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Abstract
UDP-glucuronosyltransferases (UGTs) are involved in phase II conjugation reactions of xenobiotics and differences in their 
isoform activities result in interindividual kinetic differences of UGT probe substrates. Here, extensive literature searches were 
performed to identify probe substrates (14) for various UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, 
UGT2B7 and UGT2B15) and frequencies of human polymorphisms. Chemical-specific pharmacokinetic data were collected 
in a database to quantify interindividual differences in markers of acute (Cmax) and chronic (area under the curve, clearance) 
exposure. Using this database, UGT-related uncertainty factors were derived and compared to the default factor (i.e. 3.16) 
allowing for interindividual differences in kinetics. Overall, results show that pharmacokinetic data are predominantly available 
for Caucasian populations and scarce for other populations of different geographical ancestry. Furthermore, the relationships 
between UGT polymorphisms and pharmacokinetic parameters are rarely addressed in the included studies. The data show that 
UGT-related uncertainty factors were mostly below the default toxicokinetic uncertainty factor of 3.16, with the exception of 
five probe substrates (1-OH-midazolam, ezetimibe, raltegravir, SN38 and trifluoperazine), with three of these substrates being 
metabolised by the polymorphic isoform 1A1. Data gaps and future work to integrate UGT-related variability distributions 
with in vitro data to develop quantitative in vitro–in vivo extrapolations in chemical risk assessment are discussed.

Article Highlights

• Extensive literature search of human kinetic parameters for UGT probe substrates.
• Bayesian meta-analysis quantifying human variability in acute and chronic kinetic parameters.
• UGT isoform-related uncertainty factors were below the 3.16 kinetic default uncertainty factor for most probe 

substrates.
• Quantifying human variability in UGT polymorphisms.
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Introduction

Glucuronidation is an enzymatic reaction catalysed by UDP-
glucuronosyltransferase (UGT) isoforms which involves 
the conjugation of endogenous substrates (e.g. bilirubin) 
and xenobiotics [e.g. pharmaceuticals (morphine), dietary 
chemicals (flavonoids), and environmental contaminants 
(mycotoxins)] with glucuronic acid (Dong et al. 2012; Lv 
et al. 2019). In humans, glucuronide conjugates are water 
soluble and readily excreted in the urine or the faeces result-
ing in increased elimination and most often inactivation of 
the compound, thereby contributing to xenobiotic detoxi-
fication (Fisher et al. 2001). Multiple UGT isoforms are 
often involved in xenobiotic metabolism, which, from a 
toxicological viewpoint, is advantageous as dysfunctional-
ity of an isoform does not necessarily result in the impaired 
elimination and thus detoxification of chemicals (Lv et al. 
2019). Since UGTs are ubiquitous in pharmacokinetic and 
toxicokinetic processes [absorption, distribution, metabo-
lism and excretion (ADME)], their involvement in human 
metabolic variability is important.

The superfamily of UGT isoforms has a nomenclature 
which is based on similar features to that described for the 
cytochrome P450 (CYP) superfamily (Meech et al. 2019; 
Rowland et  al. 2013). The subfamilies of UGT1A and 
UGT2B are predominantly expressed in the liver as well as 
in the intestine and kidney, where they mediate intestinal 

and hepatic first-pass glucuronidation of many phenolic 
compounds, including pharmaceuticals and natural phe-
nols (Dong et al. 2012, Fig. 1). The most clinically relevant 
hepatic UGTs include UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7 
and 2B15 (Rowland et al. 2013; Stingl et al. 2014). Other 
UGTs from the 2B subfamily are mainly responsible for the 
metabolism of endogenous compounds rather than xenobiot-
ics, such as steroids (2B4, 2B15 and 2B17) and bile acids 
(2B4) (Fisher et al. 2001).

UGT isoforms are known to be highly polymorphic 
with more than a hundred variants described (Stingl et al. 
2014). In most cases, these polymorphic variants result in 
lower expression levels and/or lower activity, and in some 
instances even complete loss of activity (Sim et al. 2013). 
Because of such changes in expression and/or activity, poly-
morphic UGT variants may cause higher plasma concen-
trations of (toxic) metabolites or parent compounds, result-
ing in chemical-induced toxicity. For example, UGT1A1 
polymorphism is associated with irinotecan toxicity, while 
UGT2B7 polymorphism can affect plasma concentrations of 
valproic acid (Tsunedomi et al. 2017; Wang et al. 2018b). 
For other isoforms, comparable impact of UGT polymor-
phisms on internal drug concentrations has been observed 
(Stingl et al. 2014).

For the last 70 years, a 100-fold default uncertainty factor 
(UF) has been applied to derive chronic safe levels of expo-
sure for non-cancer effects of chemicals. This default factor 

Fig. 1  Average distribution of the major UDP-glucuronosyltransferase isoforms in human liver (a), intestine (b) and kidney (c) (Lv et al. 2019)
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allows for interspecies differences (tenfold) and human vari-
ability (tenfold) to chemical exposure. In the 1990s, the ten-
fold factor allowing for human variability has been refined to 
a composite value of two factors of 3.16  (100.5), accounting, 
respectively, for interindividual differences in toxicokinet-
ics and toxicodynamics (Renwick and Lazarus 1998). How-
ever, interindividual differences between healthy adults and 
potentially sensitive subgroups including neonates, elderly 
and poor metabolisers expressing polymorphic UGT genes 
may not be covered by the default kinetic factor (Dorne et al. 
2001b; Renwick and Lazarus 1998). Under such circum-
stances, pathway-specific UFs or chemical-specific adjust-
ment factors (CSAFs) have been proposed and can provide 
an option to replace such default UFs. Pathway-related UFs 
to account for variability have been described for CYP3A4 
as well as efflux and influx transporters (Darney et al. 2019, 
2020; Dorne et al. 2001b). Human variability in glucuro-
nidation processes in relation to UFs has been described 
earlier by Dorne et al. (2001a); however, at the time, infor-
mation on isoform specificity and genetic polymorphisms 
was very limited.

The manuscript aims to investigate human variability in 
UGT activity through (1) identifying isoform-specific UGT 
probe substrates and collecting pharmacokinetic data for 
intravenous and oral markers of acute (maximum concen-
tration (Cmax)) and chronic exposure (clearance, area under 
the curve (AUC)) by means of extensive literature searches 
and meta-analyses, (2) quantifying interindividual differ-
ences in pharmacokinetics by means of hierarchical Bayes-
ian meta-analyses to derive UGT-related variability distri-
butions and UGT-related UFs. Such UGT-related UFs are 
relevant to refine toxicokinetic UFs for risk assessment of 
toxicants, nutrients and environmental xenobiotics that are 
metabolised by UGTs, and (3) unravelling the frequencies 
and pharmacokinetic consequences of UGT polymorphisms 
in human populations. A graphical abstract is depicted in 
Fig. 2.

Materials and methods

Extensive literature searches (ELS) and data 
collection

UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15 were iden-
tified as the most clinically relevant UGT isoforms for 
xenobiotic metabolism (Rowland et al. 2013; Stingl et al. 
2014). Probe substrates for these UGT isoforms were iden-
tified from the in vitro and in vivo literature as compounds 
metabolised by extensive glucuronidation (> 60% of the dose 
excreted in the urine) (Lv et al. 2019; Rowland et al. 2013; 
Stingl et al. 2014; Yang et al. 2017).

ELS were performed using two main databases (i.e. Sco-
pus and PubMed) to identify human pharmacokinetic (PK) 
studies in non-phenotyped adults for isoform-specific UGT 
probe substrates in adults of different geographical ancestry 
or ethnic background. A PK database was then computed, 
including intravenous and oral markers of acute (Cmax) and 
chronic (clearance and AUC) exposure. Search queries for 
the probe substrate deferiprone are illustrated in Table 1 and 
queries for all other substrates are provided in Supplemen-
tary Material 1. Data reporting frequencies of UGT poly-
morphisms distribution and the associated PK parameters 
in phenotyped individuals were collected using a horizontal 
literature search in Google Scholar.

A two-step process was conducted to screen the retrieved 
studies from literature as described previously (Darney et al. 
2019). This process was used to assess whether reported 
PK values were suitable for inclusion in the database. After 
removing duplicates, the following exclusion criteria were 
applied: 1. species other than humans, 2. in vitro studies, 
3. development of analytical methods, 4. modelling stud-
ies, 5. pharmacodynamics investigations only, 6. substrates 
other than those identified as relevant and/or mixtures of 
substrates. Articles meeting the exclusion criteria were not 
considered for further evaluation. Furthermore, articles that 
were written in any other language than English or did not 

Fig. 2  Human variability in the pharmacokinetics of isoform-specific UGT probe substrates, genetic polymorphisms and UGT-related uncer-
tainty factors
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contain original research data (e.g. reviews) were excluded 
from analysis. Overall, data on non-phenotyped healthy 
individuals were collected and included in the meta-analysis 
(see “Data standardisation and meta-analyses”). The specific 
selection of subgroups is described in Supplementary Mate-
rial 1. In a second step, the full text of the included papers 
was checked for PK parameter values after single-dose 
exposure. Repeated dosing studies and studies for which 
multiple formulas were administered to the same group of 
volunteers were excluded. However, for ethinylestradiol, 
data were included for both single dose and repeated dosing 
for 21 days, the standard regimen for anticonception drugs.

