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Adaptive wavefront correction 
structured illumination holographic 
tomography
Vinoth Balasubramani1, Han-Yen Tu2, Xin-Ji Lai1 & Chau-Jern Cheng1

In this study, a novel adaptive wavefront correction (AWC) technique is implemented on a compactly 
developed structured illumination holographic tomography (SI-HT) system. We propose a mechanical 
movement-free compact scanning architecture for SI-HT systems with AWC, implemented by designing 
and displaying a series of computer-generated holograms (CGH) composed of blazed grating with phase 
Fresnel lens on a phase-only spatial light modulator (SLM). In the proposed SI-HT, the aberrations of 
the optical system are sensed by digital holography and are used to design the CGH-based AWC to 
compensate the phase aberrations of the tomographic imaging system. The proposed method was 
validated using a standard Siemens star target, its potential application was demonstrated using a live 
candida rugosa sample, and its label-free three-dimensional refractive index profile was generated at 
its subcellular level. The experimental results obtained reveal the ability of the proposed method to 
enhance the imaging performance in both lateral and axial directions.

Structured illumination microscopy (SIM) is a popular optical imaging technique used to achieve high resolu-
tion1–6, and recent studies have demonstrated its ability to achieve resolution-enhanced imaging of biological 
specimens7–13. In structured illumination (SI) techniques, SI patterns are generated through different methods 
using either coherent10–20 or incoherent sources21, and low-resolution moiré beat patterns are detected from 
the convolved signals of SI patterns with the high-frequency components of the sample. In general, SI uses a 
phase-shifting method to separate overlapped spatial frequencies using singular value decomposition (SVD) and 
a pseudoinverse approach15,22. The separated high spatial frequencies are corrected and synthesized, thus provid-
ing resolution-enhanced imaging15,19. In recent years, the SI method has been used as a substitute for the synthetic 
aperture (SA) method in digital holographic microscopy (DHM)23 to generate quantitative phase image and 
refractive index (RI) profiles of biological samples24–29. Furthermore, in DHM, wavefront aberrations induced 
from the illumination and detection process in the optical system can suppress the spatial resolution as well as 
the reconstructed image quality. Several numerical compensation and adaptive methods are available to correct 
aberrations during the post-image reconstruction process30–34. In DHM, a conventional adaptive optical element, 
such as a deformable mirror device (DM), is used for phase aberration correction, but the DM control relies on 
mechanical control with complex tuning procedures35–37. Another active element that may possibly be used for 
phase aberration correction is a spatial light modulator (SLM), which can also be used for aberration compen-
sation38,39. Several theoretical studies have been conducted using conventional SI to study aberration formations 
and the implications of conventional SI systems, and these studies have proposed several correction methods 
based on DM or numerical-compensation methods35–37,40,41. To date, no other study has examined the implemen-
tation of compact mechanical movement-free holographic approaches for AWC in SI system; to our knowledge, 
this study is the first to develop such a SI holographic imaging system. The proposed AWC technique is imple-
mented on a compactly developed mechanical movement-free scanning structured illumination holographic 
tomography (SI-HT) system. The SI-HT system subsequently developed has several advantages: First, compact 
mechanical movement-free SI scanning is achieved by designing and displaying the CGHs composed of blazed 
grating and a phase Fresnel lens onto the phase-only SLM. Second, a feedback process is integrated with digital 
holography to sense the phase aberrations of the tomographic imaging system; the same is used to compensate 
the phase aberrations using mechanical movement-free CGH-based AWC techniques to enhance tomographic 
imaging performance in lateral as well as axial directions. Furthermore, the phase error induced by the variation 
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and misalignment of the imaging system or environment can be sensed and compensated using AWC techniques 
to promote the long-term stability during measurements. The proposed AWC-SI-HT system performance is eval-
uated using a standard Siemens star target. The prospective biological application is demonstrated using a live 
candida rugosa as a sample, and its label-free three-dimensional RI profile is generated at the subcellular level.

