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Abstract

Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital
birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely
unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C), initiates sister-chromatid
separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from
metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at
present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we
generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but
females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with
wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they
become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast
majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome
misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in
metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective
threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome
missegregation and formation of aneuploid gametes.
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Introduction

Mitotic checkpoint genes are believed to be prime targets for

deregulation in human infertility [1]. The mitotic checkpoint

constitutes an intricate molecular network that ensures accurate

chromosome segregation by coordinating metaphase-to-anaphase

progression with the establishment of bipolar spindle attachment

and metaphase plate alignment of all mitotic chromosome pairs

[2]. At early stages of mitosis, various mitotic checkpoint proteins,

including members of the Bub and Mad protein families,

concentrate at unattached kinetochores to generate a diffusible

signal that inhibits the anaphase-promoting complex or cyclosome

(APC/C), a large E3 ubiquitin ligase that drives metaphase-to-

anaphase transition by catalyzing the ubiquitination and degra-

dation of cyclin B1 and securin [3]. Although the exact

composition of the inhibitory signal remains a major subject of

investigation, it is believed to contain Bub3-bound BubR1 and

Mad2 that has been primed by kinetochore-associated Mad1-

Mad2 to stably interact with the APC/C activating subunit Cdc20

[4,5,6]. Upon attachment and alignment of the last chromosome

pair, the inhibitory signal is quenched and APC/C activated

through release of Cdc20 inhibition, triggering the ubiquitination

and destruction of cyclin B1 and securin. Separase, a protease that

is held in an inactive state by securin and cyclin B1/Cdk1, is then

allowed to cleave the Scc1 subunit of the cohesin complex that

holds sister chomatids together, inducing the physical separation of

sister chromatids by spindle forces [7,8].

A thorough assessment of the role of mitotic checkpoint genes in

gametogenesis and infertility has not been possible because

complete inactivation of mammalian mitotic checkpoint genes

invariably disrupts the chromosome segregation process so

severely that cells cannot survive [2,9]. In vitro studies of primary

mouse oocytes in which key mitotic checkpoint proteins were

depleted by morpholinos or RNA interference have pointed to an

importance of several mitotic checkpoint proteins during the first

meiotic division. For instance, sustained prophase I arrest of

primary oocytes depends on stabilization of the Cdc20-related

APC/C coactivator Cdh1 by BubR1 [10]. BubR1 retains control

of Cdh1 stability after hormone-induced resumption of meiosis,

thereby allowing APC/CCdh1-mediated securin degradation and

progression through prometaphase I. Interestingly, BubR1 protein

levels have been shown to decline in ovary and testis as normal

mice age, which combined with the observation that mutant mice

with low amounts of BubR1 are infertile, has led to speculation

that BubR1 might be a key determinant of age-related meiotic

errors in germ cells [11]. While APC/CCdh1 regulates early

meiotic events in mice [10,12], Cdc20 knockdown experiments in

primary oocytes indicate that APC/CCdc20 is active in late meiosis

I [10], where it is responsible for driving oocytes into anaphase via

the destruction of cyclin B1and securin, much like mitosis in
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somatic cells [13]. Coordination of APC/CCdc20 activation with

proper kinetochore-microtubule attachment in meiosis I is

dependent on the mitotic checkpoint proteins Mad2 and Bub1,

as depletion or expression of dominant-negative mutants of these

proteins in primary mouse oocytes causes chromosome misse-

gregation [14,15,16,17].

Whereas the depletion studies in primary mouse oocytes identify

Cdc20 and Cdh1 as critical regulators of the first meiotic division,

testing whether the functions unveiled in vitro operate in vivo

remains an important challenge. Furthermore, it remains

unknown whether Cdc20 and Cdh1 are also important for male

meiosis I or stages of male and female gametogenesis other than

meiosis I. Importantly, for Cdc20 and Cdh1 to be candidate

infertility genes, one would expect their dysfunction to reduce

fertility without compromising overall health and viability.

Addressing these issues has been hampered by the embryonic

lethality caused by inactivation of Cdh1 and Cdc20 in mice, with

Cdh1-null embryos dying at mid-gestation due to placental defects

[18,19] and Cdc20-null embryos at the two-cell stage due to

permanent metaphase arrest [18].

In the present study, we bypassed the problem of early

embryonic lethality of Cdc20 knockout mice by generating mutant

mouse strains in which the dose of Cdc20 is reduced in graded

fashion, enabling us to examine the physiological relevance of this

APC/C cofactor. Our findings reveal that the threshold for

pathophysiology is lowest in the female germline. We demonstrate

that while both mitotic and meiotic divisions of male and female

germ cells are characterized by inaccurate chromosome segrega-

tion and aneuploidization, only female meiosis I is so severely

affected that almost exclusively aneuploid mature eggs are

generated. We show that these eggs fertilize normally, but that

the resulting zygotes die after the first few embryogenic divisions.

Results

Generation of Mutant Mice with Graded Reduction of
Cdc20

A series of mutant mouse strains in which expression of Cdc20 is

gradually reduced was generated by using various combinations of

wild-type (Cdc20+), hypomorphic (Cdc20H) and knockout (Cdc202)

alleles (Figure 1A–1D). The Cdc20H allele was produced by

targeted insertion of a neomycin phosphotransferase II (neo) gene

cassette into the third intron of the Cdc20 gene (Figure 1A). The

neo gene contains a cryptic exon with stop codons in all three

reading frames, thereby considerably reducing the amount of wild-

type protein produced by targeted allele [11,20,21,22]. The

Cdc202 allele was from gene trap mouse embryonic stem (ES) cell

clone XE368 (Figure 1B). Previously, it has been shown that this

gene trap allele is the equivalent of a null allele and that embryos

that are homozygous for this allele arrest and die at the two-cell

stage of development [23]. In contrast, Cdc20+/H, Cdc20+/2,

Cdc20H/H and Cdc202/H mice were viable and had no overt

phenotypes. Western blot analysis demonstrated that Cdc20+/H,

Cdc20+/2, Cdc20H/H and Cdc202/H ovary and testes had a graded

reduction of Cdc20 protein (Figure 1E and 1F). Western blot

analysis of spleen, bone marrow, and mouse embryonic fibroblast

extracts of Cdc20+/+ and Cdc202/H mice suggested that the

observed Cdc20 protein reductions are universal, irrespective of

tissue or cell type (Figure 1G, and data not shown).

