow.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c07643
ACS Omega 2023, 8, 13649−13669

13654

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c07643?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


fields can be done efficiently without spending a significant
amount of data communication overhead due to data transfer.
For instance, in this work, the calculation of the zeta potential
(ζ) is achieved using a PHREEQCRM basic function executed
after the general internal geochemical reactions are solved
during each iteration. ζ is obtained by ref 103

e ds= (17)

where ds is the distance between the slipping plane and the stern
layer in the electrical double layer model, ψ stands for the surface
potential, and κ represents the inverse of the Debye length which
is obtained by

k T
N e I2

1 r 0 b

A
2=

(18)

where NA is the Avogadro’s number; e is the charge of an
electron; I represents the ionic strength; ϵr and ϵ0 are the
temperature-dependent relative permittivity of the solution and
the vacuum permittivity (8.8541878128−12 F m−1), respectively;
kb = 1.38064852−23 J K−1 is the Boltzmann constant; andT is the
temperature in Kelvin.

2.5. AI-Assisted SCM Model Optimizations. The SCM
describes solute adsorption from the aqueous phase to the
mineral surface.104 It is also considered one of the most
explainable models for the fluid−solid interactions between the
crude−oil−brine−rock (COBR) interfaces during advanced
waterflooding EOR processes. One of the challenges in building
the SCM models for COBR investigations is the adjustment of
the SCM reaction constants (log K) based on the experimental
measured zeta potentials (ζ). To validate the SCM model
integration for the coupling code, an SCM model based on the
experimental data by Tetteh et al.105,106 is developed and
optimized for the brine/calcite interface. Instead of estimating
and calibrating the ζ within a bulk fluid solution, a more realistic
2D simulation domain is created with a centered spherical
calcite grain surrounded by solutions with various salinities.
Then, the PALABOS−PHREEQCRM coupled solver is used to
obtain the surface properties such as ζ, surface potentials, and
Debye length. The simulated ζ over the surface of the calcite
grain is averaged and used as the target to compare with the
experimentally measured ones and re-adjust the reaction
constants if they do not match. Since the directions for adjusting
the sets of reaction constants are unknown, and each one of the
numerical simulations takes time, an optimization framework is
developed to assist the parameter adjustment tasks. The
framework connects the geochemically coupled PALABOS−
PHREEQCRM simulator with a multi-layer perceptron (MLP)

neural network (NN). A series of pre-simulated model
parameters with the calculated ζ are prepared as the pre-train
data for NN. The NN and simulator communicate with each
other interactively to update the log K and match the target ζ as
much as possible. The conventional mean squared error (MSE)
loss function and the stochastic gradient descent (SGD)
optimizer are used during the interactive training and
optimization process.

Figure 4 depicts the overall workflow of the proposed
optimization framework.

3. MODEL VALIDATION AND RESULTS
In this section, the model setup and validation results for the
proposed framework are presented. The following model
validation experiments are included: (1) an LBM single-phase
fluid flow in a 2D channel used to verify basic fluid flow; (2) an
LBM diffusion in a 2D channel experiment to verify basic Fick’s
diffusion; (3) a reactive transport in a 2D channel experiment
with a dissolving circular-shaped calcite grain (this case is used
to verify the reactive transport coupling and surface reactions/
calcite dissolution kinetics); and (4) a static SCM model in a 2D
domain with artificial neural network (ANN) optimization (this
case is used to verify the SCM modeling capabilities integrated
in the framework) as well as the ANN optimization feature.

3.1. LBM Single-Phase Fluid Flow in a 2D Channel. The
first validation experiment designed is a 2D Poiseuille flow
scenario, as shown in Figure 5. A 2D rectangular-shaped

simulation domain is created with a 300 × 100 lattice resolution,
which represents a real-world physical dimension of 6 cm × 2 cm
rectangle. An artificial pressure gradient (2 × 10−8 [Pa]) is
applied across the channel with an inlet on the left and an outlet
on the right. The no-flow boundary conditions are imposed on
the top and bottom walls. Water is assumed as the fluid used in
this experiment at a standard temperature of 25 °C, and it has a
density of 997 kg/m3[ ], viscosity of 8.891 × 10−4 [Pa·s], and
kinematic viscosity of 8.917 10 m /s7 2× [ ]. The fluid flow is

Figure 4. Illustration of the workflow for NN-assisted SCM model parameter optimization process.

Figure 5. Model setup for the LBM single-phase fluid flow in a 2D
channel.
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assumed to be a steady-state laminar flow, and the viscous
dissipation and gravity effects are neglected.

