
Computational and Structural Biotechnology Journal 19 (2021) 3069–3076
journal homepage: www.elsevier .com/locate /csbj
Modifying splice site usage with ModCon: Maintaining the genetic code
while changing the underlying mRNP code
https://doi.org/10.1016/j.csbj.2021.05.033
2001-0370/� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: A, adenine; eGFP, enhanced green fluorescent protein; F1, filial
sequence 1; G, guanine; GA, genetic algorithm; hnRNP, heterogeneous nuclear
ribonucleoproteins; HBS, HBond score; HZEI, HEXplorer score; nt, nucleotides; P1,
parental sequence 1; pre-mRNA, precursor messenger RNA; SA, splice acceptor; SD,
splice donor; snRNA, small nuclear RNA; SR proteins, serine- and arginine-rich
proteins; SRP, splicing regulatory protein; SSHW, splice site HEXplorer weight; SW,
sliding window; T, thymine.
⇑ Corresponding authors.
Johannes Ptok a, Lisa Müller a, Philipp Niklas Ostermann a, Anastasia Ritchie a, Alexander T. Dilthey b,c,d,
Stephan Theiss a,⇑, Heiner Schaal a,⇑
a Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
b Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
cCologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
d Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 February 2021
Received in revised form 14 May 2021
Accepted 20 May 2021
Available online 21 May 2021

Keywords:
pre-mRNA splicing
Splicing reporter
HEXplorer score
HBond score
Splice donor
Splicing regulatory proteins
Codon degeneracy of amino acid sequences permits an additional ‘‘mRNP code” layer underlying the
genetic code that is related to RNA processing. In pre-mRNA splicing, splice site usage is determined
by both intrinsic strength and sequence context providing RNA binding sites for splicing regulatory pro-
teins. In this study, we systematically examined modification of splicing regulatory properties in the
neighborhood of a GT site, i.e. potential splice site, without altering the encoded amino acids.
We quantified the splicing regulatory properties of the neighborhood around a potential splice site by

its Splice Site HEXplorer Weight (SSHW) based on the HEXplorer score algorithm. To systematically modify
GT site neighborhoods, either minimizing or maximizing their SSHW, we designed the novel stochastic
optimization algorithm ModCon that applies a genetic algorithm with stochastic crossover, insertion
and random mutation elements supplemented by a heuristic sliding window approach.
To assess the achievable range in SSHW in human splice donors without altering the encoded amino

acids, we applied ModCon to a set of 1000 randomly selected Ensembl annotated human splice donor
sites, achieving substantial and accurate changes in SSHW. Using ModCon optimization, we successfully
switched splice donor usage in a splice site competition reporter containing coding sequences from
FANCA, FANCB or BRCA2, while retaining their amino acid coding information.
The ModCon algorithm and its R package implementation can assist in reporter design by either intro-

ducing novel splice sites, silencing accidental, undesired splice sites, and by generally modifying the
entire mRNP code while maintaining the genetic code.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During splicing, introns of a newly synthetized pre-mRNA
strand are mostly co-transcriptionally removed from the tran-
script, followed by the ligation of the remaining exonic sequence
segments [1,2]. The intron excision cellular machinery is called
spliceosome and recognizes canonical sequences with a GT dinu-
cleotide at the upstream end of an intron, the 50 splice site (50ss)
or splice donor (SD), and with an invariant AG at the downstream
end of an intron, the 30 splice site (30ss) or splice acceptor (SA) [3,4].

Recognition of splice donor sites during spliceosome formation
is accomplished through RNA duplex formation with 11 nucleo-
tides of the free 50end of the U1 snRNA [5], while splice acceptor
sites are bound by U2 auxiliary factors (U2AF). A higher U1 snRNA
complementarity is beneficial for 50 splice site recognition and
usage [6]. Several algorithms are available for scoring splice site
strength: e.g. maximum entropy algorithms providing maxent
scores for both 50ss and 30ss [7], and the HBond score reflecting
50ss complementarity to U1 snRNA [5].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2021.05.033&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2021.05.033
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2021.05.033
http://www.elsevier.com/locate/csbj


J. Ptok, L. Müller, Philipp Niklas Ostermann et al. Computational and Structural Biotechnology Journal 19 (2021) 3069–3076
Beyond the proper splice site consensus sequences, splice site
recognition has been shown to greatly depend on proximal binding
of splicing regulatory proteins (SRPs) [8-11], which can signifi-
cantly enhance or repress splice site usage. Splicing regulatory pro-
teins can be divided into two major families, differing in their
position-dependent effect on splice site usage [12]. Serine- and
arginine-rich proteins (SR proteins) enhance usage of upstream
splice acceptors and downstream splice donors, but repress usage
of upstream splice donors and downstream splice acceptors.
Heterogeneous nuclear ribonucleoproteins (hnRNP) on the other
hand have an opposite effect on splice site usage. The proximal
splice donor context beneficial for its usage therefore consists of
upstream binding motifs of SR proteins and downstream binding
motifs of hnRNP proteins (reviewed in [11]).