Cdc20 Hypomorphic Females Are Infertile or Subfertile
Despite Normal Oogenesis

While establishing cohorts of Cdc20 mutant mice for long-term

observation, we noticed that Cdc202/H females yielded little or no

offspring, which prompted us to measure the impact of graded

reduction in Cdc20 expression on female fertility. Two-month-old

Cdc20+/+, Cdc20+/H, Cdc20+/2, Cdc20H/H and Cdc202/H mice

were bred to Cdc20+/+ males of the same age and the number of

litters and pups produced per female was recorded for three

months. Despite normal copulation rates (Figure 2A), Cdc202/H

females produced on average about 4-fold fewer litters than

females of the other genotypes (Figure 2B), while the average

number of pups was about 15-fold lower (Figure 2C). Notably, of

the seven Cdc202/H females in the study, four failed to produce

any offspring (Figure 2D). Only Cdc20+/2 and Cdc20+/H embryos

can be produced by Cdc202/H females bred to Cdc20+/+ males.

Importantly, pups of these genotypes were produced at normal

rates when Cdc20+/2, Cdc20+/H and Cdc20H/H females were bred

to Cdc20+/+ males (Figure 2C and 2D), indicating that the failure

of Cdc202/H females to produce offspring with Cdc20+/+ males was

not due to the genotype of the embryos produced. Together, the

above data demonstrate that Cdc202/H females are either infertile

or severely subfertile. The Cdc20 threshold level for fertility

problems is remarkably sharp because Cdc20H/H females, which

produce slightly more Cdc20 than Cdc202/H females, have normal

fertility (Figure 2A–2D). Ten of 10 Cdc202/H males were fertile

and produced on average 7 pups per litter (data not shown),

indicating that gametogenesis in male mice has a lower

dependence on Cdc20 than the female reproductive system.

To study how Cdc20 deficiency impedes female fertility, we

screened hematoxylin-eosin ovary sections of sexually mature

Cdc202/H females for overt defects in oogenesis. However, no

apparent morphological differences were found (Figure 2E).

Cdc202/H and Cdc20+/+ ovary sections contained similar amounts

of primordial, primary, secondary and antral follicles, as well as

similar numbers of mature oocytes and corpora lutea (Figure 2E and

2F). These data indicated that the fertility problem of Cdc202/H

females is not due to a failure to produce, mature or ovulate oocytes.

Fertilized Eggs from Cdc20 Hypomorphic Females Fail to
Develop into Blastocysts

To explore preimplantation embryonic development, Cdc202/H

and Cdc20+/+ females were naturally mated with Cdc20+/+ males

Author Summary

Aneuploidy, an abnormal number of chromosomes, is a
common defect in sperm and egg cells that is responsible
for human infertility, miscarriage, and congenital birth
defects. Although these developmental outcomes are
prevalent in human reproduction, little is known about
the molecular defects that may cause aneuploidy in germ
cells. In this study, we identify Cdc20, a critical activator of
the APC/C E3 ubiquitin ligase that initiates sister chromo-
some separation by ordering the destruction of cyclin B1
and securin, as a female infertility gene. We show that
female mice with low amounts of Cdc20 have normal
fitness but almost exclusively produce aneuploid embryos
that fail to thrive and die early in development. The
aneuploidy primarily results from chromosome segrega-
tion errors in primary oocytes that may be caused by
inefficient APC/C-mediated destruction of mitotic cyclins
and securin during metaphase I. Thus, our studies reveal
that primary oocytes are highly dependent on Cdc20 for
accurate chromosome segregation and raise the possibility
that Cdc20 insufficiency may be a cause of infertility in
otherwise healthy women.

The Female Germline Is Sensitive to Cdc20 Loss
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and embryos were collected at day 3.5 of development (E3.5).

While 93% of embryos collected from Cdc20+/+ females were at

the expected blastocyst stage, only 15% of Cdc202/H females had

reached this stage (Figure 3A and 3B). The remaining embryos

were either in the one- to four-cell stage or completely

degenerated. Notably, the total number of embryos produced by

Cdc20+/+ and Cdc202/H females was the same (Figure 3B),

indicating Cdc202/H females had normal fertilization rates and

were capable of ovulating normal numbers of mature oocytes.

Furthermore, the number of normal blastocysts produced by

Cdc202/H females is similar to the number of live born pups these

females produce, indicating that embryos that attain the blastocyst

stage were capable of developing into healthy animals.

The above data indicated that the majority of eggs produced by

Cdc202/H females stop proliferating after the first cell divisions of the

preimplantation period. To confirm this and to characterize

preimplantation embryo development, we collected one-cell stage

embryos from Cdc20+/+ and Cdc202/H females crossed with Cdc20+/+

Figure 1. Generation of mice with graded reduction in Cdc20 dosage. (A) Schematic representation of the primary Cdc20 gene targeting
strategy. Part of the Cdc20 locus (+), the targeting vector, the hypomorphic allele (Cdc20H), EcoR1 restriction sites and the Southern probe are
indicated. (B) Schematic representation of the Cdc202allele was from gene trap mouse embryonic stem (ES) cell clone XE368. (C) Southern-blot
analysis of mice with indicated Cdc20 genotypes. (D) PCR-based genotype analysis of Cdc20 mutant mice. Positions of PCR primers (a–e) are indicated
in (A,B). (E–G) Western blot analysis of whole ovary (E), testis (F), spleen and bone marrow (G) extracts of the indicated genotypes for Cdc20. Actin and
tubulin served as loading controls. Cdc20 protein signals were quantified using ImageJ software and normalized to background and either actin or
tubulin. For details see materials and methods.
doi:10.1371/journal.pgen.1001147.g001

The Female Germline Is Sensitive to Cdc20 Loss
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males and monitored their development in vitro. As expected, most

embryos from Cdc20+/+ females developed to the blastocyst stage

within four days (Figure 3C and 3D). In contrast, none of the embryos

from Cdc202/H females developed beyond the 4-cell stage, with the

majority of embryos remaining at the one cell stage. This growth

phenotype is remarkably different from that of Cdc202/2 embryos,

which typically arrest in metaphase at the two-cell stage due to

inability to degrade cyclin B1 and securin in the absence of Cdc20

Figure 2. Female mice with low amounts of Cdc20 have poor fertility. (A) Average number of vaginal plugs per female for the indicated
genotypes (during 3 months of breeding). (B) Average number of litters per female for the indicated genotypes (during 3 months of breeding). Data
presented in (A,B) are mean 6 SEM. (C) Average number of pups per female (during 3 months of breeding). Chart legend is as in (A). Asterisks indicate
statistical significance (one way ANOVA p,0.0001) between Cdc202/H and the other genotypes. (D) Percentages of subfertile and infertile females per
genotype. (E) H/E-stained ovary sections from Cdc20+/+ and Cdc202/H females (5 mm paraffin sections). A = antral follicles; CL = corpus luteum. Bars in
top and bottom panels are 400 mm and 100 mm, respectively. (F) Quantification of various follicles and corpora lutea in H/E sections of Cdc20+/+ and
Cdc202/H ovaries. Error bars represent mean 6 SEM.
doi:10.1371/journal.pgen.1001147.g002

The Female Germline Is Sensitive to Cdc20 Loss
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[23]. Importantly, one cell stage embryos from Cdc202/H females are

either Cdc20+/2 or Cdc20+/H. Embryos of these genotypes show

normal survival rates when derived from Cdc20+/2 and Cdc20+/H

females and Cdc20+/+ males (see Figure 2B and 2C). Together, these

data suggested that the early death of the embryos produced by

Cdc202/H females is due to defects introduced during oogenesis.