Data standardisation and meta‑analyses

Meta-analyses of PK parameter values were performed 
in non-phenotyped subjects for each probe substrate to 
derive UGT-related variability distributions and UGT-
related UFs. For this purpose, each PK parameter was 
normalised in a harmonised manner (Cmax expressed in 
ng/mL; AUC in ng*h/mL and clearance in L/h/kg bw) 
while applying body weight correction to the applied 
doses (mg/kg bw). If available, the reported (mean) body 
weight was used, or continent specific body weights were 
used to normalise the dose if body weight data were not 
available (Walpole et al. 2012). For SN38, the dose was 
normalised to body surface area instead of body weight, 
as this is the standard measure for this compound. If body 
surface area data were not available, a default value of 
1.79  m2 was used (Sacco et al. 2010). Data from these 
studies were extracted mostly as arithmetic mean (AM) 
and standard deviation (SD), but sometimes geometric 

means (GM) and geometric standard deviations (GSD) 
were reported. Generally, PK data are recognised to fol-
low a lognormal distribution (Dorne et al. 2001b; Nau-
mann et al. 1997; Renwick and Lazarus 1998). Since GM 
and GSD are more appropriate to summarise a lognormal 
distribution, all pharmacokinetic data were described as 
GM and GSD using the following equations:

where X is the arithmetic mean and  CVN is the coefficient of 
variation for normally distributed data:

In some studies, SD was not reported and was estimated 
from the standard error (SE, SEM) or CV using equations 
described previously (Darney et al. 2019).

The objective of the meta-analyses is to provide accu-
rate information regarding interindividual differences in 
non-phenotyped adults of the PK parameters for a substrate 
expressed as distributions. Variability related to interstudy, 
intersubstrate and interindividual differences was analysed 
for each substrate and parameter and for each UGT isoform, 
through a decomposition of the PK parameter variance 
(clearance, AUC or Cmax) using a previously described 
hierarchical Bayesian model (Darney et al. 2019; Wiecek 

(1)
GM =

X
√

1 + CV2
N

,

(2)GSD = exp

(

√

ln
(

1 + CV2
N

)

)

,

(3)CVN =
SD

X
.

Table 1  Keyword queries for the extensive literature searches (formatted for Scopus)

TITLE-ABS-KEY term searched in the title, the abstract and the keywords of the paper

General search terms TITLE-ABS (patient*) OR TITLE-ABS (human) OR TITLE-ABS (adult) OR TITLE-ABS (adults) OR 
TITLE-ABS (child) OR TITLE-ABS (children) OR TITLE-ABS (infant) OR TITLE-ABS (neonate) OR 
TITLE-ABS (newborn) OR TITLE-ABS (newborns) OR TITLE-ABS (elderly) OR TITLE-ABS (“preg-
nant women”) OR TITLE-ABS (men) OR TITLE-ABS (women) OR TITLE-ABS (“ethnic group”) OR 
TITLE-ABS (caucasian) OR TITLE-ABS (asian) OR TITLE-ABS (african) OR TITLE-ABS (“genetic 
polymorphism*”) OR TITLE-ABS (“individual susceptibility”) OR TITLE-ABS (“gene environment”) 
OR TITLE-ABS (“ethnic variability”) OR TITLE-ABS (“Afro American”) OR TITLE-ABS (hispanic) 
OR TITLE-ABS (“race difference”) OR TITLE-ABS (“age difference”) OR TITLE-ABS (“race differ-
ences”) OR TITLE-ABS (“age differences”) OR TITLE-ABS (“gender differences”) OR TITLE-ABS 
(“gender difference”) OR TITLE-ABS (“sex difference”) OR TITLE-ABS (“sex differences”)

Search terms for probe substrates (TITLE-ABS (deferiprone) OR TITLE-ABS (ferriprox))
Search terms for pharmacokinetics TITLE-ABS-KEY (auc) OR TITLE-ABS-KEY (area AND under AND the AND curve) OR TITLE-

ABS-KEY (area AND under AND curve) OR TITLE-ABS-KEY (half AND life) OR TITLE-ABS-KEY 
(half-life) OR TITLE-ABS-KEY (half-lives) OR TITLE-ABS-KEY (clearance) OR TITLE-ABS-KEY 
(cmax) OR TITLE-ABS-KEY (vmax) OR TITLE-ABS-KEY (km) OR TITLE-ABS-KEY (“michaelis 
constant”) OR TITLE-ABS-KEY (pharmacokinetic) OR TITLE-ABS-KEY (pharmacokinetics) OR 
TITLE-ABS-KEY (toxicokinetic) OR TITLE-ABS-KEY (toxicokinetics)

Exclusion TITLE-ABS-KEY (“cell line*”) OR TITLE-ABS-KEY (“cell culture*”) OR TITLE-ABS-KEY (rat) OR 
TITLE-ABS-KEY(rats) OR TITLE-ABS-KEY (mouse) OR TITLE-ABS-KEY (mice)



2641Archives of Toxicology (2020) 94:2637–2661 

1 3

et al. 2019). For the meta-analysis, non-informative prior 
data were selected for most compounds, except for zidovu-
dine and oxazepam for which kinetic variability was previ-
ously meta-analysed (Dorne et al. 2001a).

Overall, the meta-analyses provided variability and 
uncertainty distributions describing interindividual differ-
ences for each PK parameter using median values and 95% 
confidence intervals. The coefficient of variation (CV) was 
also estimated as follows:

where τj is the interindividual difference of the activity for 
a substrate ‘j’.

UGT isoform-related UFs were calculated as the ratio 
between the percentile of choice and the median of the dis-
tribution for each PK parameter for 95th and 97.5th centiles.

Software

All statistical analyses were performed in R (version 3.5) 
and the Bayesian modelling was implemented in Jags 
(4.2.0) (Plummer 2003). Data processing and graphical dis-
play were performed in R (dplyr and ggplot2 packages) (R 
Development Core Team 2018; Wickham 2016; Wickham 
et al. 2020). References of the studies used to compile the 
database were stored and sorted in EndNote X8.

Results and discussion

Extensive literature searches and data collection

UGT isoforms can conjugate a wide variety of substrates 
and show a broad overlapping substrate specificity. This 
is advantageous when detoxifying chemicals; however, 
because of such overlap, identifying selective probe sub-
strates for each isoform remains a challenge. Moreover, 
UGTs are also present in the gastrointestinal tract and pre-
systemic conjugation occurs readily for a range of com-
pounds. Here, to quantify isoform-specific variability in 
UGTs, selective probe substrates with available PK data 
for each isoform were selected. Moreover, differences in 
variability between oral and intravenous data were com-
pared to investigate the contribution of bioavailability and 
pre-systemic conjugation after oral intake. A total of 14 
isoform-specific UGT probe substrates covering both the 
UGT1A and UGT2B subfamilies were identified, namely 
1-OH-midazolam (UGT1A4), codeine (UGT2B7), defer-
iprone (UGT1A6), entacapone (UGT1A9), ethinylestradiol 
(UGT1A1), ezetimibe (UGT1A1/UGT1A3), mycophenolic 
Acid (UGT1A9), oxazepam (UGT2B15/UGT1A9), propofol 

(4)CV =

√

exp
(

ln
(√

exp(1∕τj

))2

− 1,

(UGT1A9), raltegravir (UGT1A1), SN38 (UGT1A1), tel-
misartan (UGT1A3), trifluoperazine (UGT1A4) and zido-
vudine (UGT2B7).

From the ELS, a total of 7173 papers were assessed from 
Scopus and PubMed (up to August 2019) and an extra 11 
papers were retrieved from Google Scholar, for the 13 UGT 
isoform probe substrates and for zidovudine, 10 studies were 
included from a previous database (shared by Dr. N. Qui-
not, collated for EFSA/SCER/2014/06 project). PRISMA 
flow diagrams for the individual compounds are provided 
in Supplementary Material 2. Figure 3 provides a summary 
PRISMA diagram for all papers collected in the ELS (Moher 
et al. 2009). Overall, a total of 210 peer-reviewed publica-
tions were selected from the ELS and included in the data-
base. Supplementary Material 1 provides the search queries 
for both Scopus and PubMed for the individual compounds. 
Table 2 illustrates the selected probe substrates, the structure 
of the compounds, bioavailability, percentage of glucuroni-
dation and their site of glucuronidation. 