In general, different nucleotide sequences coding for the same
amino acid sequence can contain different splicing regulatory ele-
ments—binding sites for SR- or hnRNP proteins. For any genomic
sequence, its splicing regulatory properties are reflected by its
HEXplorer score (HZEI) profile, calculated for every nucleotide
[13]. Here, we examine the possible variation in the total HEX-
plorer score while preserving the encoded amino acid sequence
for a given reading frame. To this end, we designed an algorithm
to maximize or minimize total HZEI by variation of admissible
codons. With an average codon degeneracy of three (range 1–6),
the number of alternatively admissible nucleotide sequences for
a given sequence of N amino acids is ~3N and grows exponentially
with the number of codons, N. An exhaustive search in the space of
all alternative sequences is therefore very time-consuming and not
feasible in practice.

Stochastic optimization algorithms like Monte Carlo or evolu-
tionary algorithms are particularly well suited for optimizing an
objective function—total HZEI—in an exponentially large configura-
tion space (~3N) under a set of constraints (amino acids). Here, we
designed a genetic algorithm with recombination between mating
configuration populations using crossover, insertion and random
mutations, and combined it with a heuristic sliding window
approach. This ModCon algorithm (Modulator of Context) permits
enhancing or silencing splice site usage by manipulating their
sequence neighborhoods while preserving the encoded amino
acids. As a proof of principle, we applied ModCon to sequences
within a splice donor competition reporter and additionally
demonstrated the impact of a change in HEXplorer score for a nat-
urally occurring GT site within a common luciferase expression
reporter system. We tested the scope of HEXplorer score manipu-
lation with ModCon on a set of 1000 randomly selected human SD
sites.
2. Material and methods

2.1. HEXplorer algorithm

The HEXplorer score is based on hexamer frequency differences
in 100 nt long neighborhoods upstream compared to downstream
of splice donor sites [13], resulting in a ZEI-score for each hexamer.
Hexamers predominantly found upstream of splice donor sites
have positive ZEI-scores, and they frequently overlap SR protein
binding sites, while negative ZEI-score hexamers often relate to
hnRNP binding sites. Proceeding from a single hexamer-based
quantification to a score for each nucleotide of a genomic
sequence, we calculated the HEXplorer score (HZEI) as the average
ZEI-score of all six hexamers overlapping an index nucleotide:
HZEI ¼

P
ZEI=6. The total HZEI of a sequence stretch, e.g. a splice

site neighborhood, indicates its overall splicing regulatory prop-
erty, likely due to hnRNP or SR protein binding sites. Changes in
HEXplorer score induced by mutations have been shown to corre-
3070
late well with the mutation’s impact on nearby splice site usage
[14].

For any splice donor site, the overall SRP-mediated impact of its
sequence neighborhood on splice site usage is then captured by its
Splice Site HEXplorer Weight (SSHW), the total upstream minus
downstream HZEI [14]: SSHW ¼ P

upHZEI �
P

dnHZEI . The higher
the SSHW, the higher the predicted SRP binding potential of a
splice site sequence neighborhood, potentially enhancing its usage.

2.2. The ModCon algorithm

To optimize a splice donor site’s SSHW, ModCon combines a
genetic algorithm applying principles of natural selection and sex-
ual recombination with a sliding window approach, and separately
addresses up- and downstream sequences of the given splice site.
Driven by the optimization algorithm, ModCon varies the sequence
neighborhood of the splice donor site under the constraint of pre-
serving the encoded amino acids and calculates the HEXplorer
score of each alternative neighborhood as well as the SSHW.

As input, ModCon takes (1) a coding sequence, (2) the position
of the first nucleotide of the ‘‘index” GT site within the coding
sequence and (3) either maximization or minimization of the tar-
get function SSHW. ModCon outputs a coding sequence with a
SSHW-optimized alternative neighborhood (16 codons upstream
and downstream by default) for the GT site. The graphical abstract
provides a structural overview of the ModCon algorithm.

2.2.1. Maximizing or minimizing the total HEXplorer score of a coding
sequence

To maximize the SSHW of a splice donor site, ModCon maxi-
mizes the total upstream HEXplorer score and minimizes the total
downstream HEXplorer score, and vice versa.