To verify the solutions, the analytical solutions are derived
based on the mass and momentum conservation equations

1 u
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V 0· = + =
(19)
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After simplifying the momentum equation with the
integration of boundary conditions, the below equation is
obtained for the velocity profile u(y)
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where y is the coordinate across the width of the channel, H is
the width of the channel, μ is the fluid viscosity, and dp/dx
represents the assigned pressure gradient along the length of the
channel. The average velocity is computed as

u
H p

x
(avg)

3
d
d

2
=

(22)

From eq 22, the maximum velocity calculated at the center is
1.87436 × 10−8 [m/s] and the average velocity is 1.24970 × 10−8

[m/s]. The same physical properties are applied and converted
to lattice units, and the LBM simulation is conducted. The
pressure gradient is represented by the lattice density gradient
map shown in Figure 6.

The 2D velocity profile obtained from LBM simulation after
the steady state is reached, as shown in Figure 7.

The 2D velocity distribution is evaluated from the LBM
simulation, and the computed maximum (1.88450 × 10−8 [m/
s]) and average 1.24371 × 10−8 [m/s] velocities after unit
conversion agree with the analytical solutions with minor errors
(0.48 and 0.54%, respectively). Furthermore, additional 10
locations across the width of the channel from the LBM
simulated velocity profile are extracted, and they show good
agreement with the analytical solutions, as shown in Figure 8.

3.2. LBM Diffusion in a 2D Channel. A numerical
experiment is designed to verify the capability of the LBM
model in solving diffusion problems. The same simulation
domain used in section 3.1 with the same resolution with some
modifications (Figure 9) is re-used in this experiment. Instead of

creating a fluid flow inlet from the left end, a single chemical
species with a constant concentration c0 = 1.0 is imposed. The
right-hand side of the channel is assumed to be infinitely long
(cinf = 0), and the boundary conditions and boundary effects are
not considered for top and bottom walls.

The following assumptions are made in our model setup: (1)
there is no boundary effects such as surface adsorption to
influence the diffusion; (2) the process is considered isothermal
such that the rate of diffusion is not affected by the temperature;
(3) the process is considered isotropic diffusion, which is the
same in every direction and is characterized by a single diffusion
coefficient D; and (4) the flow is one-dimensional Fick’s
diffusion with a constant diffusion coefficient D = 10 × 10−6 [m/
s]. The analytical solution of the concentration profiles is solved
from Fick’s second law

Figure 6. Lattice density map generated from the given pressure
gradient.

Figure 7. Lattice velocity distribution induced by the pressure gradient
of the fluid flow channel.

Figure 8. LBM simulated velocities (red dots) against the analytical
solutions (blue curve).

Figure 9.Model setup for the LBM diffusion validation in a 2D channel.
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The corresponding analytical solutions for the semi-infinite
channel with a constant species concentration on one side is
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where co is the constant concentration (co = 1) on the left
terminal, D represents the diffusion coefficient, t is the time, x is
the location from the left terminal, erfc stands for the
complementary error function, and c(x,t) describes the
concentration of the distance x from the left terminal at time
t. 7 time points (t = 1, 20, 50, 100, 150, 200, 250 s) are assigned
as the testing time for the concentration profile comparison
evaluations.

A pure concentration field is created for single species in the
LBM model without implementing any fluid flow in the channel.
The lattice diffusivity is obtained from the physical diffusion
coefficient and the domain lattice time. Figure 10 illustrates the

concentration distribution at the initial stage (t = 1 s) from the
LBM simulation. The 1D concentration profile is extracted from
the center line across the domain as shown in Figure 10 at the
given time steps.

Figure 11 demonstrates the species concentration distribution
at the given time points and the evaluation of the concentration
profile at the center crossline at those time steps.

The comparison results are shown in Figure 12. Good
agreement is observed between the analytical solutions (curves)
and LBM simulated results (dots).

The errors are measured quantitively regarding three metrics:
mean absolute error (MAE), MSE, and coefficient of
determination (R2) which are defined in Appendix A. The
evaluation results are shown in Table 3. The LBM simulated
concentration profiles are in very good agreement with the
analytical solutions at all time points except at t = 1 s. This can be
attributed to the fluctuations at the beginning of the simulation,
and the error becomes significantly smaller as the time steps go
by.

3.3. Coupled Model for Advection−Diffusion−Reac-
tion Transport in a 2D Channel with Calcite Dissolution
Kinetics. The model validation results for single-phase fluid
flow and pure diffusion from Sections 3.1 and 3.2 create a solid
foundation for further reaction coupling. In this section, the
advection−diffusion−reaction capabilities of the proposed
framework are presented and verify the model performance by

using the benchmark problem proposed by Molins et al.107 This
reactive transport benchmark problem is designed to evaluate
the dynamic concentration fields in a 2D channel with a circular-
shaped calcite grain located at the center. The average reaction
rate is evaluated from the concentration differences between the
inlet and the outlet. The simulation domain (Figure 13) is a
rectangular-shaped 2D flow channel with a length of 0.1 cm and
a width of 0.05 cm. A representing lattice grid is created with a
resolution of 256 × 128. A circular-shaped calcite grain with a
diameter of 0.02 cm is placed at the center of the channel. A
constant velocity (0.12 cm/s) flow boundary condition is
imposed at the inlet (left terminal). Meanwhile, an outflow
condition is assigned to the outlet at the right terminal,
indicating that no pressure gradient exists, or any driving force/
resistance applied at the outlet. The top and bottom walls are
non-reactive and impermeable and have no-flow boundaries.