Interindividual differences in the kinetics 
of isoform‑specific UGT probe substrates 
and related uncertainty factors in non‑phenotyped 
adults

Results of the meta-analyses are expressed as geometric 
means (normalised to dose and body weight) for the 14 
isoform-specific UGT probe substrates and are illustrated 
for markers of acute (Cmax) and chronic (AUC/clearance) 

Fig. 3  PRISMA diagram illustrating the extensive literature searches 
performed for the 13 isoform-specific UGT probe substrates (UGT1A 
and UGT2B subfamilies) and human pharmacokinetic studies
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exposure after oral and intravenous administration in 
Fig. 4. The full dataset of extracted information used can be 
accessed on EFSA knowledge junction (Kasteel et al. 2020). 
Data availability was variable for each UGT probe substrate 
and interstudy differences are reported for each compound. 
For SN38, only patient data were available and no data on 
healthy adult individuals were reported in the literature. For 
deferiprone, no clear distinction could be made between 
healthy adult data and patient data for all three parameters, 
suggesting that the condition of the individuals did not 
influence the pharmacokinetics of this compound. In Fig. 5, 
isoform-specific interindividual differences in AUC are 
illustrated for world populations from different geographical 
ancestry or country of origin (one probe substrate per UGT 
isoform). These plots indicate that no clear differences in 
chronic exposure (AUC) can be demonstrated across world 
populations from different geographical ancestry and, there-
fore, there is indication of significant interethnic differences 
for these probe substrates. The same conclusion holds for 
other PK parameters and other probe substrates, which are 
illustrated in Supplementary Material 3.

Interindividual differences were higher compared to an 
earlier study (Dorne et al. 2001a), which included 11 probe 
substrates compared to 14 here; with an overlap of only two 
probe substrates (zidovudine (AZT) and oxazepam). In addi-
tion, Dorne et al. (2001a) mostly considered UGT2B7 probe 
substrates while UGT1A1-specific probe substrates were not 
included since they were not available at that time. Polymor-
phisms have the highest impact on the PK of UGT1A1 probe 
substrates, which may explain the larger interindividual dif-
ferences in this study. Finally, the 2001 study investigated 
PK data for potentially sensitive subgroups including neo-
nates, infants, children, and the elderly, but little-to-no data 
for these subgroups were available for the included probe 
substrates here (Dorne et al. 2001a). It is worth noting that 
UGT metabolism in neonates is impaired and that they show 
a low glucuronidation activity (Allegaert et al. 2009). Data 
for such PK differences in markers of acute and chronic 
exposure are still very limited for these subgroups, but can 
reach two- to threefold in comparison with healthy adults 
so that the default kinetic factor may be inadequate and an 
extra UF may be required to cover these subgroups (Dorne 
et al. 2001b, 2005).

UGT1A1

For UGT1A1, ethinylestradiol, ezetimibe, raltegravir 
and SN38 were identified as probe substrates. Besides 
pharmaceuticals, UGT1A1 is involved in the glucuroni-
dation of several compounds important in (food) toxicol-
ogy, including the naturally occurring food components 
resveratrol and several hydroxyflavones, the heterocyclic 

amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine 
(PhIP) and the phytochemical ferulic acid (Brill et al. 
2006; Li et  al. 2011; Malfatti and Felton 2004; Tang 
et al. 2010). For ethinylestradiol, only single-dose studies 
were used to quantify the UGT1A1 variability. PK data 
were available for Europeans, East Asians, South Asians, 
Southeast Asians, North Americans, South Americans, 
North Africans and Middle Eastern adults with the major-
ity of the datasets from North American and European 
studies. Data gaps were identified for specific groups like 
Central Americans and Africans. Chemical-specific CVs 
ranged from 35 to 72%, while isoform-related CVs ranged 
from 46 to 51% (Table 3). Overall, the UGT1A1 related 
UFs were most often below or close to the default TK 
UF of 3.16 for at least 97.5% of the healthy adults when 
considering the median value. However, our analysis by 
the Bayesian model takes into account the uncertainty 
around the estimation of the UF and this shows that, given 
the available data (number of studies and number of indi-
viduals per study), the default factor may not cover all 
possible cases. Indeed, the upper bound of the confidence 
interval is higher than 3.16. The chemical-specific data 
show that SN38, ezetimibe and raltegravir all have an 
 UF97.5 higher than 3.16, ranging from 3.2 to 3.6 (Table 3). 
Ethinylestradiol is the only UGT1A1 probe substrate 
studied here that did not exceed the default kinetic UF 
for any of the parameters.

UGT1A3

UGT1A3 is a UGT isoform involved in the glucuronidation 
of the flavonoid icaritin and several other flavonoids (Chen 
et al. 2008; Wang et al. 2018a). In this study, two probe sub-
strates were included for UGT1A3, namely telmisartan and 
ezetimibe. Isoform-related CVs varied from 37–62%. High-
est variability was observed for telmisartan and ezetimibe 
clearance with CV values of 59 and 66%, respectively. It 
has been demonstrated previously in the literature that tel-
misartan shows high variability in PK parameters (Chen 
et al. 2013; Deppe et al. 2010; Kang et al. 2018; Stangier 
et al. 2000b). Overall, UGT1A3-related UFs were below the 
default TK UF of 3.16 (Table 4).

UGT1A4

The ginsenoside 20(S)-protopanaxadiol is one of the natu-
rally occurring probe substrates of the UGT1A4 isoform 
(Li et al. 2016). UGT1A4 probe substrates selected here 
included trifluoperazine and 1-OH-midazolam. It is impor-
tant to note that 1-OH-midazolam is a metabolite of mida-
zolam which is formed by CYP3A4 and then conjugated by 
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Table 2  Isoform-specific UGT probe substrates
Probe substrate UGT isoform Bioavailability 

(%)

% UGT 

metabolisma

Chemical structure

1-OH-

midazolam

N-glucuronida�on 

by 1A4, O-

glucuronida�on 

by 2B71

31-722 1-23

Codeine 2B74 50-555 44-626

Deferiprone 1A6, other UGTs 

are negligible7

738 589

Entacapone Mainly 1A9, minor 

contribu�on of 

1A1, 2B7 and 

2B1510

3511 7012

Ethinylestradiol Mainly 1A1, rates 

by other UGTs are 

negligible13

5514 ~6515

Eze�mibe 1A1 and 1A3, 

small contribu�on 

of 2B7 and 2B1516

n.d.b 80-90c, 17

Mycophenolic 
Acid

1A9 is most 

efficient, small 

contribu�on of 

2B718

95%19,d 7120

Oxazepam S-oxazepam 

mostly by 2B15, R-

oxazepam by 

1A921

9322 >7022

Propofol (iv) 1A9, other UGTs 

are negligible23

e 6224

Raltegravir Mainly 1A1, small 

contribu�on of 

1A3 and 1A925

3026 7025

SN38 Mainly 1A1, small 

contribu�on of 

1A9, 1A6 and 

1A327

~1028,f 329

Telmisartan Mainly 1A3

(>97%), also 1A1, 

1A7, 1A8 and 

1A930

40-6031,32 16b, 32

Trifluoperazine 1A433 10034 unknown

Zidovudine 2B735 6336 8637
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UGT1A4. Variability for trifluoperazine was quite exten-
sive, although only a limited number of publications were 
available, and studies were all from Canada. Large interin-
dividual differences in PK parameters has previously been 
demonstrated for trifluoperazine, independent of ethnicity 
(Midha et al. 1988). After oral administration, 1A4 shows 
the highest variability regarding acute exposure (Cmax) 
out of all isoforms with a CV of 62%. However, least vari-
ability was found for UGT1A4 in mRNA expression levels 
when compared with mRNA expression levels of UGT1A1, 
UGT1A3, UGT1A6 and UGT1A9 (Aueviriyavit et al. 2007). 
Despite this low variability in mRNA expression levels, an 
exceedance of the default TK UF is observed for the 97.5th 
percentile for 1-OH-midazolam  (UF97.5: 3.3, Table 5).