By default, ModCon considers a sequence window of ±48
nucleotides around the selected index GT site in frame, excluding
codons which would overlap with the 11 nucleotides of the GT
donor sequence. Synonymous substitutions are then applied to
16 codons (e 48 nt) upstream and downstream of the GT site to
increase or decrease the underlying total HZEI, possibly regulating
GT site usage through introduction or modification of splicing reg-
ulatory elements.

Ideally, the total HEXplorer score HZEI of all sequences encoding
the same amino acid sequence would be calculated to determine
the highest or lowest total HZEI. However, a sequence of 16 amino
acids can potentially be encoded by up to 616 or 2.8 trillion differ-
ent nucleotide sequences, because some amino acids can be
encoded by up to 6 different codons. Since the HEXplorer score
computation of all 2.8 trillion eligible sequences, however, would
require extensive time and memory resources, we developed an
evolutionary algorithm supplemented by a sliding window
approach.

2.2.2. Genetic algorithm
Genetic algorithms can be used to approach optimization tasks

with trillions of potential solutions for combinatorial problems by
applying principles of genetic recombination and natural selection
[15].

Here, a genetic algorithm is developed to combine distinct sets
of nucleotide sequences depending on their ‘‘fitness”, defined by
their total HZEI. It applies a cyclic iterative optimization process
that consists of (1) generating an initial sequence population and
calculating its fitness, (2) selecting a suitable mating population,
(3) creating a new filial generation from it and (4) introducing ran-
dom mutations (see flowchart Fig. 1).

First, by randomly selecting eligible codons, an initial parental
population F0 of 1000 sequences is generated, all encoding the



Fig. 1. Schematic of the genetic algorithm. After generation of the initial sequence
population, the ‘‘fitness” of the sequences, defined by the total HZEI, is calculated.
Next, a defined number of sequences are selected for recombination, either
randomly, by crossover, or sequence insertion. Afterwards, every codon within a
sequence undergoes random codon exchange with a certain probability. The fitness
of every newly generated filial generation of sequences is again determined by total
HZEI calculation. This cycle of generations is continued, while determining the best
fitness of every generation, until no further significant increase in total HZEI can be
measured anymore. Finally, the sequence with the highest or lowest total HZEI is
returned. A dashed arrow represents a one-time action, whereas a solid arrow
represents an action repeated in every generation.

J. Ptok, L. Müller, Philipp Niklas Ostermann et al. Computational and Structural Biotechnology Journal 19 (2021) 3069–3076
same initial amino acid sequence. In order to improve convergence
speed, this sequence set can optionally be supplemented with typ-
ically 100 (10%) sequences previously calculated by a sliding-
window approach. This step significantly accelerates the process
of the genetic algorithm by directing it towards an optimal
solution.

In the first part of the genetic algorithm loop, the fitness of
every sequence of the parental population F0 is calculated as its
respective total HZEI. For each generation, the sequence with the
highest or lowest total HZEI is stored for later reporting on effi-
ciency, and to check if the overall scores could be significantly
improved during the last 30 generations.

A new set of sequences, the mating populationM, is then gener-
ated through recombination from a subset of the parental popula-
tion F0. This subset is per default assembled from 40% of the fittest
sequences of F0, 20% of F0 using the fitness as probability for selec-
tion, and 5% randomly selected parental sequences.

Next, M is used to generate a set of recombined sequences (300
per default). The resulting filial population F1 is created through
random combination of sequence blocks from sequences of the
mating population. Every newly generated codon sequence is gen-
erated by recombination of two randomly selected codon
sequences from the mating population, using three distinct modes
of recombination (Fig. 2).

Usage frequency of the three methods of recombination is
based on the extent to which the three modes preserve continuous
parental codon sequence stretches within the resulting filial
sequences. Therefore, 60% of filial sequences originate from ‘‘cross-
over” recombination, where a filial sequence is made from two
continuous sequence stretches coming from one parental sequence
each. With 30%, the second most applied mode of recombination is
‘‘insertion”, where filial sequences consist of the sequence of one
parental sequence, which holds a random-sized insertion from a
3071
second parental sequence in-between. The least used recombina-
tion method is the random selection of codons from either one par-
ental sequence. It is used for the remaining 10% of filial sequences.

An important step of evolutionary algorithms is the introduc-
tion of mutations after generation of the filial population F1, since
a carefully selected mutation rate increases the probability to
escape potential local maxima or minima during the search for
the global peak in the fitness function. From a series of preliminary
experiments, we identified an optimal mutation rate of 10-4 or
0.01%, meaning that one in 10,000 codons is randomly exchanged
with another codon encoding the same amino acid.