Cdc20 Hypomorphic Females Produce Aneuploid
Oocytes and Embryos

We hypothesized that Cdc20 hypomorphism promotes chro-

mosome missegregation during oogenesis, resulting in production

of aneuploid embryos that fail to thrive. To test this idea, we

collected one-cell stage embryos from Cdc20+/+, Cdc20H/H and

Cdc202/H females mated with Cdc20+/+ males and prepared

metaphase spreads for chromosome counts. We found that 11% of

embryos from Cdc20+/+ females were aneuploid compared to 27%

and 78% of embryos from Cdc20H/H and Cdc202/H females,

respectively (Figure 4A). Aneuploidy was strongly biased toward

loss of chromosomes, irrespective of Cdc20 genotype. Importantly,

nearly 30% of aneuploid embryos from Cdc202/H females had 14

to 19 extra chromosomes (Figure 4A and 4D). We noted that these

embryos contained a very high proportion of chromosome pairs

(Figure 4D), which suggested that they originated from mature

oocytes that had failed to complete meiosis II after fertilization.

Figure 3. Cdc202/H eggs fertilized by Cdc20 +/+ males rarely develop into blastocysts. (A) In vivo development of E3.5 embryos from Cdc20+/+

and Cdc202/H females crossed with Cdc20+/+ males. (B) Quantitation of the in vivo developmental defects. (C) In vitro development of E0.5 embryos from
Cdc20+/+ and Cdc202/H females fertilized by Cdc20+/+ males. Images were collected at 24 h intervals (day 1 is the day of embryo collection, which
corresponds to E0.5). Note that none of the embryos from Cdc202/H females developed beyond the 4-cell stage. Yellow and red arrowheads highlight
malformed two- and four-cell stage embryos, respectively. (D) Quantitation of the in vitro developmental defects. Note that 62% of the embryos from
Cdc202/H females crossed with Cdc20+/+ males failed to develop beyond the one-cell stage.
doi:10.1371/journal.pgen.1001147.g003

The Female Germline Is Sensitive to Cdc20 Loss

PLoS Genetics | www.plosgenetics.org 5 September 2010 | Volume 6 | Issue 9 | e1001147



Next, we determined whether Cdc20 hypomorphism also leads

to erroneous chromosome segregation at earlier stages of

oogenesis. During embryogenesis, primordial germ cells migrate

to the developing gonad to form oogonia, which expand in

number through a series of mitotic divisions before differentiating

into primary oocytes that arrest in prophase of meiosis I. To

determine whether the early mitotic divisions might contribute to

the aneuploidy seen in fertilized eggs, primary oocytes were

harvested from ovaries of Cdc20+/+, Cdc20H/H and Cdc202/H

females. In mice, primary oocytes normally have 20 paired

chromosomes, called bivalents. Primary oocytes from Cdc20+/+

and Cdc20H/H females had abnormal numbers of bivalents in 10%

and 13% of spreads, respectively (Figure 4B). In contrast, primary

oocytes from Cdc202/H females had considerably more aneuploi-

dy, with 29% of spreads showing abnormal numbers of bivalents

(Figure 4B and 4E). These spreads showed no evidence of

Figure 4. Oocytes and embryos from Cdc202/H females have abnormal chromosome numbers. (A) Fertilized eggs from Cdc202/H females
x Cdc20+/+ males show near-diploid or near-triploid aneuploidy. (B) Mitotic divisions that establish oogonia during fetal development are aneuploidy
prone if Cdc20 levels are low. (C) Meiosis I is a prominent source of aneuploidy in Cdc202/H females. (D) Image of a chromosome spread of a fertilized
egg with probable meiosis II failure. Arrowheads mark examples of duplicated chromosomes (most likely oocyte derived). (E) Image of an aneuploid
metaphase I of a Cdc202/H primary oocyte. (F) Image of an aneuploid metaphase II oocyte from a Cdc202/H female.
doi:10.1371/journal.pgen.1001147.g004

The Female Germline Is Sensitive to Cdc20 Loss
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precocious separation of bivalents, indicating that formation of

chiasmata was intact at low Cdc20 levels.

Although Cdc20 insufficiency causes aneuploidy during the

early mitotic divisions of oogenesis, aneuploidy rates of primary

oocytes were substantially lower than those of fertilized eggs. To

explore whether additional aneuploidy occurred during meiosis I,

we prepared metaphase spreads from secondary oocytes of

Cdc20+/+, Cdc20H/H and Cdc202/H females and counted chromo-

somes. We found that aneuploidy rates of secondary oocytes from

Cdc20+/+ and Cdc20H/H females increased modestly to 23% and

22%, respectively (Figure 4C). This verified that the level of Cdc20

protein in oocytes from Cdc20H/H females was enough to let the

chromosomes separate correctly at meiosis I. In contrast, a much

more dramatic increase was recorded for secondary oocytes from

Cdc202/H females, with 90% of spreads showing numerical

chromosome abnormalities (Figure 4C and 4F).

To obtain direct evidence for chromosome missegregation

during the first meiotic division of Cdc20 insufficient oocytes, we

monitored chromosome movements of Cdc20+/+ and Cdc202/H

primary oocytes during meiosis I using time-lapse fluorescence

imaging (Figure 5A). To visualize chromosomes we injected in

vitro transcribed H2B-mRFP mRNA into the oocytes. In this

setup, oocytes from Cdc202/H females displayed much higher rates

of chromosome missegregation than oocytes from Cdc20+/+

females (Figure 5B). The two types of errors that were observed

are congression failure and chromosome lagging, of which the

latter defect was clearly most frequent. Particularly, chromosome

lagging incidents involving three or more lagging chromosomes

occurred at much higher rates in Cdc202/H oocytes (Figure 5B and

5C, and Video S1 and Video S2). Thus, consistent with our

chromosome counts on secondary oocytes, chromosome segrega-

tion errors during meiosis I contribute considerably to the

infertility phenotype of Cdc202/H females.