In the initial stage, the flow channel is assumed to be filled
with hydrochloric acid (HCl) with a concentration of 10−2

[mol/L], which results in a pH = 2.0. After the injection starts,
the solution with a concentration of HCl is pushed into the
channel continuously. Meanwhile, the irreversible heteroge-
neous reaction starts to dissolve the calcite based on the
stoichiometric equation

CaCO H Ca HCO3(s)
2

3+ ++ +
(25)

and the kinetic reaction rate factor (rf) for the calcite dissolution
is dependent on the H+ concentration

rf k cH H H= + + + (26)

where kH+ is the rate constant with units of mol cm s2 1[ · ], γH+ is
the activity of H+ with units of cm mol3 1[ · ], and the cH+ is the
concentration of H+ with units of mol cm 3[ · ] or mol L 1[ · ].

The detailed parameters of the benchmark problem are shown
in Table 4.

The evolution of the concentration profile is evaluated
according to the methods from Molins et al.107 with the
assumptions that several impact factors need to be considered:
(1) the velocity distribution influenced by the inlet flow rate and
the calcite grain; (2) the instantaneous equilibrium reactions in
the fluid phase; (3) the kinetic reaction rate on the calcite
surface; and (4) the multicomponent diffusion in the fluid phase
as well as in the diffusive boundary layer defined on the calcite
surface. In addition, the chemical reactions are assumed not to
influence the fluid flow. The average reaction rate (R) is
calculated as

R
Q c c

A
( )out in=

(27)

where ξ is the stoichiometric coefficient, A stands for the
reacting surface area of the calcite, cin represents the universal
inlet concentration from the boundary condition, and cout is
evaluated as the flux-weighted-average concentration across the
outlet boundary

uc c s Qd /out = · (28)

where Q is obtained from the integration across the outlet

uQ sd= · (29)

Figure 10. Cross section (dashed line) at the center (y = (1/2)*H) of
the 2D channel for concentration data extraction, where H is the width
of the channel along the y-axis.
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To calculate the reaction rate regarding the volumetric
properties, a height of 1 cm is attributed to the 2D simulation
domain for the benchmark problem.

Figure 14A demonstrates the steady-state velocity distribu-
tion from the LBM fluid flow lattice domain; the red color

represents relatively higher velocity located at the top and
bottom surface of the calcite grain.

Figure 14B shows the Ca2+ concentration distribution at the
same moment with respect to Figure 14A. The formation of the
Ca2+ concentration thin layer is observed around the grain as a
result of the calcite dissolution, and the teardrop-shaped overall
concentration pattern indicates the impacts of the flow velocity
and direction.

Similarly, Figure 15A,B illustrates the H+ concentration
evolution at the start of the simulation (t = 0.2 s) and after
reaching a steady state at around t = 1.5 s. The H+ concentration
distribution pattern demonstrates the H+ consumption during
the calcite dissolution processes, which matches the Ca2+

concentration distribution pattern shown in Figure 14B.

Figure 11. 2D concentration distribution from LBM simulation at t = 20, 50, 100, 150, 200, and 250 s.

Figure 12.Concentration profile comparison between LBM simulation
and analytical solutions at t = 1, 20, 50, 100, 150, 200, and 250 s.

Table 3. Errors between Analytical Solutions and LBM
Simulation Results in Terms of MAE, MSE, and R2 Metrics

MAE error MSE error R2 score

T = 1 s 0.0030 0.0003 0.9772
T = 20 s 0.0006 2.1829 × 10−6 0.9999
T = 50 s 0.0004 5.4259 × 10−7 0.9999
T = 100 s 0.0003 1.9075 × 10−7 0.9999
T = 150 s 0.0003 1.1620 × 10−7 0.9999
T = 200 s 0.0004 4.2959 × 10−7 0.9999
T = 250 s 0.0009 3.1512 × 10−6 0.9999
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The average effluent H+ concentration evolution at the right
terminal of the channel directly from the concentration field
from the LBM model is evaluated. Equation 27 is used to
estimate the average reaction rate, and the results are compared
according to Mollins et al.107 The results are shown in Figure 16
for the outlet average effluent H+ concentration evolution from
the beginning of the simulation until the steady state at 1.5 s. The
overall trend from PALABOS−PHREEQCRM agrees with the
other five codes despite the initial bump. The small bump is
caused by the equilibrium reaction results from the initialization
step before the fluid starts to flow during the PHREEQCRM
initialization stage. Specifically, we believe that the
PHREEQCRM generates slightly higher H+ concentrations
(about 1.4%) at the assigned temperature of 40 °C; even we
explicitly specified pH = 2.0. However, the effluent concen-
tration reaches the desired equilibrium when the calcite
dissolution kinetic reaction dominates the process, although
the initial condition for the vortex method is different (pH = 7.0)
compared to other methods, and the slightly different initial
conditions do not affect the later and final solutions.