The introduction of mutations marks the last step during the
cycle of generations. Afterwards, the total HZEI is again calculated
for each sequence, to determine the likeliness to further contribute
to the following generations of filial sequences. Then, again, a sub-
set of sequences is selected from F1 based on their fitness to con-
stitute the next mating sequence population, to generate the
second filial population F2 through recombination.

The generation of newly combined sequences is repeated, until
the total HZEI holds approximately the same level for at least 30
generations or the maximal number of generations (50 generations
by default) is reached.

2.2.3. Sliding-window algorithm
In order to keep the computational effort manageable, we fur-

thermore applied a stepwise optimization of codon-quadruplets
to optimize the total HZEI of a 16-codon long sequence. In contrast
to the up to 2.8 trillion different nucleotide sequences for a stretch
of 16 codons, a four amino acids long sequence can only be
encoded by up to 64 = 1296 distinct nucleotide sequences, which
enables more efficient total HZEI calculation.

To optimize the total HZEI of a sequence, the sliding window
algorithm first makes a list of every potential nucleotide sequence
encoding the most upstream stretch of four amino acids (codons
1–4). Then, total HZEI is calculated and the most downstream hex-
amer of each nucleotide sequence is saved. For every unique hex-
amer within the sequence pool, the maximal associated total
HZEI is determined. Since the HEXplorer score of each nucleotide
is calculated from all six overlapping hexamers, a hexamer
between two nucleotides constitutes a barrier in the HZEI score
dependencies. In particular, a sequence downstream of a hexamer
can be changed without affecting the HZEI upstream of that hex-
amer. The algorithm then proceeds with the optimal nucleotide
sequences in each hexamer group, reducing the number of
sequences drastically (up to 62 = 36 sequences, in case the last hex-
amer encodes amino acids with a codon degeneracy of 6).

Subsequently, the algorithm makes a list of every potential
nucleotide sequence encoding the next four codons (codons 5–8)
and combines every new nucleotide sequence with every previ-
ously determined one. Since always those sequences with the
highest total HZEI are selected, the first four codons are now the
same in every sequence. To decrease computation time, we can
save them for the output and remove them from our sequence list,
reducing the sequence length to four codons. This process is
repeated until the end of the 16 codons is reached.

While the sliding window algorithm enables fast calculation
(taking only a few seconds per run on a standard machine), its fast
convergence skips sequences with an intermediate HZEI increase.
The sliding window algorithm is therefore primarily used to
quickly obtain a few near-optimal sequences, in particular as sup-
plementary sequences for the genetic algorithm.

2.2.4. Additional sequence processing
A sequence found to maximize or minimize total HZEI may still

contain GT or AG dinucleotides that may accidentally correspond
to strong splice donor or acceptor sites. To reduce coincidental



Fig. 2. Modes of sequence recombination. Mating of two codon sequences (F0, F0) of the parental sequence population can lead to various resulting potential filial sequences
(F1, F1) depending on the modus of recombination. Filial sequences coming from crossover combinations are constituted of two continuous sequence stretches, coming from
one parental codon sequence each. During insertion recombination, the filial sequences consist of one of the parental sequences, holding an insertion from the other one.
Random recombination describes the random mixture of codons from both parental sequences.

J. Ptok, L. Müller, Philipp Niklas Ostermann et al. Computational and Structural Biotechnology Journal 19 (2021) 3069–3076
introduction of such undesired splice sites, ModCon proceeds to
degrade splice sites exceeding a threshold of HBS >10 for splice
donors and Maxent score >4 for splice acceptors, while preserving
the encoded amino acids.

For that purpose, codons overlapping these GT or AG sites are
exchanged by alternative codons leading to no or much weaker
sites, while keeping total HZEI close to the identified optimum.
Degrading or increasing the HBond score of a specific index GT site
of interest can be performed if needed, using the respective R-
functions.

2.2.5. HBond, maxent and HEXplorer data sources
Required data for HBond scores of 50 splice sites [5] and HZEI

scores of splice site neighborhoods [13] were taken from previous
work of this group (cf. http://www.uni-duesseldorf.de/rna). The
maxent score for human splice sites has been integrated for the
evaluation of 30 splice site strength [7] with kind approval of Gene
Yeo. Data for the calculation of 30 splice site maxent scores were
adopted from the website http://hollywood.mit.edu/burge-
lab/maxent/download/fordownload/.