UGT1A6

Of the seven UGT isoforms investigated in this study, 
UGT1A6 has been recognised as one of the minor isoforms 
for glucuronidation and drug metabolism (Stingl et al. 2014). 
However, it is involved in the glucuronidation of several 
pharmaceuticals, including acetaminophen and aspirin, 
and the remarkable sensitivity of cats to these analgesics 
is due to the lack of UGT1A6 expression in the feline liver 
(Shrestha et al. 2011). The natural occurring compound 
protocatechuic aldehyde is also metabolised by this UGT 
isoform (Liu et al. 2008). In this study, deferiprone was 
included as probe substrate for UGT1A6. Only data after 
oral administration were available and for all PK parameters, 
the CVs ranged from 36 to 48% Table 6) with UGT1A6-
related UFs all below the default TK UF.

UGT1A9

For the UGT1A9 isoform, several relevant substrates include 
resveratrol, several flavonols and the natural flavouring 
agent estragole (Brill et al. 2006; Iyer et al. 2003; Wu et al. 

2011). Probe substrates for this isoform included entaca-
pone, mycophenolic acid, oxazepam, and propofol. Overall, 
isoform-related CVs varied between 23 and 41%. For oxaz-
epam, variability in PK parameters was described previously 
(Dorne et al. 2001a). Compared to our results, variability in 
Cmax and AUC was comparable, while the calculated vari-
ability was lower for clearance in our study (33% against 
51%). UGT1A9-related UFs did not exceed the UF of 3.16 
(Table 7).

UGT2B7

UGT2B7 is a UGT isoform which conjugates natural com-
pounds such as emodin, a Chinese traditional medicine, the 
natural sweetener stevioside and natural compounds from 
herbs such as andrographolide and estragole (Iyer et al. 
2003; Tian et al. 2015; Wang et al. 2014; Wu et al. 2018). 
Selective pharmaceutical probe substrates included in this 
study were codeine and zidovudine and isoform-related 
CVs varied between 26 and 37% (Table 8). The PK data-
base mainly consisted of Caucasians (North America and 
Europe) for both compounds. For codeine, five studies from 
the USA and four studies from Europe were available, and 
the remaining studies were from Asia or Australia. For zido-
vudine, six studies were available from North America, and 
three from South America and Europe. The variability as 
indicated by the CV was 26% for clearance, 28% for AUC, 
and 43% for the Cmax for zidovudine. While the calculated 
variability for clearance and Cmax is comparable to Dorne 
et al. (2001a), the AUC showed less variability (28%, 12 
studies against 56%, 2 studies). UGT2B7-related UFs did 
not exceed the TK default UF.

UGT2B15

UGT2B15 is mostly responsible for the metabolism of 
endogenous compounds such as steroids (e.g. dihydrotes-
tosterone and 17β-diol) (Chen et al. 1993). Environmental 

Name of probe substrate, major UGT isoform involved in glucuronidation (in bold), % bioavailability, % of dose metabolised by UGT and chem-
ical structure are reported. Arrows indicate the main site(s) of glucuronidation
1 Seo et al. (2010), 2Heizmann et al. (1983), 3Hyland et al. (2009), 4Coffman et al. (1997), 5Rogers et al. (1982), 6Yue et al. (1989), 7Benoit-
Biancamano et al. (2009a), 8ClinicalTrials.gov (2014), 9Rodrat et al. (2012), 10Lautala et al. (2000), 11Heikkinen et al. (2001), 12Wikberg et al. 
(1993), 13Ebner et  al. (1993) and Lv et  al. (2019),14Fotherby (1996), 15Williams and Goldzieher (1980), 16Ghosal et  al. (2004), 17Kosoglou 
et al. (2005), 18Picard et al. (2005),19Armstrong et al. (2005), 20Bullingham et al. (1996), 21Court et al. (2002), 22Sonne et al. (1988), 23Seo et al. 
(2014), 24Favetta et  al. (2002), 25Kassahun et  al. (2007) fraction of dose metabolized by UGT1A1, 26Brainard et  al. (2011), 27Hanioka et  al. 
(2001), 28Furman et  al. (2009), 29Slatter et  al. (2000), 30Yamada et  al. (2011), 31Wienen et  al. (2000), 32Stangier et  al. (2000a), remainder is 
unchanged parent compound, 33Seo et al. (2014), 34Midha et al. (1984), 35Barbier et al. (2000), 36Klecker et al. (1987), 37Gallicano et al. (1999)
a Expressed as % of the dose recovered in urine as the glucuronide, bn.d. = not determined. The bioavailability of ezetimibe cannot be determined, 
because it is insoluble in aqueous media and cannot be used for intravenous injection (Kosoglou et al. 2005), cExpressed as % of dose as glucu-
ronide in plasma, dMycophenolic acid is given as a prodrug, mycophenolate mofetil, eNo bioavailability is given for propofol, as all studies in the 
database are intravenous studies, fBioavailability of irinotecan, the parent drug of SN38

Table 2  (continued)



2645Archives of Toxicology (2020) 94:2637–2661 

1 3

Fig. 4  Results of the meta-analyses reporting interindividual differ-
ences in non-phenotyped healthy adults for 14 isoform-specific UGT 
probe substrates. Data are expressed as log geometric means (GM) 
for markers of acute (Cmax) and chronic (AUC, clearance) exposure. 

AUC (normalised to dose, a), clearance (normalised to body weight, 
b), and Cmax (normalised to dose, c). Open squares: oral exposure; 
solid circles: IV exposure. Red data points: healthy volunteers; blue 
data points: patients. 21d: repeated dose for 21 days
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contaminants that are metabolised by UGT2B15 include bis-
phenol A (Hanioka et al. 2008). Major xenobiotic substrates 
for UGT2B15 include the pharmaceuticals lorazepam and 
S-oxazepam, although lorazepam is not recommended as 
a probe substrate for the isoform because of the involve-
ment of several other UGT isoforms in its glucuronidation 
(Lv et al. 2019; Rowland et al. 2013). Oxazepam is a ben-
zodiazepine which is administered as a racemic mixture, 
with R-oxazepam being glucuronidated by UGT1A9 and 

S-oxazepam being glucuronidated by UGT2B15. Variability 
in the ratio between the R-glucuronide and the S-glucuronide 
has been characterized particularly for the formation of the 
S-glucuronide (Patel et al. 1995). Table 7 shows that vari-
ability in oxazepam is 33% and 44% for markers of chronic 
exposure and 26% for markers of acute exposure and all cal-
culated UGT2B15-related UFs are below the default TK UF. 
As oxazepam is the only substrate included for UGT2B15, 
calculated CVs and UFs for oxazepam are considered the 
overall isoform-specific CVs and UFs for UGT2B15.

Fig. 5  Inter-individual differences in markers of chronic exposure 
(area under the concentration–time curve (AUC)) for isoform-specific 
UGT probe substrates across world populations of different geograph-

ical ancestry. For each UGT isoform included in the study, one probe 
substrate is shown. Graphs for other probe substrates and other PK 
parameters are accessible in Supplementary Material 3
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Table 3  Pharmacokinetic parameters of UGT1A1 probe substrates in non-phenotyped adults after oral or intravenous administration

nst number of studies, n number of subjects
a Repeated dosing of 21 days
b Single dose

Route Parameter Compound nst n CV GM UF95 95% CI UF97.5 95% CI

Oral AUC (ng*h/mL/dose) Ethinylestradiola 60 1236 41 2045 1.9 1.8–2.1 2.2 2.0–2.4
Ethinylestradiolb 50 974 42 1355 1.9 1.8–2.1 2.2 2.0–2.5
Ezetimibe 11 173 44 356 2.0 1.7–2.4 2.3 1.9–2.9
Raltegravir 6 67 60 2110 2.5 1.9–3.8 3.0 2.2–4.9
SN38 20 139 70 8039 2.8 2.2–3.9 3.5 2.6–5.0
Overall (n = 4) 147 2589 50 2.2 1.7–3.6 2.5 2.0–4.6

Oral Clearance (mL/min/kg) Ethinylestradiola 19 324 36 6.8 1.8 1.6–2.0 2.0 1.8–2.3
Ethinylestradiolb 11 135 38 6.3 1.8 1.6–2.3 2.1 1.7–2.8
Ezetimibe 4 55 66 13.9 2.7 2.0–4.7 3.3 2.2–6.2
Overall (n = 2) 34 514 48 2.1 1.6–4.2 2.5 1.7–5.5

Oral Cmax (ng/mL/dose) Ethinylestradiola 39 1295 35 250 1.7 1.6–1.9 1.9 1.8–2.1
Ethinylestradiolb 63 841 38 175 1.8 1.7–2.0 2.1 1.9–2.3
Ezetimibe 11 173 47 25.8 2.1 1.8–2.5 2.4 2.0–3.0
Raltegravir 5 56 72 594 2.9 2.1–5.1 3.6 2.4–7.0
SN38 20 146 64 5.0 2.6 2.1–3.5 3.2 2.5–4.5
Overall (n = 4) 138 2511 53 2.3 1.7–4.1 2.7 1.9–5.3