Meanwhile, Figure 17 shows the average dissolution rate over
time for the PALABOS−PHREEQCRM framework and the
other five codes. The dissolution rate curve and the trend of the
proposed model demonstrate good agreement among the other
five codes. In addition, PALABOS−PHREEQCRM has a
slightly higher rate at the endpoint of this comparison with a

rate of 4.59 10 (mol cm s )8 2 1× · · ; however, it is comparable to
t h e o t h e r “ L a t t i c e − B o l t z m a n n ” a p p r o a c h
4.57 10 (mol cm s )8 2 1× · · described in the benchmark prob-
lem (Table 5). This may be due to the slightly increased surface
area attributed to the nature of the LBM-based methods that use
“staircase”-shaped pixels/voxels to replace smooth boundary
curves.

3.4. Static SCM Model and ANN Optimizations. In this
section, the model validation for the SCM model and associated
optimization using an ANN are presented. The SCM model is
built based on the experimental work from Tetteh et al.,105 to
investigate the electrokinetics on limestone surfaces when
various brine compositions and salinities are applied. The rock
sample is taken from Indiana limestone, which contains 99%
calcite,108 and the solid is assumed to be 100% calcite in the
modeling process for simplicity. Tetteh et al.109 synthesized the
brines based on the water compositions from the Lansing Kansas
City (LKC) group and then diluted the brine to create low
salinity and seawater samples. In addition, they synthesized five
single salt solutions to represent the low salinity brine with the
same ionic strength. Table 6 shows the detailed brine
composition.

The associated zeta potentials (ζ) are measured at the brine/
calcite interfaces at both 25 °C (atmospheric conditions) and 40
°C (LKC reservoir conditions).

Extensive investigations have been done to study the calcite
surface complexation reaction models and the reaction
constants.105,109−113 The proposed reactions and reaction
constants are summarized in Table 7. To keep consistency
with the experimental work by Tetteh et al.,105 the same calcite
surface site density (4.95 sites/nm2) and calcite-specific surface
area (1 m2/g) are deployed. Meanwhile, the PCOd2

= 10−3.4 atm
condition is used in the SCM model with calcite as equilibrated
phases.

To validate the SCM model built on top of the PALABOS−
PHREEQC framework, a 2D static model is designed instead of
a simpler batch reactor shown in Figure 18. Brines with various
compositions are filled in the closed system, and a pure calcite
grain is placed at the center. To simplify the process, the
equilibrium reactions are assumed to be instantaneous within
the aqueous phase. The surface cells of the calcite grain (the
“solid interface cells”) are set active to kinetic and calcite surface
complexation reactions.

Figure 13. 2D simulation configurations of this numerical experiment. The flow channel is filled with HCl solution, while it continuously flows through
the channel with a constant flow rate from the inlet (left) to outlet (right). The calcite grain is placed at the center of the domain interacting with the
solution. Upper and lower walls are impermeable and non-reactive boundaries. This figure is re-generated based on ref 107.

Table 4. Simulation Parameters for the Reactive Transport
Benchmark Problema

parameters symbol value units

fluid density ρ 1 g cm−3

kinematic viscosity ν 10−2 cm2 s−1

diffusion coefficient D 10−5 cm2 s−1

inlet velocity uin 0.12 cm s−1

width of the channel ω 0.05 cm

specific grain reactive area S R R2 ( )2 1= 200 cm−1

rate constant kH+ 10−4.05 mol cm−2 s−1

activity coefficient γH+ 1000 cm3 mol−1

inlet concentration (pH = 2) C 10−5 mol cm−3

Reynolds number Re = uin ω ν−1 0.6
Pećlet number Pe = uin ω D−1 600
aSimplified from ref 107.
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After the model initialization, PHREEQCRM calculates the
SCM model-related properties at the grain surface cells, such as
the surface charge, Debye length, and zeta potential (ζ). The
average surface ζ is calculated and compared to the
experimentally measured values. Furthermore, the SCM
reaction constants defined in the PHREEQCRM input script
file are adjusted to improve the matching. Instead of manual
tuning, an ANN is developed to optimize the reaction constants
automatically.