2.3. The luciferase reporter

A dual luciferase reporter was used to monitor differences in
the splicing outcome upon using ModCon to render an unused
50ss functional. The reporter construct consists of renilla- and
firefly-luciferase transcription units under the control of an SV40
promoter which are terminated by an SV40 polyadenylation site.
Renilla luciferase expression was used for normalization of mRNA
abundancies in a PCR based readout. For cloning, synonymous
mutations were placed in the firefly luciferase coding sequence
to create an EcoRV restriction site upstream of an unused splice
donor with an HBS of 14. Downstream of the firefly luciferase stop
codon, the HIV derived 30ss SA7opt and an artificial exon (99 bp)
were placed [16]. Algorithm amended sequences were inserted
as a gene strand synthesized by Eurofins Genomics, Germany
(Eurofins Gene Strand #11106560588).

To analyze the splicing pattern, HeLa cells cultivated in Dul-
becco’s high-glucose modified Eagle’s medium (Invitrogen) supple-
mented with 10% fetal calf serum and 50 mg/ml penicillin and
streptomycin each (Invitrogen) were used for transient-
transfection experiments. For that, 2.5x105 cells were plated in
six-well plates and transfected with 1 mg of the reporter plasmid
using TransIT�-LT1 transfection reagent (Mirus Bio LLC US) accord-
ing to the manufacturer’s instructions. Total RNA was isolated 24 h
post-transfection by using acid guanidinium thiocyanate-phenol-
3072
chloroform. For semiquantitative RT-PCR analyses, RNA was
reverse transcribed by using Superscript III reverse transcriptase
(Invitrogen) and oligo(dT) primers (Invitrogen) and amplified using
the primer pair #6575/#6381, as well as #6167/6168 for the
renilla luciferase internal control. Splicing patterns were visualized
via a non-denaturing 10% polyacrylamide gel. Primer sequences for
the RT-PCR:

#6575 FW (modified) firefly luciferase
GTGTTGTTCCATTCCATCACG
#6381 REV firefly luciferase CAGCTGTTCTCCAGCTGT
#6167 FW renilla luciferase GCGTTGATCAAATCTGAAGAAGG
#6168 REV renilla luciferase TTGGACGACGAACTTCACCT

2.4. Splice donor competition reporter

In order to experimentally test the splicing behavior of ModCon
designed sequences, 40 nt stretches of either wild type or modified
sequence were inserted between two identical copies of a strong
50ss sequence with an HBond score of 17.5. These two competing
50ss define the 30 end of the first exon of an HIV-based two-exon
splicing reporter. 40 nt long sequences between the competing
50ss were derived from FANCA, FANCB and BRCA2 (Suppl. Table 3).
All sequences can be obtained upon request.

To analyze the splicing pattern, transient-transfection experi-
ments were carried out as described above. To monitor transfec-
tion efficiency, 1 lg of pXGH5 expression plasmid (hGH) was co-
transfected. For semiquantitative RT-PCR analyses, RNA was
reverse transcribed by using Superscript III reverse transcriptase
(Invitrogen) and oligo(dT) primers (Invitrogen) and amplified using
the primer pair #3210/#3211, as well as #1224/#1225 for hGH.
Splicing patterns were visualized via a non-denaturing 10% poly-
acrylamide gel. Primer sequences for the RT-PCR:

#3210 TGAGGAGGCTTTTTTGGAGG
#3211 TTCACTAATCGAATGGATCTGTC
#1224 TCTTCCAGCCTCCCATCAGCGTTTGG
#1225 CAACAGAAATCCAACCTAGAGCTGCT

3. Results

3.1. Similar SSHW ranges obtained by GA and SW for 1000 human
TSL1 SD sites

In order to determine the achievable range of SSHW optimiza-
tion, we extracted 185,190 unique splice donors annotated in
Ensembl transcripts (version 101) with the highest transcript sup-

http://www.uni-duesseldorf.de/rna
http://hollywood.mit.edu/burgelab/maxent/download/fordownload/
http://hollywood.mit.edu/burgelab/maxent/download/fordownload/


J. Ptok, L. Müller, Philipp Niklas Ostermann et al. Computational and Structural Biotechnology Journal 19 (2021) 3069–3076
port level of 1 (TSL1, Suppl. Table 1). After removing 1% of extre-
mely high and low SSHW values, the remaining 183,339 wild type
donor sites (99%) showed SSHW values ranging from around �300
to 1000 (average SSHW 235).

For a random sample of 1000 splice donors drawn from this set
(Suppl. Table 2), we then minimized and maximized SSHW using
both the sliding window algorithm (SW) and the genetic algorithm
with the results from the SW added to the initial population (GA).
Table 1 presents the average and standard deviation SSHW differ-
ence for the four combinations of algorithm (GA, SW) and opti-
mization (SSHW min/max).