Cdc20 Hypomorphism Prolongs Metaphase I
Orderly progression of oocytes through meiosis I is controlled

by the APC/C, which prompted us to examine whether timing of

meiosis I is deregulated at low Cdc20 levels. Cdc20+/+ and Cdc202/

H oocytes were injected with H2B-mRFP mRNA and observed by

time-lapse microscopy while executing meiosis I. We found that

the time from germinal vesicle breakdown (GVBD) to metaphase

was similar in Cdc20+/+ and Cdc202/H oocytes (Figure 6A and 6B),

which is consistent with the notion that Cdh1 functions as the

primary ACP/C activator during the early stages of meiosis I [12].

However, the average time from metaphase entry to anaphase

onset was about two times longer in Cdc202/H oocytes than in

Cdc20+/+ oocytes (Figure 6A and 6B). This delay was unlikely to be

due to chromosome segregation errors as oocytes with misaligned

or lagging chromosomes were excluded from the analysis.

Consistent with delayed metaphase progression, PBE extrusion

was markedly delayed in Cdc202/H oocytes (Figure 6C). Taken

together, these data indicate that the timing of metaphase I is

subject to deregulation when the amount of Cdc20 protein is

limited.

Low Cdc20 Impairs Degradation of Mitotic Cyclins and
Securin in Metaphase I

To explore the mechanism underlying the chromosome

missegregation phenotype of Cdc202/H primary oocytes, we

measured the rate of degradation of two key APC/CCdc20

substrates, cyclin B1 and securin [12]. In the first set of

experiments, we injected Cdc202/H and Cdc20+/+ primary oocytes

with mRNA encoding cyclin B1-EGFP and monitored the

degradation of fluorescent protein by live-cell imaging. Oocytes

were coinjected with H2B-mRFP mRNA to accurately assess the

timing of cyclin B1-EGFP degradation. As illustrated in Figure 7A

and 7B, Cdc20+/+ oocytes degraded most of their cyclin B1-EGFP

during late prometaphase and early metaphase. Cdc202/H oocytes

entered metaphase I around the same time as Cdc20+/+ oocytes.

However, they did so with relatively high cyclin B1-EGFP protein

levels and completed substrate degradation ,2 h later than

Cdc20+/+ oocytes. To confirm that cyclin B1 degradation was

delayed, we used indirect immunofluorescence to measure

endogenously expressed cyclin B1 levels of Cdc20+/+ and

Cdc202/H oocytes in metaphase I. As shown in Figure 7C and

7D, cyclin B1 levels were indeed higher in Cdc202/H oocytes than

in Cdc20+/+ oocytes. Importantly, these oocytes also showed

elevated levels of phosphorylated Cdk substrates (Figure 7C and

7D), suggesting that the rise in cyclin B1 expression resulted in

increased cyclin B1-Cdk1 activity in metaphase I.

Next, we coinjected securin-EYFP [24] and H2B-mRFP mRNA

into Cdc202/H and Cdc20+/+ primary oocytes. We noticed that

expression of securin-EYFP protein markedly inhibited PBE even

in Cdc20+/+ oocytes (data not shown), but were able to control this

problem by reducing the concentration of the injected securin-

EYFP mRNA. In Cdc20+/+ oocytes, onset of securin-EYFP

degradation typically coincided with metaphase entry and then

rapidly progressed until anaphase onset (Figure 8). In Cdc202/H

oocytes, however, securin-EYFP protein degradation did not start

until mid metaphase. Degradation not only started later, but was

also less efficient, resulting in anaphase entry with higher than

normal levels of securin-EYFP. In a recent study, McGuinness et

al. demonstrated that the timing of cyclin A2 degradation in

primary oocytes is similar to that of securin [17], which is

surprising given that mitotic cells fully degrade this cyclin in

prometaphase. In light of these findings, we wanted to examine

whether the degradation of cyclin A2 was impaired in Cdc202/H

oocytes. As for securin-EYFP, cyclin A2-EGFP inhibited PBE in

Cdc20+/+ oocytes when expressed at high levels (data not shown),

but again we were able to control this problem by injecting low

amounts of transcript. Consistent with the earlier data [17],

Cdc20+/+ primary oocytes rapidly destroyed cyclin A2-EGFP in

metaphase I (Figure 9). In contrast, both the onset and the rate of

cyclin A2-EGFP were substantially reduced in Cdc202/H oocytes.

Strikingly, Cdc202/H oocytes again entered anaphase I with higher

substrate levels than Cdc20+/+ oocytes. Taken together, the above

data demonstrate that multiple APC/C substrates are inefficiently

degraded when Cdc20 levels are low, raising the possibility that

persistent cyclin-CDK activity in metaphase I might underlie, at

least in part, the chromosome missegregation phenotype of

Cdc202/H oocytes.

It is conceivable that delayed cyclin and securin degradation

impairs separase activation, and therefore proper cleavage of

cohesin along chromosome arms of bivalents prior to anaphase

onset. To test for this possibility, we collected Cdc202/H and

Cdc20+/+ primary oocytes, cultured them in vitro until they

arrested in metaphase II and then stained chromosomes for the

presence of Rec8, a meiosis specific component of the cohesin

complex [25,26]. While Rec8 staining was readily detectable along

chromosome arms of metaphase I chromosomes, no such staining

was detectable in metaphase II oocytes, irrespective of Cdc20

genotype (Figure S1), implying that Cdc202/H oocytes generated

sufficient separase activity for complete cleavage of Rec8.

Furthermore, core mitotic checkpoint proteins that are involved

in kinetochore assembly, kinetochore-microtubule and/or spindle

assembly checkpoint activation, such as Bub1, BubR1, and Mad2,

were normally localized at kinetochores of Cdc202/H primary

oocytes (Figure S2).