Working Principle
The principle operation of the CGH-based AWC technique implemented on a compactly developed SI-HT sys-
tem using a phase-only SLM is shown in Fig. 1(a). The operation of the system involves four major steps. First, 
CGH design for the compact scanning; second, wavefront aberration sensing; third, adaptive CGH design for 
AWC, and the final step involves the AWC calibrated SI-HT measurements and its image reconstructions.

In the first step, the key element to be considered for the CGH design is SLM. The main function of the 
phase-only SLM involves the development of the compact mechanical movement-free AWC SI-HT system. The 
conventional optical lens after the scanning element in the conventional SI system is replaced by the phase Fresnel 
lens as a CGH displayed on the SLM. The phase function of Fresnel lens can be expressed as, 
Φ = +π

λ
x y x y( , ) ( )

fFZL
2 2 , where λ is the wavelength of the source, x and y are the spatial coordinates, and f is the 

focal length of the phase Fresnel lens. A compact mechanical movement-free scanning architecture are achieved 
by combining the binary blazed phase grating, Φ = +π

∧
x y x y( , ) ( )blazed

2  with phase Fresnel lens, and by rotating 
the grating period (Λ) the position of the probe beam are controlled in (x, y) directions42. The phase-only SLM are 
modulated by the phase functions Φ1and Φ2 to create SI as shown in Fig. 1(b). The expressions for Φ1and Φ2 are 
given as,

Φ Φ Φ= +x x x( ) ( ) ( ) (1)FZL blazed1

and

Figure 1.  (a) Conceptual representation of AWC SI holographic tomography. (1) CGHs are displayed in 
phase-only SLM to execute SI scanning, and the corresponding SI holograms are recorded using an image 
sensor; (2) from the recorded holograms, the overlapped pass bands are separated, and the corresponding 
phase aberrations are estimated for all scanning angles; (3) new sequences of SI scanning CGHs are generated 
by mapping the collected aberration with a Zernike polynomial aberration model; and (4) holograms are 
recorded after aberration compensation and are used for further tomographic reconstruction. SLM (spatial light 
modulator), MO (microscope objective), and D1 and D2 are the passbands. (b) SLM based AWC SI-HT system, 
and (c) Spatial frequency coverages: single SI (upper); sequence of SI (lower).
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Φ Φ Φ= +y y y( ) ( ) ( ) (2)FZL blazed2

Then the developed CGHs are displayed on the phase-only SLM to achieve mechanical movement-free com-
pact SI scanning, and the corresponding SI holograms are recorded using an image sensor. The frequency cover-
age corresponds to single SI and sequential SI imaging are shown in Fig. 1(d).

The second step involves the extraction of the phase aberrations from the recorded SI holograms. The wave-
front distribution of the imaging system can be expressed as, = π

λ( )P x y j P x y( , ) exp ( , )abr
2 , where Pabr is the phase 

aberration of the imaging system. The resultant wavefront (RSI (x, y)) of the object excited with an SI pattern can 
be expressed as

= ⊗R x y S x y I x y P x y( , ) [ ( , ) ( , )] ( , ) (3)SI obj

The corresponding SI spectrum in the frequency domain (R u v( , )SI ) can be expressed as

= ⊗R u v S u v I u v CTF u v( , ) [ ( , ) ( , )] ( , ) (4)SI obj

The symbols Sobj (u, v), I (u, v) and CTF (u, v) are the Fourier transforms of Sobj (u, v), I (u, v) and P (x, y), 
respectively. The illumination pattern is carefully controlled by Φ1 and Φ2. Accordingly, the SI wavefront spectrum 
(OSI (u, v)) of the two overlapped passbands can be expressed as18.