Fig. 3 shows the distributions of minimal and maximal SSHW
difference (optimized—wild type) obtained by the GA and SW algo-
rithm. Note that the resulting distributions for the GA and SW algo-
rithm practically coincide, while the maximal SSHW distribution is
~17% narrower and higher compared to the minimal SSHW
distribution.

Comparing the distribution of SSHW values achieved with the
two algorithms showed no significant differences during SSHW
minimization or maximization. However, for around a third of
the 1000 SD sites, one of the two approaches performed marginally
better. During SSHW minimization and maximization, the GA with
the input from the SW algorithm exceeded the achieved SSHW of
the SW algorithm alone in 26% of the cases and underperformed
for 8% of the SD sites. However, although both algorithms obtained
similar extreme values for SSHW, the GA also provides a wide
range of intermediate SSHW, and thus permits fine adjustment of
potential binding sites for SRPs.
3.2. Faster convergence of GA if SW results are added to initial
population

While the sliding window algorithm is deterministic in nature,
the genetic algorithm is stochastic and progressively converges to a
sequence with optimized SSHW. Convergence speed depends on
the choice of mating populations and filial generations, but also
on the initial sequence population chosen. Here, we in particular
examined the impact of adding 10% sliding-window optimized
sequences to the initial generation of the genetic algorithm during
total HZEI maximization. We generated scatterplots of the total
HZEI values of all 300 sequences in each generation both with
(Fig. 4B) and without these additional sequences (Fig. 4A). Upon
adding 100 SW-optimized sequences generated from the initial
WT sequence, the convergence of the genetic algorithm was faster
and reached sequences with optimal total HZEI values with fewer
iterations, significantly reducing the algorithm’s runtime. These
observations also held true for total HZEI minimizations (data not
shown).

In contrast to the sliding window algorithm, the genetic algo-
rithm has the benefit of approaching the total HZEI maximum or
minimum with many slightly different intermediate sequences,
and thus avoids getting trapped in local maxima or minima during
optimization. This effect could be nicely observed with the exam-
ple of Fig. 4, where the maximal total HZEI of the sliding window
algorithm was even exceeded after the third generation of the
genetic algorithm.
Table 1
SSHW difference, applying the sliding window algorithm (SW) and the genetic algorith
calculated subtracting the wild type SSHW from the algorithm achieved SSHW.

GA DSSHW min SW DSSHW

Average SSHW �1109.6 �1111.8
St. Dev. SSHW 227.3 220.8

3073
Naturally, the GA with input from the SW algorithm required
more CPU time per SSHW minimization or maximization than
the SW algorithm alone. During SSHW adjustment of the 1000
human donor sites from Suppl. Table 2 on a machine with 4 CPUs
and 8 GB RAM, the SW algorithm took an average of 16.0 s per SD,
whereas the GA with input from the SW algorithm took an average
of 54.3 s per SD, making the former 3.4 times faster. Similar run-
ning time was measured during SSHW minimizations. ModCon,
however, also runs with only 1 CPU and a fewMb of RAM available.
ModCon per default applies the SW algorithm for SSHW optimiza-
tions to save running time, while still achieving a similarly high or
low SSHW than with the GA. Alternatively, the combined algo-
rithm can still be applied setting the parameter ‘‘optiRate” of the
R function ‘‘ModCon” to any value other than 100. Setting optiRate
to a value >100 results in ModCon using the combined approach to
optimize the SSHW of a given GT site. A value lower than 100 trig-
gers the same, but also reports an alternative sequence neighbor-
hood for the donor, which shows optiRate % of the maximal
SSHW increase or decrease, enabling fine adjustment of SSHW
values.
3.3. Applying ModCon to reporter constructs

To experimentally test the splicing regulatory effect of ModCon
designed nucleotide sequences, we selected three 40 nucleotides
long wildtype sequences from FANCA, FANCB and BRCA2 with neg-
ative HZEI scores, and positioned them between two identical
strong splice donors (HBS 17.5) in an HIV-based two-exon splice
site competition reporter. Different sequences placed between
these two donor sites can lead to recruitment of splicing regulatory
proteins, whose impact on donor usage is position-dependent
(Fig. 5A). Whereas hnRNP protein binding enhances upstream
donor usage and represses downstream donor usage, SR proteins
act in the opposite way.

We specifically selected wildtype sequences with negative HZEI
regions at different levels in order to observe the gradual switch of
splice site usage between the competing splice donors. With a
HZEI/nt of �3.28, the wild type FANCB sequence segment induced
usage of both donor sites, while a slightly reduced HZEI/nt of
�5.59 in the wild type FANCA sequence segment led to exclusive
upstream donor usage, further confirmed by the wild type BRCA2
sequence with HZEI/nt of �5.90.