Intravenous AUC (ng*h/mL/dose) Ethinylestradiol 2 24 39 3585 1.9 1.4–3.4 2.1 1.5–4.3
Raltegravir 1 3 37 3752 1.8 1.5–2.6 2.0 1.6–3.1
SN38 109 1407 62 67.4 2.5 2.3–2.8 3.0 2.7–3.5
Overall (n = 3) 112 1434 46 2.1 1.5–2.8 2.4 1.6–3.5

Intravenous Clearance (mL/min/kg) Ethinylestradiol 3 33 39 4.8 1.9 1.5–3.0 2.1 1.6–3.7
Raltegravir 1 3 38 4.5 1.9 1.2–9.2 2.1 1.2–13
SN38 6 79 68 0.32 2.8 2.1–4.4 3.4 2.4–5.8
Overall (n = 3) 10 115 51 2.6 1.3–5.8 2.6 1.3–7.7

Table 4  Pharmacokinetic parameters for UGT1A3 probe substrates in non-phenotyped adults after single-dose oral or intravenous administration

nst number of studies, n number of subjects
a 1 compound: considered as overall

Route Parameter Compound nst n CV GM UF95 95% CI UF97.5 95% CI

Oral AUC (ng*h/mL/dose) Ezetimibe 11 173 44 356 2.0 1.7–2.4 2.3 1.9–2.9
Telmisartan 13 225 53 2155 2.2 1.9–2.7 2.6 2.2–3.3
Overall (n = 2) 24 398 49 2.1 1.8–2.7 2.4 2.0–3.2

Clearance (mL/min/kg) Ezetimibe 4 55 66 13.9 2.7 2.0–4.7 3.3 2.2–6.2
Telmisartan 6 103 59 10.1 2.5 2.0–3.5 2.9 2.2–4.4
Overall (n = 2) 10 158 62 2.6 2.0–4.2 3.1 2.2–5.6

Cmax (ng/mL/dose) Ezetimibe 11 173 47 25.8 2.1 1.8–2.5 2.4 2.0–3.0
Telmisartan 9 144 38 391 1.8 1.6–2.2 2.0 1.7–2.6
Overall (n = 2) 20 317 43 2.0 1.6–2.4 2.2 1.8–2.9

Intravenous AUC (ng*h/mL/dose) Telmisartana 6 41 37 1469 1.8 1.5–2.6 2.0 1.6–3.2
Clearance (mL/min/kg) Telmisartana 5 36 39 12.2 1.9 1.5–2.9 2.1 1.6–3.6
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Frequencies of UGT isoform polymorphisms in world 
populations and impact on the pharmacokinetics 
of probe substrates in non‑phenotyped subjects

Frequencies of single nucleotide polymorphisms (SNPs) of 
UGT isoforms, namely UGT1A1*28, UGT1A3, UGT1A4*2 
(C70A), UGT1A4*3 (T142G), UGT1A6*2, UGT1A9*22, 
UGT2B7 C802T and UGT2B15*2 are presented in Fig. 6 for 
world populations of different geographical ancestry. Data 
investigating the impact of UGT polymorphisms on in vivo 
PK parameters are limited and summarised in Table 9 for the 
probe substrates included in this study. Overall, the limited 
data show that such an impact still needs to be fully charac-
terised for endogenous substrates and xenobiotics in world 
populations.

Understanding the functional role of UGT SNPs is a key 
aspect to quantify the relationship between their frequency 
distributions (Fig. 6) and the pharmacokinetic consequences 
on UGT conjugation across world populations. Table 9 pro-
vides an account of such pharmacokinetic consequences; 
however, available studies from the literature are still lim-
ited. The consequences can be two-sided: an increased UGT 
activity would result in detoxification and a decreased UGT 
activity would result in an increase in the concentration of 
the toxic form (parent compound). Well-known exceptions 
to this rule include carboxylic acid-containing drugs that 
are metabolised by UGTs and form acyl glucuronides, like 
mycophenolic acid and telmisartan. These acyl glucuronides 
can cause idiosyncratic drug toxicity by binding covalently 

to proteins (Iwamura et al. 2017). For mycophenolic acid, 
indeed protein adducts have been found in vivo and these 
can result in several adverse effects (Shipkova et al. 2002).

UGT1A1

UGT1A1 in humans is one of the most important UGT iso-
forms in terms of glucuronidation and is known to have mul-
tiple clinically relevant polymorphisms that can contribute 
to variability in PK parameters (Mehboob et al. 2017; Min-
ers et al. 2002). Polymorphisms in UGT1A1 are extensively 
studied and alteration in its activity can result in Gilbert’s 
syndrome, one of the most common syndromes in humans 
(Burchell and Hume 1999; Stingl et al. 2014). Gilbert’s syn-
drome results in hyperbilirubinaemia, as UGT1A1 is respon-
sible for the metabolism of bilirubin. The frequency and type 
of polymorphisms differ between individuals from different 
geographical ancestry or ethnic backgrounds (Weber 1999) 
and this is also apparent from the frequencies of mutations 
in UGT1A1 that are responsible for Gilbert’s syndrome. 
A dinucleotide polymorphism in the TATA box promoter 
(UGT1A1*28) resulting in reduced UGT1A1 expression 
and Gilbert’s syndrome is detected in only 3% of Asians 
and ~ 15% in Europeans, while it can be up to 36% in Afri-
cans (Beutler et al. 1998). When looking at the frequency 
distribution of this SNP, clear interindividual differences are 
indeed detected across populations of different geographical 
ancestry (Fig. 6a, for references see Supplementary Mate-
rial 4). As expected, Asian populations (especially East and 

Table 5  Pharmacokinetic parameters of UGT1A4 probe substrates in non-phenotyped adults after single-dose oral or intravenous administration

nst number of studies, n number of subjects
a 1 compound: considered as overall

Route Parameter Compound nst n CV GM UF95 95% CI UF97.5 95% CI

Oral AUC (ng*h/mL/dose) 1-OH-midazolam 5 67 35 308 1.7 1.5–2.3 1.9 1.6–2.6
Trifluoperazine 7 75 64 207 2.6 2.0–4.0 3.2 2.3–5.3
Overall (n = 2) 12 142 47 2.1 1.5–3.7 2.4 1.6–4.8

Oral Clearance (mL/min/kg) Trifluoperazinea 2 48 57 112 2.4 1.8–4.0 2.8 2.0–5.1
Oral Cmax (ng/mL/dose) 1-OH-midazolam 5 67 67 76 2.7 2.0–4.3 3.3 2.3–5.7

Trifluoperazine 6 79 58 18.3 2.4 1.9–3.5 2.9 2.2–4.5
Overall (n = 2) 11 146 62 2.6 2.0–4.0 3.1 2.2–5.3

Table 6  Pharmacokinetic parameters of UGT1A6 probe substrates in non-phenotyped adults after single-dose oral or intravenous administration

nst number of studies, n number of subjects
a 1 compound: considered as overall

Route Parameter Compound nst n CV GM UF95 95% CI UF97.5 (95% CI)

Oral AUC (ng*h/mL/dose) Deferipronea 11 101 36 1654 1.8 1.5–2.2 2.0 1.7–2.5
Oral Clearance (mL/min/kg) Deferipronea 9 89 40 1.9 1.9 1.6–2.4 2.1 1.7–2.9
Oral Cmax (ng/mL/dose) Deferipronea 11 101 48 616 2.1 1.7–2.8 2.4 1.9–3.4
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Southeast Asians), as well as Oceanians, more frequently 
express the wild-type genotype, whereas other ethnici-
ties predominantly express the heterozygous genotype. In 
Europe and Middle East, mixed frequencies in wild-type and 
heterozygous genotypes are observed. Another SNP in this 
isoform, UGT1A1*6, results in an amino acid substitution at 
position 71 (G71R). This mutation also causes Gilbert’s syn-
drome and is more frequently detected in Asians (Burchell 
and Hume 1999).

As mentioned earlier, data gaps for pharmacokinetics of 
UGT1A1 probe substrates have been identified especially 
for Africans and Central Americans. Distribution of geno-
types for UGT1A1*28 differs for these populations com-
pared to Europeans and this highlights that PK data in phe-
notyped individuals from different geographical ancestries 
are needed to characterise isoform-specific UGT variability 
and related UFs. Besides, the high variability observed for 
SN38 may also be rationalised by the fact that only patient 

data were available and included in the meta-analysis, which 
may bias the analysis. Moreover, internal concentrations of 
SN38 can be influenced by the UGT1A1*28 mutation and 
some PK studies included only patients with the wild-type 
genotype, which also results in a bias in the calculation of 
the variability and the UF (Ri et al. 2018).

