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Tunable phonon blockade 
in quadratically coupled 
optomechanical systems
Hai-Quan Shi1,2, Xiao-Tong Zhou2, Xun-Wei Xu2 & Nian-Hua Liu1,3

We theoretically investigate the phonon statistics of a quadratically coupled optomechanical system, in 
which an effective second-order nonlinear interaction between an optical mode and a mechanical mode 
is induced by a strong optical driving field on two-phonon red-sideband resonance. We show that strong 
phonon antibunching can be observed even if the strength of the effective second-order nonlinear 
interaction is much weaker than the decay rates of the system, by driving the optical and mechanical 
modes with weak driving fields respectively. Moreover, the phonon statistics can be dynamically 
controlled by tuning the strengths and the phase difference of the weak driving fields. The scheme 
proposed here can be used to realize tunable single-phonon sources with quadratically optomechanical 
coupling.

Phonon blockade1, in analogy to the Coulomb blockade2, photon blockade3 and Rydberg blockaded4–8, is a quan-
tum phenomenon that only one phonon can be excited in a nonlinear mechanical oscillator when it is driven by 
external fields. Phonon blockade has already been studied in a mechanical resonator coupled to a superconduct-
ing qubit in the dispersive1,9–11 and resonant12,13 regimes. Effective phonon-phonon interactions can be induced 
by the qubit and strong phonon antibunching effect can be observed for large coupling strength and moderate 
detuning between the mechanical resonator and the qubit.

In the past decades, optomechanical systems have drew great attention in researches on the foundations of 
quantum theory and quantum information processing (for reviews, see refs14–18.). Recently, two different groups 
studied phonon statistics in quadratically coupled optomechanical systems19,20. Seok and Wright found that anti-
bunched single-phonon field appears for large optomechanical cooperativity19. Hong Xie et al. found that strong 
effective phonon-phonon nonlinear interaction as well as phonon blockade can be induced by a strong optical 
driving field in the quadratically coupled optomechanical system20.

In contrast to refs1,9–12,19,20, where the phonon blockade is induced by strong effective phonon-phonon inter-
actions, an interference-based phonon blockade called unconventional phonon blockade (UCPNB) was studied 
in ref.13. UCPNB, due to the destructive interference between different paths for two-phonon excitation, can be 
obtained with weak effective phonon-phonon interactions is similar to the unconventional photon blockade in 
a weakly nonlinear system of photonic molecule21–33. More recently, UCPNB was studies in a coupled nonlinear 
mechanical system with weak nonlinearity34.

In this paper, we shall theoretically investigate UCPNB in a quadratically coupled optomechanical system. An 
effective second-order nonlinear interaction between an optical mode and a mechanical mode can be induced 
when the quadratically coupled optomechanical system is driven by a strong optical driving field on two-phonon 
red-sideband resonance. Beside the strong optical driving field, the optical and mechanical modes are also driven 
by a weak optical and mechanical fields respectively. Different from the previous studies19,20, we will show that 
strong phonon antibunching can be observed even if the strength of the effective second-order nonlinear inter-
action is much weaker than the decay rates of the system. Moreover, the phonon statistics can be dynamically 
controlled by tuning the strengths and the phase difference of the weak driving fields. The proposal provides a 
simple way to realize tunable single-phonon sources with quadratically optomechanical coupling.
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Results
Theoretical model and analytical results.  We study a quadratically coupled optomechanical system in 
which an optical mode is coupled to the second order of the position of a mechanical mode, as schematically 
shown in Fig. 1. The optical mode with frequency ωc is driven by a strong driving field with the strength 

γ γ|Ω |  { , }L c m  and frequency ωL, where γc and γm are the damping rates of the optical and mechanical modes 
and Δc ≡ ωc − ωL is the frequency detuning between the strong driving field and the optical mode. Meanwhile, 
the optical mode and mechanical mode (frequency ωm) are driven by weak external fields with strengths {|εp|, 
|εm|} < {γc, γm} and frequencies {ωp, ωd}, with the detuning between the optical driving fields δp = ωp − ωL. The 
Hamiltonian for quadratically coupled optomechanical system in the rotating reference frame with optical fre-
quency ωL takes the form (ħ = 1)

ω

ε ε

= Δ + + +

+ Ω + + + . .δ ω− −

† † † †

† † †( )
H A A B B gA A B B

A e A e B

( )

H c , (1)

c m

L p
i t

m
i t

2

p d

where A and A† (B and B†) denote the annihilation and creation operators for the optical mode (mechanical 
mode), g > 0 describes the strength of the quadratic optomechanical coupling between the optical and mechanical 
modes, and H.c. stands for Hermitian conjugate. The quadratically optomechanical coupling can be found in the 
optomechanical crystals35, Fabry-Perot cavities with membrane-in-the-middle36–39, and some other optomechan-
ical systems40–43.