The Female Germline Is Sensitive to Cdc20 Loss
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Aneuploidy Rates during Male Meiosis I Are Relatively
Low

Cdc202/H males appeared to have normal fertility, predicting that

male meiosis I is much less sensitive to Cdc20 hypomorphism. To

verify this, we prepared chromosome spreads of testicular cell

suspensions from Cdc20+/+ and Cdc202/H mice and performed

chromosome counts on secondary spermatocytes. Although aneu-

ploidy was 5-fold higher at low than at normal Cdc20 levels

(Figure 10A), secondary spermatocytes of Cdc202/H males had much

lower aneuploidy rates than secondary oocytes of Cdc202/H females

(19% versus 90%). Chromosome counts on primary spermatocytes

revealed a 4-fold increase in aneuploidy due to Cdc20 hypomorph-

ism, with 12% of spreads showing abnormal numbers of bivalents

(Figure 10B), suggesting that the mitotic divisions that spermatogonia

have to undergo to produce primary spermatocytes are error prone

at low Cdc20 levels. The rather modest increase in aneuploidy from

Figure 5. Cdc202/H oocytes show increased chromosome missegregation in meiosis I. (A) Schematic overview of the experimental
procedure. A small amount of H2B-mRFP mRNA was injected into GV-positive Cdc20+/+ and Cdc202/H primary oocytes. After short recovery, oocytes
were released from prophase I arrest by removal of dbcAMP. About 1 h after GVBD, we started to monitor chromosome movements by live cell
imaging. We note that GVBD itself was not affected by Cdc20 hypomorphism. (B) Percentage Cdc20+/+ and Cdc202/H primary oocytes with the
indicated chromosome segregation errors. (C) Examples of Cdc202/H oocytes undergoing normal or aberrant anaphase I. Arrowheads highlight
misaligned and lagging chromosomes. We note that most oocytes with lagging chromosomes were able to complete meiosis I. Bar is 10 mm.
doi:10.1371/journal.pgen.1001147.g005
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12% to 19% as primary spermatocytes develop into secondary

spermatocytes underscores that the fidelity of male meiosis I remains

quite high at low Cdc20 levels. Furthermore, histology and apoptosis

rates were normal in testis of Cdc202/H males, as judged by

hematoxylin and eosin (H/E) and TUNEL staining of testis sections,

respectively (Figure 10C–10E).

Discussion

By generating a series of mice with graded reduction in Cdc20

levels, we discovered a remarkably sharp threshold for Cdc20

expression in female germ cells below which chromosome

segregation errors occur at high frequency, leading to production

of aneuploid eggs that are fertilization competent but fail to

progress beyond the first few embryonic divisions. On the other

hand, low Cdc20 levels are well tolerated by somatic tissues and

have no overt impact on the overall health and life expectancy of

mice. These findings raise the intriguing possibility that hypomor-

phic Cdc20 alleles may be responsible for unexplained fertility

problems in otherwise healthy women.

Because aneuploidy has been associated with reduced cell

growth and survival [27,28], one might have predicted that

oogenesis would be severely disrupted in Cdc20 hypomorphic

mice. Surprisingly, however, we did not observe significant

alterations in the number and morphology of follicles and corpora

lutea in these mice. These findings suggest that cellular pathways

that might inhibit cell proliferation or induce cell death in response

to chromosome missegregation are either not active in female

germ cells or require a higher threshold for activation than in

somatic cells [29]. Our finding that folliculogenesis was unper-

turbed was also unexpected in light of studies showing that

depletion of Cdc20 from primary oocytes by a morpholino causes

metaphase I arrest [12]. For somatic cells it has been estimated

that metaphase arrest requires a 20-fold or higher reduction in

cellular Cdc20 levels [30]. We suspect that morpholino treatment

reaches this level of reduction, whereas Cdc20 hypomorphism

does not.

In systematically karyotyping primary and secondary oocytes

and fertilized eggs, we discovered that Cdc20 hypomorphism

promotes aneuploidization at different stages of oogenesis,

Figure 6. Metaphase I is retarded in Cdc202/H oocytes. (A) The progression through meiosis I of Cdc20+/+ and Cdc202/H oocytes expressing
H2B-mRFP was monitored by live-cell microscopy and typical examples of image sequences are shown. Time after GVBD is indicated in each image
(h:min). Abbreviations: PM, prometaphase; M, metaphase; A, anaphase; and PBE, polar body extrusion. Scale bar is 10 mm. (B) Measurement of the
timing of meiosis I of H2B-mRFP-expressing Cdc20+/+ and Cdc202/H oocytes by live-cell imaging. Oocytes with congression defects were excluded
from the experiment. Data shown are mean 6 SEM. *p,0.05 (student t-test). (C) Polar body extrusion rates of cultured Cdc20+/+ and Cdc202/H

primary oocytes as assessed by time-lapse microscopy (DIC imaging). The time at which 50% of oocytes had completed PBE was 9.5 h for Cdc20+/+

oocytes and 13.6 h for Cdc202/H oocytes.
doi:10.1371/journal.pgen.1001147.g006
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involving both mitotic and meiotic divisions. The highest increase

in aneuploidy, however, occurred in the first meiotic division. The

most prominent segregation errors that we observed during

meiosis I are chromosome misalignment and chromosome lagging.

Previous studies in HeLa and Ptk1 cells uncovered that cyclin A2

overexpression causes chromosome misalignment [31], suggesting

that alignment defects in Cdc20 hypomorphic oocytes might be

related to their inability to destroy cyclin A2 in a timely fashion.

Resolution of chiasmata requires removal of cohesin from

chromosome arms, which involves cleavage of the cohesin subunit

Figure 7. Cyclin B1 degradation is delayed during metaphase I if Cdc20 are low. (A,B) Kinetics of cyclin B1-EGFP degradation during
meiosis I. Cdc20+/+ and Cdc202/H primary oocytes were collected and injected with transcripts encoding cyclin B1-EGFP and H2B-mRFP prior to GVBD.
Cyclin B1-EGFP degradation was monitored by time lapse microscopy as oocytes progressed through meiosis I. (A) Still images illustrating that cyclin
B1 degradation is delayed in Cdc202/H primary oocytes. Time after GVBD (h:min) is indicated for each image. Scale bar is 10 mm. (B) Graph showing
the mean cyclin B1-EGFP fluorescence intensities of the indicated numbers of Cdc20+/+ and Cdc202/H oocytes. For each oocyte, the fluorescence
intensity was normalized to the intensity recorded 1 h after GVBD. Abbreviations in (A,B) are as in Figure 6A. Error bars represent SEM. (C) Metaphase I
oocytes of the indicated genotypes stained for cyclin B1, p-(Ser) Cdk substrates, and DNA (Hoechst). Bar = 10 mm. Note that signals of both cyclin B1
and p-(Ser) Cdk substrates are increased in the Cdc202/H oocyte. (D) Quantification of cyclin B1 and p-(Ser) Cdk substrate signals. *p = 0.001 versus
Cdc202/H metaphase (unpaired t test). **p = 0.033 versus Cdc202/H metaphase (unpaired t test). Error bars represent SEM.
doi:10.1371/journal.pgen.1001147.g007
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Rec8 by separase [32]. In turn, activation of separase requires