The ANN is built with a relatively simple MLP network for
this work on top of the TensorFlow 2 framework. The network
itself has three hidden layers with 50, 100, and 50 neurons,
respectively. “ReLU” activation functions are assigned to each
hidden layer, and a dropout layer with a dropout rate of 0.2 is
attached after each hidden layer to alleviate potential overfitting
issues. The weights of the layers are initialized with random
normal distribution before training. The adaptive moment and
learning rate estimation (Adam) optimizer and the standard

MSE are used during the network training. The pre-trained data
are shuffled within the data loader before being fed in the main
training loop with a batch size of 1024. The network inputs
contain 9 features including 8 simulated zeta potential values
from the coupled numerical model plus the temperature. The
outputs are 6 SCM reaction constants that we would like to
optimize such that the resulted zeta potentials can match the
experimental measurements. The input data are normalized
using “standardization” scaling which scales the inputs
separately by subtracting the mean and dividing by the standard
deviation, such that the data distribution will have a mean of 0
and a standard deviation of 1 for better fitting performance.

At the beginning of the optimization, parallel simulations are
performed on a wide array of parameter (six reaction constants)
combinations and generate the corresponding ζSIM values for
ANN pre-training. The data generated for pre-training
containing about 20,000−40,000 samples “warm up” the ANN
in the first few training epochs, which leads to a general desired

Figure 14. (A) Velocity distribution under the steady-state condition; (B) 2D Ca2+ concentration distribution in the steady state; the higher Ca2+

concentration region surrounding the grain indicates the stable dissolution of CaCO3 on the grain surface.
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direction to converge. Note that the ANN takes ζSIM as inputs
and predicts reaction constants logK. TheKi is used to represent
log K values for simplicity. Furthermore, the interactive
optimization is performed by (1) obtaining a set of Ki from
ANN predictions; (2) assigning the ANN predicted Ki to
PALABOS−PHREEQCRM and running coupled numerical
simulations for all 8 solution cases under given temperature
conditions; the resulting 8 ζSIM values are used to compare the
experimental measurements (ζEXP) to compute the loss
function; (3) representing the differences between ζSIM and
ζEXP by the MSE loss

n
MSE

1
( )

i

n

i i
1

EXP SIM
2=

= (30)

where n is the number of ANN predictions, 8 is used since there
are 8 Ki, iEXP is the experimentally measured zeta potential and

iSIM represents the numerical model simulated zeta potentials;
and (4) updating the ANN weights based on the MSE loss; (5)
using the updated ANN to predict a new set of Ki and enter the

Figure 15. (A) 2D H+ concentration distribution map; the color contour illustrates the beginning stage (t = 0.2 s) of the consumption of H+ due to
calcite dissolution kinetic reaction on the solid surface. (B) 2D H+ concentration distribution map in the steady state (t ≥ 1.5 s).

Figure 16. Averaged effluent H+ concentration evolution from this
study and the other five codes.107
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next iteration. The iteration is terminated until it converges
where the MSE loss stops decreasing and reaches a “steady-
state” condition.

Table 8 demonstrates the Ki obtained from the interactive
optimizations for both 25 and 40 °C conditions after
convergence.

Figure 19 shows the values of the MSE loss evolution during
the optimizations for brine/calcite interface SCM models at 25
and 40 °C. A steady decline is observed initially and further
converges after some oscillations.

Figure 19 demonstrates the examples of the convergence
processes of ζSIM for FWS and LSW calculated during the ANN
optimizations. A similar convergence pattern is observed with
the MSE loss decay curves, which indicates that the ANN
optimization framework is capable of minimizing the difference
between SCM predicted ζSCM and experimentally measured

ζEXP, with the reaction constants Ki adjusted automatically
(Figure 20).

The optimized Ki are used to calculate the final ζSIM and
compared to ζEXP as well as results from Tetteh et al.105 Figures
21 and 22 summarize the comparison for five single salt
solutions and FWS/SWS/LSW cases. The ANN optimized
results show good agreement with the tuned SCM model by
Tetteh et al.105 with a similar pattern. The predicted ζSIM values
are consistent with the experimental measurements for the five
single salt solutions except for CaCl2 and MgCl2, where slightly
reverse surface charges are obtained. This can be attributed to
the increased adsorption of Ca2+ and increases >CO3Ca+
concentration due to calcite dissolution on the rock surface.105 It
is noticeable from the chart that the ζSIM from ANN optimized
models are slightly closer to the ζEXP in most of the cases in
Figure 21, indicating better Ki selection from ANN.