The operators can be rewritten as the sum of their steady-state mean values and quantum fluctuation operators 
as: A → α + a and B → β + b, where α and β are the steady-state mean values, a and b are the quantum fluctura-
tion operators. The steady-state mean values α and β can be obtained approximately by setting the strength of the 
weak driving fields as zero, i.e. εm = εp = 0, then we have
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After some standard procedures for operator linearization, the Hamiltonian for the quantum flucturation 
operators reads
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For a strong optical driving field γ γ|Ω |  { , }L c m , we assume that the steady-state mean value α is much larger 
than the quantum flucturation operators a as α 

†a a2 , so the term ga†a(b† + b)2 in the above equation can be 
neglected. In the rotating reference frame with respect to the unitary operator R(t) = exp(iδpa†at + iωdb†bt), the 
effective Hamiltonian can be obtained under the rotating-wave approximation by neglecting the terms oscillating 
with high frequencies in equation (4), e.g. 2ωd and δp + 2ωd, as
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where the detunings δ = δp − 2ωd, Δp = Δc − δp, Δm = ωm + 2g|α|2 + g − ωd, and we assume that the detunings 
satisfy the condition δ ω ω|Δ | Δ { }, , { , }p m m d . J = gα is the effective nonlinear coupling strength between the 
optical and mechanical modes. Without loss of generality, J, εp and εm are assumed to be real and the phase 

Figure 1.  The schematic sketch of a quadratically coupled optomechanical system.
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difference between the driving fields is denoted by θ. For simplicity, we set δp = 2ωd and Δc = 2(ωm + 2g|α|2 + g), 
then we have δ = 0 and Δ ≡ Δm = Δp/2, and the effective Hamiltonian ′Heff  become time-independent as
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= Δ + Δ + +
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To quantify the statistics of the phonons in the system, we consider the second-order correlation functions in 
the steady state defined by
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where nb ≡ 〈b†(t)b(t)〉 is the mean phonon number. The dynamic behavior of the total open system is described 
by the master equation for the density matrix ρ44
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where we assume that the mean thermal photon number is negligible for the frequency of the optical mode is very 
high, and nth is the mean number of the thermal phonons, given by the Bose-Einstein statistics 
nth = [exp(ħωm/kBT) − 1]−1 with the Boltzmann constant kB and the environmental temperature T. The 
second-order correlation function τg ( )b

(2)  can be calculated by solving the master equation (8) numerically within 
a truncated Fock space.

It is instructive to find the optimal conditions for strong phonon antibunching before the numerical calcula-
tions of the second-order correlation function of the phonons. Following the approach given in ref.22, the optimal 
conditions for UCPNB can be derived analytically with the effective Hamiltonian Heff given in equation (6), in the 
limit T → 0 and the weak driving condition ε ε γ γ{ , } { , }p m c m . The derivation of the the optimal conditions is 
provided in the section of Methods. When θ = Nπ (N is an integer), the optimal conditions are simply given by
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In order to make sure that Δopt and Jopt given in equations (11) and (12) have real solutions, the phase θ should 
satisfy the condition
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We take Jopt > 0 in the following numerical calculations, so that N should be an odd number. Without loss of 
generality, we choose N = 1.

Numerical results.  In order to confirm the appearing of optimal UCPNB with the optimal parameters given 
in equations (9–13), we numerically solve the master equation (8) and calculate the second-order correlation 
functions τg ( )b

(2) . In Fig. 2(a), the equal-time second-order correlation functions g (0)b
(2)  is plotted as a function of 

the detuning Δ/γc with the effective coupling strength J = 0.025γc and phase θ = π. It is clear that the optimal 
phonon blockade appears at the detuning Δ = 0 and this agrees well with the analytical result given in equation 
(9). The corresponding mean phonon number nb is plotted in Fig. 2(b). The maximal value of nb also appears at 
the detuning Δ = 0 for resonant driving. The dependence of g (0)b

(2)  on the strength of the effective coupling J/γc 
is shown in Fig. 2(c) for Δ = 0 and θ = π. There is a minimal value of g (0)b

(2)  around J ≈ 0.025γc which is in agree-
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ment with equation (10). τg ( )b
(2)  is plotted as a function of the normalized time delay τ/(2π/γm) in Fig. 2(d) with 

Δ = 0, J = 0.025γc and θ = π. The time duration for strong phonon antibunching is about the lifetime of the 
phonons.