Maximizing the total HZEI of the sequence segments while
retaining the amino acid coding information (Fig. 5C) yielded pos-
itive HZEI regions and completely switched splice site usage to the
downstream splice donor in all three sequences (Fig. 5B).

In a last step, we examined ModCon on a longer coding
sequence with a highly variable HEXplorer profile. Firefly luciferase
as a widely used standard expression vector provides a simple
experimental read-out. Aiming at turning the firefly luciferase into
a splicing reporter, we attempted to switch on usage of a moder-
ately strong GT site (HBS 14 �median HBS = 15 in all human anno-
tated 50ss, MaxEnt score of 7.33) deep in the coding region that is
unused in the wild type luciferase (Fig. 6A).

Using ModCon, we were able to induce usage of the internal,
unused GT site by modifying its SSHW from �63.7 to 782.3 and
additionally shifting the HEXplorer profile of the sequence seg-
m (GA) with the results from the SW added to the initial population. DSSHW was

min GA DSSHW max. SW DSSHW max

701.2 701.3
181.2 181.3



Fig. 3. Bar plot depicting the distribution for the SSHW difference of 1000 human TSL1 SD sites applying different settings of ModCon. SSHW difference (optimized—wild
type) is shown on the horizontal axis. Note that bars for GA max and SW max, as well as GA min and SW min lie right next to each other.

Fig. 4. Total HEXplorer score per generation of the genetic algorithm. Depicted is the total HEXplorer score of every sequence generated during the first 10 generations of the
genetic algorithm applied to an exemplary 48 nucleotide long sequence. The first run without spike-in sequences of the sliding window approach shown in (A) needs more
generations to reach the maximal total HEXplorer score than with the additional input, shown in (B). For each generation, the median total HEXplorer score is shown in red.
Running time on a machine with 4 CPUs and 8 GB RAM for A) 15.3 s and B) 15.7 s. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

J. Ptok, L. Müller, Philipp Niklas Ostermann et al. Computational and Structural Biotechnology Journal 19 (2021) 3069–3076
ment between the GT site and the acceptor site from exon-like to
intron-like (Fig. 6B, C). We thus successfully applied ModCon to a
much longer and diverse coding sequence.

4. Discussion

Codon degeneracy of amino acid sequences permits an addi-
tional ‘‘mRNP code” layer underlying the genetic code that is
related to RNA processing like pre-mRNA splicing, RNA stability,
RNA secondary and tertiary structure, nuclear retention or export
[17]. In this study, we addressed pre-mRNA splicing regulation to
promote or repress GT site usage without altering encoded amino
acids and GT site sequences. Depending on the fine balance
between its intrinsic strength and sequence context, GT site usage
can be enhanced or repressed by proximal binding of splicing reg-
ulatory proteins. Computationally, the neighboring SRP binding
landscape is reflected by the SSHW of a given GT site based on
its neighborhood’s HEXplorer score profile [14]. To systematically
modify GT site neighborhoods with respect to their predicted splic-
ing regulatory properties without altering the encoded amino
acids, we developed the stochastic optimization algorithm Mod-
Con. We experimentally verified the ModCon algorithm in a splice
site competition reporter using wild type sequences from FANCA,
FANCB and BRCA2 genes, as well as in a common reporter system
of firefly luciferase.
3074
In particular, moderately strong splice sites are most suscepti-
ble to regulation by SRP binding. Splicing regulatory proteins bind-
ing within a ~50 nt neighborhood of splice donor sites are generally
assumed to potentially impact splice site recognition [18,19]. In
the evaluation of the ModCon GA and SW algorithm, we therefore
used 48 nt wide neighborhoods close to this estimate. The SW
algorithm performed equally well as the combined GA during
SSHW manipulation, with a 3-times shorter running time. How-
ever, the GA allows a much finer SSHW tuning at intermediate
levels and avoids local maxima or minima much better than the
SW algorithm. Therefore, for SSHW maximization and minimiza-
tion, ModCon per default applies the SW algorithm and for precise
SSHW adjustments, ModCon applies the GA.