Regarding the FWS, SWS, and LSW cases, all SCM models for
FWS and SWS are found to be over-estimated ζ and under-
estimated for LSW cases. Meanwhile, the ANN results show
slightly more overestimation, while less under-estimated ζ in
LSW cases. One possible explanation for the overestimation can
be attributed to to the predicting accuracy issues of using the
default PHREEQC thermodynamic database (phreeqc.dat)
which is prone to not working well in high salinity
scenarios.102,114

To quantitively evaluate the prediction performance, the MSE
loss and coefficient of determination (R2) are calculated for
three groups: five single salt solutions, FWS/SWS/LSW, and all
cases; the two evaluation metrics are defined in Appendix A. The
result of the comparison is shown in Table 9, and it shows that
the ANN generates better overall prediction accuracy with
smaller MSE loss. In the meantime, ANN predicts much less
error in the single salt solution cases. However, it underperforms
slightly in FWS/SWS/LSW cases compared to the SCM models
from Tetteh et al.105 It is worth noting that no additional weights
are added to the constructed loss function for each individual
case during the optimizations. Thus, the ANN tends to reduce
the overall error of the fitting process instead of focusing on a
single comparison.

The overall ANN-assisted interactive SCM model optimiza-
tions show promising performance without almost zero user
intervention. Even though the results from ANN might not be
the real global optimal (if one exists), it provides a user-friendly
approach to automate the model tuning process, which saves a
great amount of human work and time. It outperforms the
manually tuned model in the experiments. Additionally, in cases
where optimization is needed for more complex physical
models, and there is no prior knowledge that exists to guide
the manual tuning process, the proposed ANN-assisted

Figure 17.Averaged reaction/dissolution rate evolution from this study
and the other five codes.107

Table 5. Average Steady-State Dissolution Rate from This
Study Compared to Other Codes Described by Reference
107

code
surface area

(cm2)
grain volume

(cm3)
average rate

(mol cm−2 s−1)

theoretical 0.0628 3.14 × 10−4

this study 0.0628 3.14 × 10−4 4.59 × 10−8

OpenFOAM-DBS 0.0628 3.14 × 10−4 4.18 × 10−8

lattice−Boltzmann 0.0628 3.14 × 10−4 4.57 × 10−8

vortex 0.0628 3.14 × 10−4 4.27 × 10−8

Table 6. Brine Compositions Used in This Studya

brine Ca2+ Mg2+ Na+ K+ Cl− SO4
2− IS (mol/L) TDS, ppm

0.04-NaCl 0 0 920 0 1418 0 0.04 2338
0.04-KCl 0 0 0 1564 1418 0 0.04 2982
0.04-CaCl2 534 0 0 0 945 0 0.04 1480
0.04-MgCl2 0 324 0 0 945 0 0.04 1269
0.04-Na2SO4 0 0 613 0 0 1281 0.04 1894
FWS 11,000 2800 48,000 500 101,913 260 3.27 164,473
SWS 2200 560 9600 100 20,383 52 0.65 32,895
LSW 134 34 585 6 1243 3 0.04 2006

aThe concentrations are in units of ppm prepared by Tetteh et al.109 FWS: formation water; SWS: seawater; LSW: low salinity water.
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optimization framework can offer significant advantages over the
manual tuning method in an automatic fashion.

4. CONCLUSIONS, DISCUSSION, AND FUTURE WORK
In this paper, a numerical modeling framework is proposed that
integrates LBM-based fluid flow and advection−diffusion
models with geochemical reaction models to study pore-scale
physiochemical processes. The framework and the demon-
strated initial stage of numerical validations paved the way for
modeling complex and realistic subsurface scientific and
engineering problems such as advanced waterflooding and
CO2 sequestration. Meanwhile, the framework is flexible and can
be broadly applied in different pore-scale reactive transport
simulations. In this work, PHREEQC is used as the geochemical
reaction solver due to its capabilities of solving multiple reaction
types as well as being able to couple third-party codes for
multiphysics modeling. One of the variants of PHREEQC called
PHREEQCRM is selected for the model building since it
exposes low-level API for coupling purposes and works as a C++
library. Meanwhile, by using PHREEQCRM, much faster
reaction solving and data communication between the two
packages are obtained. In addition, a cell-mapping mechanism is
developed within the framework to handle different reaction
types at various cells, which allows the implementation of
complex reactions such as SCM models on a solid surface. To
validate the integrated modeling framework, a series of
numerical experiments are designed to demonstrate the
capabilities of this framework, ranging from simple 2D channel
fluid flow and 2D diffusion to a 2D reactive transport benchmark
problem. Furthermore, SCMs are added to the tests and
validated against the SCM models with experimental measure-
ments proposed in the literature. Meanwhile, a workflow using
ANN to automatically assist the SCM model optimization is
proposed. It successfully improves the SCM model tuning while

Table 7. Surface Complexation Reaction Constants for the Brine/Calcite Interface Proposed in the Literature

reactions (brine/calcite interface)
Pokrovsky et al.

(1999)
Wolters et al.

(2008)
Hiorth et al.