There are two weak driving fields applied to the system with the driving strengths εp and εm and they can allow 
for dynamic control of the phonon statistics by tuning the strengths and the phase difference of driving fields. In 
Fig. 3 for θ = π, g (0)b

(2)  is plotted (a) as a function of the mechanical driving strength εm/γc with optical driving 
strength εp = 0.01γc, (b) as a function of the optical driving strength εp/γc with mechanical driving strength 

Figure 2.  (a) g (0)b
(2)  is plotted as a function of the detuning Δ/γc with the effective coupling strength 

J = 0.025γc; (b) mean phonon number nb is plotted as a function of Δ/γc with J = 0.025γc; (c) g (0)b
(2)  is plotted as 

a function of J/γc with Δ = 0; (d) τg ( )b
(2)  is plotted as a function of the normalized time delay τ/(2π/γm) with 

Δ = 0 and J = 0.025γc. The other parameters are εm = 0.005γc, εp = 0.01γc, θ = π, γm = γc/10, and nth = 10−4.

Figure 3.  g (0)b
(2)  is plotted (a) as a function of the mechanical driving strength εm/γc with optical driving 

strength εp = 0.01γc, (b) as a function of the optical driving strength εp/γc with mechanical driving strength 
εm = 0.005γc. The other parameters are Δ = 0, J = 0.025γc, θ = π, γm = γc/10, and nth = 10−4.
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εm = 0.005γc. The minimal g (0)b
(2)  appears with mechanical driving strength εm ≈ ±0.005γc in Fig. 3(a) and with 

optical driving strength εp ≈ 0.01γc in Fig. 3(b). These results are consistent with the analytically expression given 
in equation (10). Moreover, as shown in Fig. 3(a), the phonons exhibit strong bunching as εm = 0 but exhibit 
strong antibunching as εm = 0.005γc. These phenomena can be understand as follows: when εm = 0, phonons only 
can be generated in pairs by the optical driving field, so the phonons exhibit strong bunching; when εm ≠ 0, pho-
nons pairs can be generated in two different ways (by optical driving field or by mechanical driving field), the 
strong phonon antibunching is induced by the destructive interference between the two different ways for pho-
non pairs generation when εm ≈ εp/2 = 0.005γc. As shown in Fig. 3(b), the phonons exhibit strong antibunching 
as εp = 0.01γc but exhibit bunching as εp > 0.02γc or εp < 0. So we can control the phonon statistics dynamically by 
tuning the strengths of driving fields.

In Fig. 4(a), we show the contour plot of g (0)b
(2)  as a function of the phase θ/π and the detuning Δ/γc with the 

effective coupling strength J given by
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In Fig. 4(b), we show the contour plot of g (0)b
(2)  as a function of θ/π and J/γc with the detuning Δ given by
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The white dashed lines refer to equation (11) in Fig. 4(a) and refer to equation equation (12) in Fig. 4(b). 
The white dashed lines conform very closely to optimal region (dark blue region) for phonon antibunching. 
Obviously, the phonon statistic properties are also dependent on the phase difference θ of the driving fields.

Different from the photon blockade in optical cavities with frequency 1014 Hz, where the mean thermal pho-
ton number is negligible, the effect of the thermal phonons should be considered in the investigation of phonon 
blockade in mechanical resonators even with microwave-frequency13. In Fig. 5(a), g (0)b

(2)  is plotted as a function 
of the mean thermal phonon number nth. One can see that the phonon antibunching becomes weaker with the 
increase of the the mean thermal phonon number nth. In Fig. 5(b), g (0)b

(2)  is plotted as a function of the driving 
strength εm/γc with different mean thermal phonon number nth. The optimal phonon blockade can be obtained 
by properly increasing the driving strengths according to the mean thermal phonon number nth.
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Figure 4.  (a) Contour plot of g (0)b
(2)  as a function of the phase θ/π and the detuning Δ/γc for effective coupling 

strength J given in equation (19); (b) contour plot of g (0)b
(2)  as a function of θ/π and J/γc for Δ given in equation 