= +O u v D u v D u v( , ) ( , ) ( , ) (5)SI 1 2

The passbands corresponding to the SI illuminations are

= − + ′D u v A f A u v S u f v P( , ) ( , 0) ( , ) ( , ) (6)i x d obj x abr1
1

and

= − + ′D u v A f A u v S u v f P( , ) (0, ) ( , ) ( , ) (7)i y d obj y abr2
2

The symbols Ai and Ad are the transfer functions corresponding to the illumination and detection 4F systems 
of the object illumination18 as shown in Fig. 1(a), ′P abr

1 and ′P abr
2  are the recorded aberrations, and the cut-off 

frequency, θ λ=f sin /x y x y, , , θx,y is the diffracted angle along x and y axes.
By subsequently solving the SVD and pseudoinverse approach the overlapped passbands are separated15,19. 

From the separated passbands, the phase aberrations, P x y( , )abr
1  and P x y( , )abr

2  are estimated iteratively for AWC. 
The third step in the operation of the system involves the CGH design for AWC. From the aberrations obtained, 
the corresponding compensation model is estimated at the conjugate image plane using a Zernike polynomial 
aberration model38,43,44, = − ∑π

λ =P eabr
j z( )p

q
p

2
0 , where p is the polynomial order and zp is the corresponding Zernike 

mode. Therefore, the estimated wavefront aberration Pabr (x, y) is numerically diffracted to the conjugate image 
plane and combined with Φ1 and Φ2 to develop CGH-based adaptive aberration-compensated imaging as shown 
in Fig. 1(a)38.

Finally, step 4 consists of recording the SI holograms using the AWC CGHs designed in step 3. From the 
recorded holograms, as explained in the second step, the overlapped passbands are separated and synthesized to 
obtain an enlarged spatial frequency coverage. Thus, the resulting spatial frequency coverage ( ζ ηR ( , )o ) of the 
SI-HT system can be expressed as18

∑ζ η = − + + − + ⊗
=

R A f S u f v A f S u v f A u v( , ) [{ ( , 0) ( , )} { (0, ) ( , )}] ( , )
(8)

o
m n

M N

i x
m

obj x
m

i y
n

obj y
n

d
, 1

,

where, the symbol m, n denotes the number of passbands, and the symbol M, N denotes the number of hologram 
acquisitions. The calibrated measurement procedures of AWC SI-HT system showing each steps with its corre-
sponding experimental results are described in Fig. 2.

Experiments and Results
The CGH-based AWC SI-HT experimental setup follows a vertical type of modified off-axis Mach-Zehnder inter-
ferometric architecture. This configuration is more suitable for live sample measurement. A spatially filtered and 
collimated beam from a diode-pumped solid state laser (DPSS) emitting at 532 nm is used as a source and split 
by a beam splitter (BS) as a probe beam and a reference beam, as shown in Fig. 3. The phase-only SLM (Jasper 
Display corp., pixel number: 1920 × 1080, pixel size: 6.4 µm × 6.4 µm) is used to display the designed phase 
CGHs. The blazed grating profile is optimized in the CGH design and aligned the probe beam in order to avoid 
the zero order diffraction from the SLM.

The probe beam hits the phase-only SLM and reflects it back to create an SI pattern after the objective MO1 
(NA = 0.9, 100x), and the beam passes through the sample. The wavefield with sample information is allowed 
to enter the detection 4F system (MO2: NA = 0.9, 100x, L1: 250 mm) and interfere with the reference beam. The 
background SI holograms with phase shifts corresponding to 0° and 120° are scanned along the circular direc-
tions, and the SI holograms are recorded using a complementary metal-oxide-semiconductor (CMOS) image 
sensor. The SI holograms and its frequency spectrums corresponding to the phase shifts of 0° and 120° are shown 
in Fig. 4(a,b), respectively. The separated passbands and corresponding phase aberrations are shown in Fig. 4(c,d) 
respectively. By then mapping back the estimated aberration using a Zernike polynomial model to iteratively 
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generate a new CGH which is displayed on the SLM for AWC. The reconstructed phase profile after AWC are 
shown in Fig. 4(e), which shows that the proposed method can work well for the aberration correction. The quan-
titative amplitude validation of the proposed method is conducted using a standard Siemens star target as a test 
object which has a minimal line width of 150 nm (300 nm/pair). The experimental results are compared in Fig. 5. 
Different segments of target objects are marked from S1 to S8.