It is striking that variability in PK for ethinylestradiol is 
low (35–42%; Table 3) when compared to variability in PK 
for raltegravir and SN38 (up to 72%, Table 3). One possible 
explanation is the inclusion of only females as it is used as a 
contraceptive, and this may reduce variability. Indeed, genetic 
sex differences are known to have an important effect on inter-
individual differences in UGT enzymes as well and this aspect 
is further elaborated further down in the discussion. Another 
possible rationale may be that the identified SNPs have a larger 
impact on raltegravir and SN38 metabolism than on ethinyle-
stradiol metabolism, which could be due to differences in dock-
ing resulting in different affinities and kinetics. Unfortunately, 

Table 7  Pharmacokinetic parameters of UGT1A9 probe substrates in non-phenotyped adults after single dose oral or intravenous administration

nst number of studies, n number of subjects
a 1 compound: considered as overall

Route Parameter Compound nst n CV GM UF95 95% CI UF97.5 95% CI

Oral AUC (ng*h/mL/dose) Entacapone 3 56 28 442 1.6 1.4–2.0 1.7 1.5–2.3
Mycophenolic acid 35 837 30 3241 1.6 1.5–1.7 1.8 1.6–1.9
Oxazepam 5 44 44 8039 2.0 1.6–3.0 2.3 1.7–3.7
Overall (n = 3) 43 937 31 1.6 1.4–2.6 1.8 1.5–3.2

Oral Clearance (mL/min/kg) Mycophenolic acid 10 140 41 3.7 1.9 1.6–2.4 2.2 1.8–2.8
Oxazepam 10 86 33 1.4 1.7 1.5–2.1 1.9 1.6–2.4
Overall (n = 2) 20 226 37 1.8 1.5–2.3 2.0 1.6–2.7

Oral Cmax (ng/mL/dose) Entacapone 3 56 48 447 2.1 1.7–3.1 2.4 1.9–3.9
Mycophenolic acid 17 583 43 1818 2.0 1.8–2.2 2.2 2.0–2.5
Oxazepam 4 35 26 1243 1.5 1.3–2.1 1.6 1.4–2.4
Overall (n = 3) 24 674 41 1.9 1.3–2.8 2.2 1.4–3.3

Intravenous AUC (ng*h/mL/dose) Propofola 5 43 31 635 1.7 1.4–2.3 1.8 1.5–2.7
Intravenous Clearance (mL/min/kg) Propofola 9 79 23 24.7 1.5 1.3–1.7 1.6 1.4–1.9

Table 8  Pharmacokinetic parameters of UGT2B7 probe substrates in non-phenotyped adults after single-dose oral or intravenous administration

nst number of studies, n number of subjects
a 1 compound: considered as overall

Route Parameter Compound nst n CV GM UF95 95% CI UF97.5 95% CI

Oral AUC (ng*h/mL/dose) Codeine 18 209 29 510 1.6 1.5–1.8 1.7 1.6–2.0
Zidovudine 12 107 28 477 1.6 1.4–1.8 1.7 1.5–2.1
Overall (n = 2) 30 316 28 1.6 1.4–1.8 1.7 1.5–2.0

Oral Clearance (mL/min/kg) Zidovudinea 9 72 26 33.3 1.5 1.4–1.8 1.7 1.4–2.1
Oral Cmax (ng/mL/dose) Codeine 17 192 33 134 1.7 1.5–1.9 1.9 1.6–2.2

Zidovudine 9 94 43 344 2.0 1.7–2.6 2.3 1.8–3.1
Overall (n = 2) 26 286 37 1.8 1.5–2.5 20 1.7–2.9
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Fig. 6  Frequencies of single nucleotide polymorphisms (SNPs) geno-
types for UGT1A1*28 (a), UGT1A3 (b), UGT1A4*2 (C70A) (c) 
UGT1A4*3 (T142G) (d), UGT1A6*2 (e), UGT1A9*22 (f), UGT2B7 

(C802T) (g), and UGT2B15*2 (h) in human populations of different 
geographical ancestries. C(E) central, N north, S south, E east, SE 
southeast
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Table 9  Impact of UGT isoform polymorphisms on pharmacokinetic markers of chronic exposure

Polymorphism (Predominant) 
ethnicity/
geographical 
ancestry

Substrate Dose Sample size AUC ratio to wild type 
(%)

Comments References

wt/wt wt/var var/var

UGT1A1*28 Caucasian SN38 350 mg/m2 30/25/6 100 136 161 Innocenti et al. 
(2004)

UGT1A1*28 Japanese SN38 100 mg/m2 10/7/0 100 337 Fukuda et al. 
(2018)

UGT1A1*28 USA SN38 125 mg/m2 5/8/2 100 176 147 Jaeckle et al. 
(2010)

UGT1A1*28 Japan SN38 150 mg/m2 41/7/3 100 120 261 Satoh et al. 
(2011)

UGT1A1*28 Caucasian SN38 300 mg/m2 9/7/4 100 141 259 Iyer et al. (2002)
UGT1A1*28 Korea SN38 80 mg/m2 69/12/0 100 88 Cisplatin was 

given as co-
medication

Han et al. (2006)

UGT1A1*28 Japan SN38 100 mg/m2 3/3/0 100 401 Hazama et al. 
(2010)

UGT1A1*28 Japan SN38 50 mg/m2 7/1/1 100 219 172 Carboplatin was 
given as co-
medication

Ando et al. 
(1998)

UGT1A1*28 Caucasian SN38 600 mg 44/37/5 100 118 118 Paoluzzi et al. 
(2004)

UGT1A1*28 Italy SN38 180 mg/m2 31/32/8 100 124 140 Patients on 
FOLFIRI 
regimen

Toffoli et al. 
(2006)

UGT1A1*28 USA SN38 180 mg/m2 9/15/5 100 105 209 Patients on 
FOLFIRI 
regimen

Denlinger et al. 
(2009)

UGT1A1*28 USA SN38 20 mg/m2 11/19/7 100 110 140 Stewart et al. 
(2007)

UGT1A1*28 Korean SN38 65 or 80 mg/m2 93/14/0 100 85 Han et al. (2009)
UGT1A1*28 USA SN38 50 mg/m2 14/7/0 100 91 Children Bomgaars et al. 

(2007)
UGT1A1*28 Korean Ezetimibe 10 mg 12/0/6 100 177 Bae et al. (2011)
UGT1A1*28 Japan Telmisartan 80 mg 43/14/0 100 53 Yamada et al. 

(2011)
UGT1A1*28 Japan Telmisartan 80 mg 16/3/4 100 39 49 Ieiri et al. (2011)
UGT1A1*28 Caucasian Raltegravir 400 mg 27/0/30 100 141 Wenning et al. 

(2009)
UGT1A1*6 Japan SN38 150 mg/m2 41/9/9 100 95 214 Satoh et al. 

(2011)
UGT1A1*6 Japanese SN38 100 mg/m2 10/10/0 100 125 Fukuda et al. 

(2018)
UGT1A1*6 Korea SN38 80 mg/m2 49/26/6 100 111 176 Cisplatin was 

given as co-
medication

Han et al. (2006)

UGT1A1*6 Korean Ezetimibe 10 mg 12/0/4 100 97 Bae et al. (2011)
UGT1A1*6 Japanese Telmisartan 40 mg 10/2/0 100 114 Renal transplant 

patients
Miura et al. 

(2009)
UGT1A1*6 Japan Telmisartan 80 mg 31/13/2 100 118 153 Yamada et al. 

(2011)
UGT1A1*6 Japan Telmisartan 80 mg 16/7/1 100 109 193 Ieiri et al. (2011)
UGT1A3*2a Japan Telmisartan 80 mg 17/8/0 100 57 Ieiri et al. (2011)
UGT1A6*2 Thailand Deferiprone 25 mg/kg 10/8/4 100 72 90 Limenta et al. 

(2008)
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no studies that investigated the effect of UGT1A1 polymor-
phisms directly on ethinylestradiol PK in vivo were available. 
However, both ethinylestradiol and SN38 show significantly 
lower in vitro rates of metabolism with UGT1A1*28 polymor-
phic human liver microsomes (Zhang et al. 2007).

For the UGT1A1*28 polymorphism, significantly higher 
values for the AUCs were reported for SN38 which corre-
sponds with a decrease in glucuronidation capacity (Table 9). 
For the UGT1A1*6 polymorphism, impact on PK param-
eters is less clear with only one study showing a significant 
increase in AUC for SN38. No in vivo PK data were avail-
able for the other UGT1A1 probe substrates and the effect 
of either UGT1A1 polymorphism on their PK parameters.