(17). The white dashed lines refer to equation (11) in (a) and refer to equation (12) in (b). The other parameters 
are εm = 0.005γc, εp = 0.01γc, γm = γc/10, and nth = 10−4.



www.nature.com/scientificreports/

6ScIeNtIfIc REPOrTS |  (2018) 8:2212  | DOI:10.1038/s41598-018-20568-x

Discussion
In summary, we have investigated the UCPNB in a quadratically coupled optomechanical system. It has been 
shown that strong phonon antibunching can be observed even with weak effective second-order nonlinear inter-
action. The optimal conditions for UCPNB were given analytically and they well coincided with the numerical 
results. Moreover, the phonon statistics can be dynamically controlled by tuning the strengths and the phase 
difference of external driving fields. The results show that tunable single-phonon sources can be realize in the 
quadratically coupled optomechanical systems.

Based on the numerical results, we can estimate the experimental parameters for realizing our proposal. For 
instance, if we take the parameters according to the numerical simulations in ref.35, ωm/2π = 225 MHz, γc/2π = 20 
MHz, g/2π = 10 kHz, and γm/2π = 80 kHz, then the effective coupling strength J = 0.025γc can be realized with 
|α| = 50 when the strength of the strong optical driving field is taken as ΩL ≈ 27.5 GHz. In order to reduce the 
negative impact of the environment on the phonon statistics, the experiments should be done under low temper-
ature with high mechanical frequency. The mechanical resonators with frequency above 5 GHz have already be 
realized in many groups45,46, and the mean thermal phonon number will be smaller than 10−4 at a temperature of 
25 mK in a dilution refrigerator. So far as we know, the second-order correlation of phonons can not be observed 
directly. In a recent experiment, the correlations of phonons have been observed indirectly by coupling an aux-
iliary optical cavity to the mechanical resonator and measuring photon correlations of the output field from the 
optical cavity47.

Methods
In this section, we will derive the optical conditions for UCPNB analytically with the effective Hamiltonian Heff 
given in equation (6), in the limit T → 0 and the weak driving condition ε ε γ γ{ , } { , }p m c m . The wave function 
can be expanded on a Fock state basis as

ψ = + + + + C C C C0,0 1,0 0,1 0,2 , (19)00 10 01 02

where n m,  represents the state with n photons and m phonons, and the corresponding coefficient |Cnm|2 denotes 
the occupying probability. In the weak driving condition, i.e. ε ε γ γ{ , } { , }p m c m ,  we will have 
| | | | | | | | | | | | | |� � � �C C C C C C C{ , , } { , , }00 10 01 02 11 02 12 , so the wave function can be truncated to the 
one-photon and two-phonon states approximately. Substituting the wave function in equation (19) and the 
Hamiltonian in equation (6) into the Schrödinger’s equation ψ ψ=id dt H/ eff , then the dynamical equations for 
the coefficients Cnm are shown as
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In the steady state, i.e. dCnm/dt = 0, the phonon blockade ≈g (0) 0b
(2)  appears when C02 ≈ 0. Under the condi-

tion for phonon blockade, i.e. C02 ≈ 0, the coefficients C10, C01 and C00 satisfy the linear equations

Figure 5.  (a) g (0)b
(2)  is plotted as a function of the mean thermal phonon number nth with different driving 

strengths εm/γc, (b) g (0)b
(2)  is plotted as a function of the driving strength εm/γc with different mean thermal 

phonon number nth. The other parameters are Δ = 0, J = 0.025γc, θ = π, ε ε γ= ./(0 0025 )p m c
2  and γm = γc/10.
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From equations (23) and (24), C10 and C01 are given by
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Substituting C10 and C01 into equation (25), we obtain
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As |C00| ≈ 1 ≠ 0, then we get the conditions for the optimal parameters Jopt and Δopt as

ε γ θ θ ε γ+ Δ + =( )J cos 2 sin 0, (29)p m m copt opt
2

ε θ γ θ εΔ − + Δ = .( )J 2 cos sin 4 0 (30)p m mopt opt
2

opt

The optimal parameters for phonon blockade given in equations (9–13) are obtained by solving the equations 
(29) and (30).
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