Figure 5(a) illustrates the normal aperture condition with an AWC scheme; for this case, the theoretical res-
olution at 532 nm can resolve only up to 455 nm, so high-frequency information cannot be resolved here. The SI 
scanning is performed in circular directions. The results without AWC and with AWC are compared in Fig. 5(b,c) 
respectively. Figure 5(b) shows that it can resolve only up to 230 nm, but our proposed AWC method can resolve 
high-frequency components of size 150 nm, as shown in Fig. 5(c). The cross-sectional profiles are compared in 
Fig. 5(d). The σ in Fig. 5(d) shows the resolvable resolution of the SI-HT system with AWC. We used 60 pairs of SI 
holograms (equivalent to 120 passbands) to achieve circular scanning within the numerical aperture of the objec-
tive lens. To achieve faster data acquisition, a LabVIEW-based software controller was developed to synchronize 
SLM and the image sensor, achieved a data acquisition time of less than 4 seconds.

For label-free RI tomographic image analysis, live candida rugosa (ATCC 14830) is used as a sample and is 
loaded into the microchannel (µ-Slide I0.4 Luer from ibidi) for the AWC SI-HT measurement procedures. The 
tomographic images are reconstructed45,46, and the different slices correspond to xy and xz directions, as eluci-
dated in Fig. 6. Herein, the aberration data suffers to generate the cell structures; the cell wall and the inner orga-
nelles are not clearly visible, as illustrated in Fig. 6(a). Numerical aberration corrections were undertaken for the 
SI data, and the reconstructed results are shown in Fig. 6(b). It can resolve the cell wall and the inner structures 
but is still suffers to generate a high-quality sample profile compared with the proposed AWC technique shown 
in Fig. 6(c). After AWC was implemented, the cell structures and the cell’s inner organelles were observed clearly 

Figure 2.  Calibrated measurement procedure of AWC SI-HT system listing each steps with experimental 
results.

Figure 3.  Experimental setup, BE: beam expander, BS: beam splitter, SLM: spatial light modulator, MO: solving 
the SVD matrix, the separated microscope objective, L: lens, M: mirror.
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in xy and xz slices. The inset images are shown for all three cases in Fig. 6. This result demonstrates the ability of 
the proposed AWC to generate a high-quality sample profile in both lateral and axial directions and proves the 
potential applications for label-free imaging. Different 3D views are generated using the proposed AWC SI-HT 
approach. Based on the RI distribution the subcellular structures28,45–49, such as the cytoplasm, mitochondria dis-
tribution, and nuclei are clearly visible, as shown in Fig. 6(d). We posit that the proposed method could be used 
as a tool for generating a label-free 3D RI profile of a live sample.

Figure 4.  (a) Raw hologram corresponds to the phase shift of 0° and 120°, inset region shows Moire beat 
pattern. (b) First order frequency spectrum of (a) shows the overlapped frequencies. (c) Separated frequencies 
using singular value decomposition and pseudoinverse approach. Reconstructed phase: (d) before AWC and (e) 
after AWC.

Figure 5.  Siemens star target analysis. (a) normal incidence with AWC, (b) SI without AWC, (c) SI with AWC, 
(d) sectional profiles of ROI corresponds to (a–c).
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Conclusions
In summary, a novel CGH-based AWC technique was successfully demonstrated in the compactly developed 
mechanical-free scanning SI-HT system. The feasibility and the performance of the proposed method were stud-
ied in detail with a standard Siemens star target; the method was proven to resolve up to 150 nm, corresponding 
to a wavelength of 532 nm. Moreover, the method is not limited to the standard static targets but also demon-
strated potential applications in label-free tomographic generation at subcellular levels using live candida rugosa 
samples (ATCC 14830). Therefore, it is expected that the proposed AWC SI-HT will be of use to the biomedical 
research community for the undertaking of further label-free quantitative analysis of native biological specimens 
at subcellular levels.
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