APC/C-mediated degradation of securin and cyclin B, both of

which are delayed in Cdc20 hypomorphic primary oocytes. Thus,

it is possible that Cdc20 hypomorphic oocytes do not have enough

APC/C activity to fully activate separase and properly resolve

chiasmata, thereby prompting chromosome lagging and aneuploi-

Figure 8. Cdc202/H oocytes have impaired securin destruction in metaphase I. Rates of securin-EYFP degradation during meiosis I. Cdc20+/+

and Cdc202/H primary oocytes were injected with transcripts encoding H2B-mRFP and securin-YFP. After induction of GVBD, degradation of securin-
EYFP was followed by time-lapse microscopy. (A) Time-lapse microscopy images illustrating that securin-EYFP degradation is delayed in Cdc202/H

primary oocytes. The time after GVBD (h:min) is indicated. Scale bar represents 10 mm. (B) Graph showing the mean securin-EYFP fluorescence
intensities for Cdc20+/+ and Cdc202/H primary oocytes. The fluorescence intensity for each oocyte was normalized to the intensity recorded 2 h after
GVBD. Abbreviations in (A,B) are as in Figure 6A. Error bars represent SEM.
doi:10.1371/journal.pgen.1001147.g008
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dization. Arguing against this explanation is the fact that

chromosome spreads of Cdc20 hypomorphic metaphase II oocytes

did not contain any bivalents or chromosomes that stained positive

for Rec8 along chromosome arms. Alternatively, chromosome

lagging in Cdc20 hypomorphic oocytes might be caused by

microtubule-kinetochore attachment defects [33,34]. For instance,

delayed degradation of cyclin B1 (or other APC/C substrates)

might promote such defects by disrupting key components of the

mechanisms that establish syntelic attachment or that correct

merotelic or amphitelic attachments. We found that two mitotic

Figure 9. Cdc202/H oocytes show inefficient cyclin A2 destruction in metaphase I. (A) Still images illustrating that cyclin A2-EGFP
degradation is impaired in Cdc202/H primary oocytes (the time after GVBD is indicated). Scale bar represents 10 mm. (B) Graph showing the mean
cyclin A2-EYFP fluorescence intensities for Cdc20+/+ and Cdc202/H primary oocytes. The fluorescence intensity for each oocyte was normalized to the
intensity recorded 1 h after GVBD. Error bars represent SEM.
doi:10.1371/journal.pgen.1001147.g009

The Female Germline Is Sensitive to Cdc20 Loss

PLoS Genetics | www.plosgenetics.org 12 September 2010 | Volume 6 | Issue 9 | e1001147



checkpoint proteins required for proper microtubule-chromosome

attachment, Bub1 and BubR1, were normally localized at

kinetochores of Cdc20 hypomorphic oocytes. However, it should

be emphasized that microtubule-kinetochore attachment is a

complex process requiring many different proteins, any of which

could be deregulated in our mutant oocytes. Interestingly, in

somatic cells, a small fraction of Cdc20 accumulates at

kinetochores during mitosis [35], which raises the possibility that

Cdc20 might have a more direct role in establishing proper

microtubule-kinetochore attachments.

Our finding that a significant percentage of Cdc202/H primary

oocytes were already aneuploid before resuming meiosis I suggests

that the mitotic divisions by which primordial germ cells develop

into primary oocytes are prone to chromosome missegregation

when Cdc20 levels are below a certain threshold. Due to technical

limitations, it was not possible to verify this experimentally. The

precise impact of Cdc20 hypomorphism on meiosis II is difficult to

decipher, largely because nearly all oocytes are aneuploid after

meiosis I. However, the presence of a sizeable amount of near

triploid fertilized eggs strongly suggests that Cdc20 insufficiency

can cause failure of maternal sister chromatids to separate during

meiosis II, although we note that it cannot be excluded that the

preexisting aneuploidy rather than the low Cdc20 levels drive the

separation defect. It could be argued that embryos from Cdc202/H

females bred to Cdc20+/+ males might fail to thrive due to a

potential lack of Cdh1 expression in the early embryos, rendering

embryonic mitotic divisions particularly dependent on Cdc20.

However, this explanation seems unlikely because Cdh1 has been

shown to be expressed in two-cell stage mouse embryos [23].

Furthermore, it should be considered that the embryos from

Cdc202/H females bred to Cdc20+/+ males that fail to thrive had

either Cdc20+/2 or Cdc20+/H genotypes. Embryos of both these

genotypes show normal survival rates when derived from Cdc20+/2

and Cdc20+/H females crossed with Cdc20+/+ males (Figure 2B and

2C), further supporting the idea that aneuploidy acquired during

oogenesis is largely responsible for the early death of embryos from

Cdc202/H females.

An intriguing finding was that the fertility problems of

Cdc202/H mice are restricted to females, even though our analysis

of aneuploidy in primary and secondary spermatocytes demon-

strated that mitotic and meiotic divisions of male germ cells are

prone to aneuploidy. However, the key difference between males

and females that probably accounts for their distinct fertilities is

that the rate of aneuploidization during meiosis I is substantially

higher in females than in males. Why might female meiosis I be

more sensitive to Cdc20 hypomorphism? A recent study of mouse

oocytes suggests that mammals have a unique mechanism for

control of meiosis I in that they require APC/CCdh1 activity for

progression through prometaphase I [12]. Cdc20 is targeted for

destruction by this early APC/C activity and needs to be re-

synthesized during metaphase I to enable anaphase onset. It is

possible that Cdc20 destruction in prometaphase I only occurs in

females, perhaps creating a higher degree of Cdc20 insufficiency in

oocytes than in spermatocytes.

Materials and Methods

Generation of Cdc20 Mutant Mice
The gene targeting procedure used to produce the hypomorphic

Cdc20 allele (H) was as previously described [22]. To generate the

targeting construct, Cdc20 gene fragments of 3.9 kb (spanning

exons 1–3) and 4.7 kb (spanning exons 4–10) were PCR amplified

from 129Sv/E genomic DNA and cloned into HindIII-XbaI and

SalI-NotI sites of pNTKV1901 (Stratagene). The targeting

construct was linearized with NotI and electroporated into TL1

129Sv/E ES cells. Transfectants were selected in 350 mg/ml G418

and 0.2 mM FIAU, and expanded for Southern blot analysis using

Figure 10. Spermatogenesis is aneuploidy prone at low Cdc20
levels. (A) Cdc202/H males are much less prone to aneuploidy in
meiosis I than Cdc202/H females. (B) Mitotic divisions that amplify
spermatogonia appear to be prone to aneuploidy when Cdc20 levels
are low. (C) H/E-stained testis sections from Cdc20+/+ and Cdc202/H

males. Paraffin sections (5 mm) were from 5 month-old mice. Bar in top
and bottom images represent 200 mm, and 25 mm, respectively. (D)
Representative images of TUNEL-stained testis sections from Cdc20+/+

and Cdc202/H males. TUNEL-positive cells are green. Cell nuclei were
visualized by Hoechst staining. Scale bar represents 100 mm. (E)
Quantitation of apoptosis in testes from Cdc20+/+ and Cdc202/H males.
The number of TUNEL-positive cells was counted in 50 tubules. Only
tubules that were cross-sectioned were considered. There is no
statistical difference between both groups (student t-test).
doi:10.1371/journal.pgen.1001147.g010
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a 710 bp 39 external probe on EcoR1-digested genomic ES cell