(2010)
Brady et al.

(2012)
Brady et al.

(2016)
Tetteh et al.

(2020)

>CaOH + H+ ↔ >CaOH2
+ 11.5 12.2 12.9 11.85 11.85 11.85

>CaOH2
+ + SO4

2− ↔ CaSO4
− + H2O 2.89 2.89 2.1 2.1 2.1 2.1

>CaOH + HCO3
− ↔ >CaCO3

− +
H2O

5.6 4.9 3.32 5.8 4.28 5.8

>CO3H ↔ >CO3
− + H+ −5.1 −4.9 −4.9 −5.1 −5.1 −5.1

>CO3H + Ca2+ ↔ >CO3Ca+ + H+ −1.7 −2.8 −3.16 −2.6 −2.6 −4.4
>CO3H + Mg2+ ↔ >CO3Mg+ + H+ −2.2 −2.2 −3.17 −2.6 −2.6 −4.4

Figure 18. 2D PALABOS−PHREEQCRM SCM model validation
scheme.

Table 8. Optimized SCM Reaction Constants for Brine/
Calcite Interface for both 25 and 40 °C Conditions

reactions (brine/calcite interface) 25 °C 40 °C
Tetteh et al.

(2020)

>CaOH + H+ ↔ >CaOH2
+ 11.084 10.957 11.85

>CaOH2
+ + SO4

2− ↔ CaSO4
− + H2O 1.947 2.107 2.1

>CaOH + HCO3
− ↔ >CaCO3

− +
H2O

5.567 5.485 5.8

>CO3H ↔ >CO3
− + H+ −4.578 −4.527 −5.1

>CO3H + Ca2+ ↔ >CO3Ca+ + H+ −3.614 −3.454 −4.4
>CO3H + Mg2+ ↔ >CO3Mg+ + H+ −3.352 −3.157 −4.4

Figure 19. MSE loss decay during the optimization for k values of the brine/calcite interface SCM under 25 °C (left) and 40 °C (right) conditions.
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illustrating the great potential to optimize more complex
scenarios or models.

In Section 2 (Methodologies), the background and
formulation of the LBM method in fluid flow and advection−
diffusion problems are introduced at first, and the LBM-based
PALABOS package is discussed briefly. Second, the geochemical

reaction solver PHREEQC and its capabilities as well as the
variant PHREEQCRM selected in the modeling framework are
discussed. Furthermore, the development details of the coupling
interface are demonstrated. Specifically, the model/data
preprocessing and initialization that provide essential steps for
the coupling are discussed. The cell-mapping mechanisms

Figure 20. Evolution of the optimized brine/calcite ζSCM for FWS (A) and LSW (B) under 25 °C conditions.

Figure 21. Comparison of ζEXP and ζSIM based on the reaction constants from ANN optimization and Tetteh et al.105 regarding the five single salt
solution cases.

Figure 22. Comparison of ζEXP and ζSIM based on the reaction constants from ANN optimization and Tetteh et al.105 regarding the FWS/SWS/LSW
cases.
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handle various reaction types within different mediums that
allow modeling multiphysics in complex geometries. The
PALABOS data processor and PHREEQCRM basic function
features provide great capabilities and flexibility to transfer
information between different physical or chemical fields while
preserving parallel computing performance for built-in or
customized functions. At last, the ANN-based automatic
numerical model optimization workflow is illustrated and is
applied to the SCM model tuning using the model framework.

In Section 3 (Model Validation and Results), the numerical
validations are designed and performed for the model in various
aspects. First, in the 2D LBM fluid flow-only validation
experiment based on a channel Poiseuille flow problem, the
proposed model shows good agreement with analytical solutions
with a small error (around 0.5%). Furthermore, the code is
verified for the 1D diffusion problem in a 2D channel, and the
time-dependent concentration profiles are evaluated with
analytical solutions. The results suggest that the proposed
model has high accuracy (R2 ≥ 0.9997), although minimal
performance loss is observed at the beginning of the simulation
due to the initial oscillations. After validating flow or diffusion-
only scenarios, the experiment was inspired and designed by the
reactive transport benchmark problem proposed by Molins et
al.107 and used the same initial conditions for the simulation.
The time-dependent averaged effluent H+ concentration is
evaluated, and the averaged reaction/calcite dissolution rate as
the metrics is estimated for comparison. The results
demonstrate good agreement with the other five codes described
in the benchmark problem. The last mode validation focuses on
the SCM model verification for complex physical−chemical
processes using an advanced waterflooding-associated mecha-
nistic study as an example. In addition to the SCM model
integration, an ANN-assisted automatic SCM model tuning
workflow is proposed that dynamically interacts with the
numerical model to optimize the reaction constants. The results
show good zeta potential estimations from SCM reactions
compared to experimental data. Meanwhile, the ANN optimized
SCM model parameters improve the overall matching perform-
ance while significantly reducing human labor in the manual
model adjustment.