UGT1A3

For UGT1A3 polymorphisms, the frequency distribution is 
rather uniform across populations of different geographi-
cal ancestry. However, data were only available for three 
populations (North America, East-Asia and Europe) and the 
heterozygous genotype was the most represented one in all 
three populations (Fig. 6b). A contrasting exception was the 
observation of slightly higher frequencies for the wild type 
in East Asians compared to the other two populations.

UGT1A3 polymorphisms are associated with an increase in 
glucuronidation rates for a range of compounds. UGT1A3*2 
(nucleotide changes T31C, G81A and T140C) polymorphism 
is correlated with an increase in glucuronidation of atorvastatin 
(Cho et al. 2012). Moreover, polymorphisms in UGT1A3 have 
been associated with polymorphisms in UGT1A1, which is 

due to a linkage disequilibrium within the UGT1A locus (Cho 
et al. 2012; Riedmaier et al. 2010; Saeki et al. 2006).

A study on telmisartan PK reported a significant influence 
of the *2a and *4a variants of the UGT1A3 polymorphisms, 
associated with a decrease and an increase in AUC, respec-
tively (Ieiri et al. 2011, Table 9). Furthermore, a number of 
studies showed an impact of UGT1A1 and UGT2B7 poly-
morphisms on PK parameters of telmisartan, indicating that 
multiple UGT isoforms may be responsible for its glucuro-
nidation and that multiple polymorphisms can, therefore, 
influence its PK parameters (Ieiri et al. 2011; Miura et al. 
2009; Yamada et al. 2011).

UGT1A4

For UGT1A4, the *2 and *3 mutations are the two most 
common SNPs. UGT1A4*2 is a mutation at codon 24, 
resulting in an amino acid change from proline to threonine 
(P24T) because of a C70A SNP. UGT1A4*3 is a T142G 
SNP, resulting in an amino acid change at codon 48, from 
a leucine to a valine (L48V). In the frequency distribution 
data, no differences in C70A and T142G genotypes between 
populations from different geographical ancestries were 
observed (Fig. 6c/d). Compared to the mutation and the 
heterozygous genotype, the wild-type genotype is predomi-
nantly detected (C70A: > 80%, T142G: > 55%).

Studies on these SNPs show contradictory results. Neither 
polymorphism is significantly associated with trifluoperazine 
glucuronidation activity in vitro (Benoit-Biancamano et al. 
2009b). However, decreased activities have been reported 

The associated polymorphism, the predominant ethnicity (or, if not given, the country of the study), the substrate, dose, sample size and ratios of 
the AUC is given, relative to wild type. For the sample size, numbers of wt/wt, wt/var and var/var are given. Ratios that are significantly different 
from wild type according to the cited study are shown in bold and italic
Wt wild type, var variant, FOLFIRI folinic acid, fluorouracil, irinotecan

Table 9  (continued)

Polymorphism (Predominant) 
ethnicity/
geographical 
ancestry

Substrate Dose Sample size AUC ratio to wild type 
(%)

Comments References

wt/wt wt/var var/var

UGT1A9*22 Korea SN38 80 mg/m2 11/45/23 100 83 70 Cisplatin was 
given as co-
medication

Han et al. (2006)

UGT1A9*22 China Mycophenolic 
acid

1–2 g 13/21/12 100 106 128 Renal transplant 
patients, co-
medication 
cyclosporin 
and predniso-
lone

Zhang et al. 
(2008)

UGT2B7*2 Japanese Telmisartan 40 mg 6/6/0 100 103 Renal transplant 
patients

Miura et al. 
(2009)

UGT2B7*2 Japan Telmisartan 80 mg 24/28/5 100 110 149 Yamada et al. 
(2011)

UGT2B15*2 USA Oxazepam 15 mg 6/20/4 100 147 243 He et al. (2009)
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for benzidine, β-naphthylamine, steroids and tigogenin, but 
increased glucuronidation has been reported for clozapine 
and olanzapine with UGT1A4*3 (Ehmer et al. 2004; Ghotbi 
et al. 2010; Mori et al. 2005). This suggests that the impact 
of UGT1A4 mutations on PK parameters is substrate depend-
ent, but the associated mechanism remains to be elucidated. 
The UGT1A4*3 has also been associated with decreased 
serum levels of lamotrigine which correspond to an increase 
in glucuronidation rates (Gulcebi et al. 2011; Reimers et al. 
2016). For UGT1A4, no studies were encountered that stud-
ied effects of polymorphisms in this UGT isoform on in vivo 
PK parameters of the probe substrates.

UGT1A6

For UGT1A6, the most prominent mutation is UGT1A6*2, 
which is the result of two substitutions: T181A and R184S 
(Ciotti et al. 1997). The linkage disequilibrium between 
these polymorphisms is very high, as they are only 11 nucle-
otides apart (nucleotides 541 and 552) (McGreavey et al. 
2005). A linkage disequilibrium between UGT1A6*2 and 
UGT1A1*28 is also observed (Lampe et al. 1999). No dif-
ferences are seen across world populations in the frequency 
distribution of this polymorphism (Fig. 6e).

No impact on deferiprone PK was found in  vivo for 
UGT1A6*2 (Limenta et al. 2008). However, an in vitro study 
showed that the UGT1A6*2 variant could lead to either a 
decrease or an increase in glucuronidation capacity for vari-
ous phenolic compounds (Ciotti et al. 1997; Nagar et al. 2004). 
Lampe et al. (1999) showed that genetic sex had more influence 
on the PK parameters of deferiprone whereas polymorphism had 
no impact. This may be due to both the variation in UGT1A6 
content and activity between males and females. Indeed, glucu-
ronidation capacity has been shown to be higher in males with a 
50% higher UGT1A6 protein content in males compared to that 
in females (Bock et al. 1994; Court et al. 2001).

UGT1A9

For UGT1A9, SNPs have been associated with a range of 
impacts on the PK of xenobiotics. T98C (UGT1A9*3) may 
result in a decrease in glucuronidation activity, although 
the reported results are contradictory (Girard et al. 2004; 
Jiao et al. 2008; Villeneuve et al. 2003). The T-275A SNP, 
which is located in the promotor region, is associated with 
an increase in glucuronidation rates, while in another study, 
the glucuronidation rate of mycophenolic acid remained 
unaffected (Girard et al. 2004; Jiao et al. 2008; Kuypers 
et al. 2005; Mazidi et al. 2013). Multiple linkage disequilib-
ria are known for polymorphisms in UGT1A9 since SNPs 
in UGT1A9 are linked to SNPs in UGT1A7 and UGT1A6 
(Saeki et al. 2006). The frequency distributions of these 

genotypes across several populations are described in Sup-
plementary Material 5.

The SNP with the most apparent differences in frequen-
cies between populations is a ‘T’ deleted at position-118 
in the promotor region of the gene, UGT1A9*22 (Cecchin 
et al. 2009). Japanese individuals show a different distribu-
tion compared to that in other populations including other 
Asian populations (Fig. 6f). In other world populations, the 
heterozygous genotype is the most occurring, while in Japan 
most prominent frequencies are a mix between the heterozy-
gous genotype and the homozygous mutation. It is shown 
that combinations of haplotypes differ between Caucasians 
and Asians and this might explain the large differences in 
frequencies observed here (Saeki et al. 2006).

The effect of UGT1A9*22 on PK parameters remains 
unclear since an increased transcriptional activity has 
been reported, but it was not associated with an impact 
on mycophenolic acid PK parameters (Jiao et al. 2008; 
Yamanaka et al. 2004; Zhang et al. 2008). A significant 
decrease is demonstrated in AUC for SN38 with this muta-
tion, although SN38 is mainly metabolised by UGT1A1 
(Han et al. 2006).

UGT2B7

For UGT2B7, the frequencies of the C802T mutation are 
quite comparable for the three world regions (Europe, North 
America, South America, Fig. 6g) represented in the PK 
database and indeed, not much variability is observed in the 
PK parameters of zidovudine. The SNP C802T in UGT2B7 
results in an amino acid substitution at residue 268, from 
histidine to tyrosine (H268Y, UGT2B7*2) at the N-terminal 
substrate binding site of the enzyme (Yuan et al. 2015). It 
is demonstrated that this variant form has the same locali-
sation as the wild type. Moreover, it is demonstrated that 
UGT2B7*2 can form both homodimers and heterodimers 
with wild-type and other polymorphic enzymes, albeit with a 
decrease in affinity (Yuan et al. 2015). Coffman et al. (1998) 
showed that the 268Y form of the UGT was ten times more 
efficient in the glucuronidation of buprenorphine than the 
268H form. However, no differences were detected for some 
other opioids, like morphine and codeine. In another study 
of Coffman et al. (2003), it was demonstrated that opioids 
bind to amino acids 84–118 of the UGT, which implies that 
mutations at other places are less likely to influence the 
binding of opioids to UGT. However, also polymorphisms 
outside the substrate-binding pocket can still influence the 
dynamics of substrate binding by, for example, altering the 
packing of the enzyme and thereby influencing the active 
site (Rutherford et al. 2008).