DNA. This probe was amplified by PCR from 129Sv/E genomic

DNA using the following primers: 59-CATGGCTGGTTTGG-

GAGAGAATGC TG-39 and 59-CACAACACAGTTCATC-

TTCCCAGTG-39. Chimeric mice were produced by microinjec-

tion of targeted ES cell clones with 40 chromosomes into C57BL/

6 blastocysts. Chimeric males were mated with C57BL/6 females

and germline transmission of the Cdc20H allele was verified by

PCR analysis of tail DNA from pups with a agouti coat color. The

Cdc202 allele used in our studies was derived from gene trap ES

clone XE368 (purchased from BayGenomics). The following

primer combinations were used for PCR genotyping of mice used

in our studies: primers a (59-CAGAAAGCCTGGTCTCT-

CAACCTG-39) and b (59-CACAGTAGTCATTCCGGATT

TCGGG-39) for Cdc20+; primers b and c (59-TCCATTGCT-

CAGCGGTGCTG -39) for Cdc20H; and primers d (59-GTATC-

CAACCATGGCCAAGGTGGCTGAG-39) and e (59-TATAC-

GAAGTTATCGATCTGCGATCTGC-39) for Cdc202. All

mouse experiments were conducted after approval of the Mayo

Clinic Committee on Animal Care and Use. All mice in the study

were of a 129Sv/E x C57BL/6 mixed genetic background.

Fertility Analysis and Histology
Female fertility was measured by breeding 2-month-old females

of various Cdc20 genotypes to 2- to 3-month-old wild-type males

for a 3-month period. During this period, we recorded, for each

female, the number of vaginal plugs (to determine whether females

showed normal mating behavior), the number of litters produced,

and the amount of pups delivered. Histological evaluation of testes

and ovaries were as previously described [11]. Follicles and

corpora lutea were counted in five ovary sections of each mouse.

Follicle classification was according to Pedersen and Peters [36].

TUNEL staining was done on 5 mm testis sections using an in situ

cell death detection kit from Roche.

Western Blot Analysis and Indirect Immunofluorescence
Western blot analysis was performed as described earlier [37].

Extracts of MEFs, splenocytes, and bone marrow were prepared in

PBS containing 0.1% NP40, 10% glycerol and complete protease

inhibitor cocktail (Roche). Extracts were centrifuged at 20,000 g

for 15 min (4uC), and supernatants collected for electrophoresis.

Quantitation of relative Cdc20 protein levels in Cdc20+/H,

Cdc20+/2, Cdc20H/H and Cdc202/H testis and ovary, and

Cdc202/H MEFs, spleen, and bone marrow was done as previously

described [38]. Briefly, Cdc20 western blot signals obtained with

rabbit Cdc20 antibody from Santa Cruz (SC-8358), were

quantified using ImageJ software (http://rsbweb.nih.gov) and

normalized to background and b-actin (Sigma A5441) or a-tubulin

(Sigma, T-9026) signals. Values obtained were normalized to those

of corresponding wild-type tissues and MEFs, where wild-type

signals were set at 100. Normalized signal values were converted to

percent protein using the graph of Figure S3. Relative Cdc20

protein amounts represent the average of at least two independent

samples.

Indirect immunofluorescence was performed as previously

described [37,39]. Immunofluorescence images were captured

using a Carl Zeiss LSM 510 laser-scanning microscope with a c-

Apochromat 1006 oil immersion objective. Fluorescent signals

from cyclin B1 and P-(Ser) CDKs substrate labelings were

quantitated using ImageJ software. The mean fluorescence

intensity was determined after background subtraction of images

transformed to 8 bits grayscale. The following primary antibodies

were used: cyclin B1 (Calbiochem, PC-133), P-(Ser) CDKs

substrate (Cell Signaling, #2324), BubR1(1-350) [11], human

anti-centromere antibody (Antibodies Inc, 15-235-0001), Bub1(25-

165) [28], Mad2 (polyclonal anti-mouse full-length Mad2

antibodies generated in a rabbit), and Rec8 (kindly provided by

Dr. J. Lee [25]).

Isolation and Culture of Oocytes and Fertilized Eggs
Primary oocytes were isolated from ovaries of 3- to 4-week-old

Cdc20+/+ and Cdc202/H mice as described [40], and cultured in

micro-drops of G-1 v5 plus medium (Vitrolife) under embryo-

tested paraffin oil (Vitrolife). In case primary oocytes were used in

mRNA microinjection experiments, 50 mg/ml dibutyryl cyclic

AMP (dbcAMP) was added to the G-1 v5 plus medium to inhibit

GVBD. To obtain secondary oocytes, 3- to 4-week-old Cdc20+/+

and Cdc202/H females were injected with pregnant mare serum

gonadotropin (PMSG; 5 IU/mouse, Sigma G4527) and 46 h later

with human chorionic gonadotropin (hCG; 5 IU/mouse, Sigma

C0684). Eighteen h after the hCG injection, ovaries were collected

and secondary oocytes harvested from oviducts. Metaphase II-

arrested oocytes for Rec8 immunostaining experiments were

prepared by culturing primary oocytes from ovaries of 3- to 4-

week-old Cdc20+/+ and Cdc202/H mice in G-1 v5 plus medium

until they arrested in metaphase. Fertilized eggs were produced by

mating 6- to 12 week-old Cdc20+/+ and Cdc202/H females with

Cdc20+/+ males. The next morning, one-cell stage embryos were

harvested from oviducts and freed of cumulus cells as described

[41]. Embryo culturing was done in micro-drops of G-1 v5 plus

medium as described [42]. Embryos were photographed daily

from day E0.5 to E4.5.