It is worth noting that the proposed coupling framework has
its limitations at this initial stage of study. For example, we made
assumption in our initial modeling practice that the relatively
high concentrations of chemical species (Ca2+ in this case) do
not reversely affect the fluid transport process due to
intermolecular interactions, such that the LBM fluid flow is
purely driven by pressure differences and affected by the no-flow
boundaries at the walls. We plan to include the intermolecular
interaction effects in the future modeling approaches.

Another limitation of this modeling framework is that we have
not fully explored and utilized the lower-level source code and
functionalities of PHREEQCRM; thus, we do not have full
control of some implementation details to meet our desired
needs, for example, the initialization behavior with a small

concentration bump described in Section 3.3. Future work
would include the coupling improvements with in-depth
integration of PHREEQCRM for customized modeling needs
and adjustments.

Meanwhile, all the numerical experiments are designed and
proceed in a 2D domain, and we target pore-scale ranging from
sub-micrometers/micrometers to centimeters (rock core or a
portion of rock core). The numerical validation in a 2D
symmetrical channel indicates the applicability of a 3D
symmetrical domain such as a cylindrical pipe. We reserve the
3D modeling scenarios for future studies. It is worth noting that
we intended to validate the coupled model in a relatively simple
pore geometry instead of a realistic pore network due to the
limitation of the computational resources. We treated this work
as a “proof of concept” type of study, which paved the way for
further investigations on more complex and realistic pore
structures by incorporating a computing cluster with abundant
computational resources.

■ APPENDIX

Evaluation Metrics
In this study, we use MAE, MSE, and coefficient of
determination (R2) to evaluate the model validation results
and the ANN prediction performance. MAE is defined as

n
Y YMAE

1

i

n

i i
1

obs pred= | |
= (31)

n
Y YMSE

1
( )

i

n

i i
1

obs pred 2=
= (32)

R
Y Y

Y Y
1

( )

( )
i
n

i

i
n

i

2 1
obs pred 2

1
obs obs 2= =

= (33)

where Yiobs stands for the ith observation, Y obs is the mean value
of the observations, and Yipred represents model or ANN
predictions.

■ AUTHOR INFORMATION
Corresponding Author

Reza Barati − Department of Chemical & Petroleum
Engineering, University of Kansas, Lawrence, Kansas 66045,
United States; orcid.org/0000-0002-1064-9562;
Email: reza.barati@ku.edu

Authors
Siyan Liu − Department of Chemical & Petroleum Engineering,
University of Kansas, Lawrence, Kansas 66045, United States;
Computational Sciences and Engineering Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United
States; orcid.org/0000-0003-2017-3251

Chi Zhang − Department of Meteorology and Geophysics,
Institute of Meteorology and Geophysics, University of Vienna,
Universität Wien, Wien 1090, Austria

Mohammad Kazemi − Department of Physics and Engineering,
Slippery Rock University, Slippery Rock, Pennsylvania 16057,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c07643

Notes
The authors declare no competing financial interest.

Table 9. Performance Comparison of the SCM Predicted ζ
Values

all cases
five single salt

solution FWS/SWS/LSW

metrics MSE R2 MSE R2 MSE R2

ANN 71.426 0.334 64.856 0.084 49.428 0.653
Tetteh et al. 80.864 0.246 95.580 −0.350 33.804 0.763
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■ NOMENCLATURE
CFD computational fluid mechanics
LBM lattice Boltzmann method
EOR enhanced oil recovery
Ω LBM collision operator
τ LBM relaxation time
f k lattice distribution function
f kEQ lattice equilibrium distribution function
ρLB lattice fluid density
PLB lattice pressure
Cs lattice speed of sound
uLB lattice velocity
νLB lattice kinematic viscosity
ωi weight coefficient for i direction
SCM surface complexation model
COBR crude−oil−brine−rock
ζ zeta potential
H width of the flow channel
u(y) flow velocity profile along y-axis
p pressure
μ fluid viscosity
nx number of lattice nodes along the x-axis
ny number of lattice nodes along the y-axis
c species concentration
c0 constant species concentration at boundary
cinf species concentration at the end of the

assumed infinitely long channel
D diffusion coefficient
rf reaction rate factor
k rate constant
γ activity coefficient
Re Reynolds number
Pe Pećlet number
ξ stoichiometric coefficient
A reacting surface area
R average reaction rate
NN neural network
ANN artificial neural network
MLP multi-layer perceptron
SGD stochastic gradient descent
MAE mean absolute error
MSE mean squared error
R2 coefficient of determination
Yiobs observation values
Yipred prediction values
Ki reaction constant log K
FWS/SWS/LSW formation water/seawater/low salinity water
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