It is demonstrated that UGT2B7*2 in a hetero-dimer 
with the wild-type enzyme has an impaired glucuronida-
tion activity for zidovudine (Yuan et al. 2015). For other 
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chemicals including valproic acid, tamoxifen, and lamo-
trigine, UGT2B7 polymorphism has been shown to affect 
plasma concentrations (Blevins-Primeau et al. 2009; Du 
et al. 2016; Petrenaite et al. 2018; Sun et al. 2015; Wang 
et al. 2018b). Molecular docking would provide an insight 
into the binding of substrates to UGT2B7 and other UGTs 
and the effect of polymorphisms hereon. However, a com-
plete crystal structure is not available yet for human UGTs 
(Dong et al. 2012). The partial crystal structure of UGT2B7 
that is available does not include the N-terminal substrate-
binding domain and consequently does not provide insight 
into substrate binding (Miley et al. 2007). No in vivo data 
exploring the relationship between UGT2B7 polymorphisms 
and PK parameters of zidovudine or codeine were available. 
Only two studies investigated the impact of UGT2B7*2 on 
telmisartan PK in Japanese adults. In both studies, no sig-
nificant differences in AUC were found (Miura et al. 2009; 
Yamada et al. 2011).

UGT2B15

For UGT2B15, the most common polymorphism is known 
as UGT2B15*2 and this mutation results in the substitution 
of an aspartic acid with a tyrosine at position 85 (D85Y). 
The frequency distribution of this polymorphism is compa-
rable for different populations (Fig. 6h). In one study, dif-
ferent ethnicities (African-American, Hispanic-American, 
Chinese-American, Japanese-American and Caucasian-
American) in North-America were compared and all dif-
ferent ethnicities showed approximately the same distribu-
tion, with the heterozygous genotype being the predominant 
genotype (Riedy et al. 2000).

For this polymorphism, no differences were found in rela-
tion to the metabolic and PK profile of tamoxifen (Romero-
Lorca et al. 2015; Sutiman et al. 2016). However, acetami-
nophen total clearance was significantly influenced by this 
polymorphism (Court et al. 2017). Moreover, in vitro data 
show lower median activities for S-oxazepam glucuronida-
tion with microsomes containing the UGT2B15*2 polymor-
phism and a lower intrinsic clearance of bisphenol A with 
this SNP (Court et al. 2004; Hanioka et al. 2011). Finally, 
lower systemic clearance of lorazepam is reported in Asian 
individuals homozygous for UGT2B15*2 and the authors 
suggested that this polymorphism is a major contributor to 
interindividual differences in lorazepam PK (Chung et al. 
2005). A significant increase in AUC has been observed for 
UGT2B15*2 for individuals with at least one polymorphic 
gene. According to the study of He et al. (2009), the poly-
morphism accounts for 34% of the interindividual differ-
ences in oxazepam oral clearance (Table 9).

Conclusions and future perspectives

This manuscript aimed to quantify interindividual differ-
ences in UGT isoform-specific metabolism for probe sub-
strates. Hierarchical Bayesian meta-analyses for pharma-
cokinetic markers of acute (Cmax) and chronic exposure 
(AUC/clearance) were performed for a total of 14 probe 
substrates of the seven clinically most relevant UGT iso-
forms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, 
UGT2B7 and UGT2B15). The resulting variability distri-
butions and the UGT-related UFs showed that the default 
factor of 3.16 would not be exceeded for at least 97.5% of 
non-phenotyped healthy adults when considering the median 
value, with a few exceptions (1-OH-midazolam, ezetimibe, 
raltegravir, SN38 and trifluoperazine).

Overall, interindividual differences in kinetics for intra-
venous- and oral routes of administration were comparable. 
A possible explanation for such similarities lies in the fact 
that UGTs are more abundant in the liver compared to the 
intestine, so that the impact of first-pass metabolism for the 
included probe substrates is low (Lv et al. 2019). In contrast, 
similar analysis performed for CYP3A4 probe substrates 
revealed larger interindividual differences for markers of oral 
chronic exposure compared to their IV counterparts (Dar-
ney et al. 2019). Several UGT isoforms are also expressed 
in the kidney, including UGT1A6, UGT1A9 and UGT2B7 
(Ohno and Nakajin 2009). This would have no influence on 
the first-pass metabolism, but variability estimates are likely 
to reflect hepatic and renal UGT metabolism for the probe 
substrates metabolised by these isoforms.

Overall, data gaps have been identified from this human 
UGT PK database for a range of non-phenotyped and phen-
toyped populations of different geographical ancestries as 
well as sensitive subgroups of the population, including neo-
nates, children and the elderly. A typical example is the lack 
of PK data for the African population which shows broad 
genetic diversity in the frequency of UGT polymorphisms. 
Such PK data are needed to integrate genotype frequen-
cies in different populations and to generate distributions 
to address interphenotypic differences which then allow the 
derivation of UGT-related UFs as well as chemical-specific 
adjustment factors (Campbell and Tishkoff 2008; Gaibar 
et al. 2018; Novillo et al. 2018).

Indeed, different UGT polymorphisms can have (sub-
strate-dependent) impact on interphenotypic differences in 
PK parameters, particularly for the UGT1A1 isoform while 
new polymorphisms are still being characterised (Liu et al. 
2019). In this light, it is recommended to investigate inter-
phenotypic differences in relation to UGT polymorphisms 
rather than geographical ancestry since polymorphisms are 
better predictors of altered PK compared to ethnicity alone 
(Darney et al. 2019; Wu et al. 2018).
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Although isoform-specific variability was investigated 
here using specific probe substrates, most often several UGT 
isoforms are involved in the glucuronidation of xenobiotics 
in a concentration-dependent manner. For example, acetami-
nophen glucuronidation by human liver microsomes can be 
mediated by multiple UGTs. Three isoforms are most active, 
UGT1A1 is the main contributor at toxic concentrations and 
UGT1A6 is the most active at low concentrations (Court 
et al. 2001). Besides the contribution of several isoforms to 
the glucuronidation of one compound, other factors could 
also contribute to interindividual differences in metabolism 
by UGTs. For example, correlations have been established 
between UGT abundances and their activity, and variabil-
ity in glucuronidation is comparable to variability in UGT 
protein abundance (Achour et al. 2017). In addition to inter-
phenotypic differences, age differences have been described 
to impact UGT expression and activities, particularly in 
neonates and young infants, leading to slower kinetics and 
elimination through a reduction of PK parameters by several 
folds compared to that in healthy adults (Bhatt et al. 2019; 
Court 2010; Dorne et al. 2001b).

UGTs are also involved in the metabolism of large 
numbers of xenobiotics, other than pharmaceuticals, 
like environmental contaminants and naturally occur-
ring compounds. However, for these compounds multi-
ple UGT isoforms are often involved in their conjugation. 
For example, isoflavones are conjugated by multiple UGT 
isoforms in human liver microsomes (Tang et al. 2009). 
Besides the involvement of several UGT isoforms in con-
jugation, human kinetic data for most environmental con-
taminants and food-relevant chemicals are still scarce in 
the literature.

Taken all together, investigation of isoform-specific 
UGT-related age and interphenotypic differences in world 
populations will allow the characterisation and publication 
of full variability distributions for human populations in an 
open source format (as illustrated here with the relatively 
limited data available). For food-relevant compounds, it is 
foreseen that such distributions can then be combined with 
in vitro data characterising the kinetics of UGT isoform-
specific metabolism for a whole host of compounds includ-
ing flavourings, food additives, pesticides, mycotoxins and 
other contaminants to develop quantitative in vitro–in vivo 
extrapolation (QIVIVE) models. It is important to note that 
the isoform-specific distributions and uncertainty factors 
generated in this study have been drawn from pharmaceuti-
cal data and can be applied to a large number of UGT sub-
strates with short half-lives. As variability between the UGT 
isoforms has been shown to be relatively similar, chemical-
specific variability can also be derived, even for compounds 
conjugated by multiple UGT isoforms. A major data gap is 
the lack of human in vivo PK data and mechanistically vali-
dated in vitro assays in human intestinal, liver, and kidney 

cells. Further research and validation efforts in these areas 
would allow to characterise either direct isoform-specific 
UGT metabolism, cytochrome P450 and/or influx or efflux 
transport with subsequent UGT conjugation as well as differ-
ential renal or bile excretion to further develop such QIVIVE 
models and gain experience and confidence in their use in 
daily chemical risk assessment.
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