Chromosome Counts on Oocytes, One-Cell Stage
Embryos, and Spermatocytes

For chromosome counts on oocytes and one-cell stage embryos,

the procedure of Tarkowski [43] was followed. Briefly, freshly

harvested secondary oocytes and fertilized eggs were cultured for

20 h at 37uC in medium containing 0.5 mg/ml colcemid,

incubated in 1% sodium citrate for 20 min at RT and transferred

to glass slides. Ethyl alcohol and glacial acetic fixative (3:1) was

dropped on the zygotes and secondary oocytes three times. Air-

dried slides were Giemsa stained and chromosomes counted using

a light microscope with a 1006 objective. Primary oocytes were

collected and cultured in micro-drop cultures of G-1 v5 plus

medium. Upon GVBD, primary oocytes were harvested and

chromosome spreads prepared. For chromosome counts on

spermatocytes, testes were collected and minced between two

microscope slides. Released cells were suspended in 5 ml PBS,

centrifuged at 1,000 rpm for 5 min, resuspended 5 ml 0.075 M

KCl, and incubated at RT for 30 min. Cells were fixed in

Carnoy’s solution, washed, and finally resuspended in 0.5 ml

fixative. Twenty-five ml aliquots were dropped onto pre-wetted

microscope slides and chromosomes were stained with Giemsa.

Live-Cell Imaging of Cultured Primary Oocytes
To measure the accuracy of chromosome segregation during

meiosis I, chromosome movements of primary oocytes were

followed by time-lapse microscopy. To this end, H2B-mRFP

mRNA was produced by in vitro transcription using the T3

mMESSAGE mMACHINE kit (Ambion Inc). Using a Femtojet

microinjector (Eppendorf), GV-stage primary oocytes were

microinjected with 5–10 picoliter of mRNA solution containing

0.5 mg/ml H2B-mRFP mRNA [44]. Injected oocytes were

allowed to recover for 30 min in micro-drops of M2 medium

containing 50 mg/ml dbcAMP and then transferred to 35 mm

glass-bottomed culture dishes (MatTek Corporation) containing
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G-1 v5 plus medium without dbcAMP to induce GVBD.

Chromosome movements were followed using a Zeiss Axio

Observer Z1 system with CO2 Module S, TempModule S,

Heating Unit XL, Pln 40x/0.6 Ph2 DICIII objective, AxioCam

MRm camera, and AxioVision 4.6 software [45]. The tempera-

ture of the imaging medium was kept at 37uC. Images were

collected at interframe intervals of 20 min.

To analyze timing of meiosis I, the time intervals from GVBD

to prometaphase, prometaphase to metaphase, and metaphase to

anaphase were measured. Importantly, only H2B-mRFP mRNA-

injected Cdc20+/+ and Cdc202/H oocytes progressing through

meiosis I without any chromosome segregation errors were

included in our timing analysis.

To determine polar body extrusion rates, Cdc20+/+ and Cdc202/

H oocytes were collected and monitored by differential interference

contrast (DIC) time-lapse microscopy as they progressed through

meiosis I.

To analyze the degradation kinetics of mitotic cyclins and

securin, coding sequences for cyclin B1-EGFP, securin-EYFP and

cyclin A2-EGFP were cloned into pBluescript RN3 or pMDL2

[46], and mRNAs were produced by in vitro transcription as

described above. GV-stage primary oocytes were microinjected

with 5–10 picoliter of mRNA solutions containing 0.5 mg/ml

H2B-mRFP +0.5 mg/ml cyclin B1-EGFP, 0.1 mg/ml H2B-mRFP

+0.1 mg/ml securin-YFP, or 0.1 mg/ml H2B-mRFP +0.1 mg/ml

cyclin A2-EGFP. Injected oocytes were allowed to recover for

30 min in micro-drops of M2 medium containing 50 mg/ml

dbcAMP and then transferred to 35 mm glass-bottomed culture

dishes. Time-lapse microscopy was initiated 1 or 2 h after GVBD

to allow for expression of fluorescent protein-tagged APC/C

substrates. Images were collected at interframe intervals of 20 min.

Quantification of fluorescence levels was as follows. For each

oocyte and for each time point, images detecting mRFP, EGFP/

EYFP, and DIC were acquired. Time-lapse images were then

exported as grayscale ‘‘avi’’ uncompressed files. Videos were

opened using ImageJ using avi reader plugin. DIC images were

used to highlight the area occupied by the oocyte using the

freehand tool in ImageJ. The highlighted area was moved to the

corresponding EGFP/EYFP image and the mean fluorescence

intensity within this area measured after background subtraction.

Mean fluorescence intensities were expressed in arbitrary units.

The value of time zero (the fluorescence intensity for the first

image acquired) was considered 100% and the subsequent time-

lapse intensities were normalized against it. Excel T-TEST

software was used for statistical analyses.

Supporting Information

Figure S1 Chromosome missegregation in Cdc20-/H primary

oocytes does not seem to involve non-disjunction of bivalents. (A)

A Cdc202/H primary oocyte in metaphase I stained for the meiotic

cohesin component Rec8 [46], centromeres (ACA) and DNA

(Hoechst). Note that Rec8 signals are localized along chromosome

arms of bivalents. (B) Cdc20+/+ and Cdc202/H primary oocytes

were cultured until metaphase II arrest, collected and stained for

Rec8, centromeres and DNA. Note that chromosome arms in

metaphase II are negative for Rec8 irrespective of genotype,

indicating the lack of bivalents. Scale bar represents 10 mm.

Found at: doi:10.1371/journal.pgen.1001147.s001 (0.61 MB TIF)

Figure S2 Mitotic checkpoint proteins properly localize to

kinetochores of Cdc202/H primary oocytes. Cdc20+/+ and

Cdc202/H primary oocytes were harvested from ovaries and

cultured until they had progressed to metaphase I (,7 h after

GVBD). Oocytes were fixed and immunostained for centromeres

(ACA antibody) and either Bub1, BubR1 or Mad2. DNA was

visualized by Hoechst staining. Scale bar represents 10 mm.

Found at: doi:10.1371/journal.pgen.1001147.s002 (1.22 MB TIF)

Figure S3 Percent Cdc20 protein plotted versus the average

band intensity on western blots.

Found at: doi:10.1371/journal.pgen.1001147.s003 (0.14 MB TIF)

Video S1 Example of a Cdc202/H oocyte undergoing chromo-

some missegregation during meiosis I. Chromosomes (red) were

marked by injection of H2B-mRFP prior to GVBD. Note the

presence of lagging chromosomes as sister chromatids move to

opposite poles in anaphase.

Found at: doi:10.1371/journal.pgen.1001147.s004 (2.82 MB

MOV)

Video S2 Second example of a Cdc202/H oocyte undergoing

chromosome missegregation during meiosis I. Chromosomes (red)

were marked by injection of H2B-mRFP prior to GVBD. Note the

presence of lagging chromosomes as sister chromatids move to

opposite poles in anaphase.

Found at: doi:10.1371/journal.pgen.1001147.s005 (2.65 MB

MOV)
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