Stochastic Monte Carlo or evolutionary algorithms are particu-
larly suited to optimization tasks in large configuration spaces
growing exponentially with sequence length, like ~3N for N amino
acids in our case. Here, we chose a genetic algorithm with stochas-
tic crossover, insertion and random mutation elements [15]. We
successfully reduced computational effort (time and memory
demands) by supplementing this genetic algorithm by a heuristic
sliding window approach. On a set of 1000 human splice donor
sites, both approaches were equally able to significantly optimize
SSHW in both directions. In a splice site competition reporter with
two identical competing splice donors, we demonstrated that it is
possible to induce a switch in SD usage by designing nucleotide



Fig. 5. Switch in splice donor usage by nucleotide sequences encoding the same amino acids. A) Splice donor competition reporter system with the SV40 promoter, the SV40
poly-A site and a strong splice acceptor site. Between the two identical, strong splice donors (SDup and SDdown), any sequence can be inserted and studied regarding its
effect on splice donor selection. B) RT-PCR analysis showing a switch in donor usage upon increasing the total HZEI of the sequence in between, while keeping the coded
amino acids, observed for exemplary sequences from FANCB, FANCA or BRCA2. C) Encoded amino acid sequence of the wild type (wt) and the ModCon (mod) generated
alternative sequences. D) HEXplorer profiles of the respective tested sequences, with the wild type sequences depicted in blue and the ModCon generated sequences depicted
in black. The total HZEI/nt of the sequences is shown below. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Luciferase reporter construct encoding identical amino acids and associated splicing pattern. Depicted is the reporter system including the SV40 promoter (SV40), a
strong splice acceptor site (SA), an artificial exon sequence (Exon) and the SV40 polyadenylation signal (pA). (A) Parental coding sequence of the firefly luciferase, holding an
unused GT site (GT) at position 1001. (B) ModCon optimized luciferase CDS (hatched), encoding identical amino acids, but containing maximized GT site (GT) SSHW and
shifted HEXplorer profile between GT site and SA. The 11 nt of the GT site (CAG/GTATCAGG) were not modified. The HEXplorer profiles are shown below the CDS. Primer
positions are indicated by blue arrows. (C) RT-PCR analysis showing activation of the internal donor site after modifying the firefly luciferase CDS of the parental construct
(Par) with ModCon to increase its SSHW (Mod). Sequence positions refer to the first nucleotide of the luciferase CDS. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

J. Ptok, L. Müller, Philipp Niklas Ostermann et al. Computational and Structural Biotechnology Journal 19 (2021) 3069–3076

3075



J. Ptok, L. Müller, Philipp Niklas Ostermann et al. Computational and Structural Biotechnology Journal 19 (2021) 3069–3076
sequences with ‘‘opposite sign” HZEI scores without altering the
encoded amino acid sequence. Adjusting the SSHW of an unused
GT site within the luciferase reporter enabled activation of this
sequence as splice site. To increase the possibility of a splicing
event within the CDS and due to position of restriction sites, we
modified the 240 nt sequence upstream and additionally adjusted
the total HZEI of the 594 nt long sequence downstream of the GT
site to mimic intron-like HZEI profiles, using functions of the Mod-
Con R-package. All adjustments were done exclusively based on
synonymous mutations, maintaining the encoded amino acid
sequence. Additional embedded functions allow degradation of
the intrinsic strength of cryptic splice sites within a given nucleo-
tide sequence.

The ModCon algorithm and its R package implementation thus
open the perspective to conveniently assist in reporter design by
either introducing novel splice sites, silencing accidental, unde-
sired splice sites, and by generally modifying the entire mRNP code
while maintaining the genetic code.
Availability and implementation

The ModCon R-script is an open source R package available with
all needed data in the GitHub repository (https://github.com/
caggtaagtat/ModCon). It was uploaded to the Bioconductor R pack-
age library.
Author statement

All authors have seen and approved the final version of the
manuscript being submitted. They warrant that the article is the
authors’ original work, hasn’t received prior publication and isn’t
under consideration for publication elsewhere.
Funding

This work was supported by the Forschungskommission of the
Medical Faculty, Heinrich-Heine-Universität Düsseldorf (H.S.), the
Heinz-Ansmann Stiftung für AIDS-Forschung (H.S.) and the Jürgen
Manchot Stiftung (L.M., P.O., A.R., H.S.).
CRediT authorship contribution statement

Johannes Ptok: Conceptualization, Software, Methodology,
Investigation, Validation, Visualization, Writing - original draft.
Lisa Müller: Validation, Visualization, Investigation, Writing - orig-
inal draft. Philipp Niklas Ostermann: Validation, Visualization,
Investigation. Anastasia Richie: Validation, Visualization, Investi-
gation. Alexander T. Dilthey: Methodology. Stephan Theiss:
Supervision, Writing - review & editing, Writing - original draft.
Heiner Schaal: Conceptualization, Supervision, Writing - original
draft, Writing - review & editing, Project administration, Funding
acquisition.
3076
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

We would like to thank Aljoscha Tersteegen for cloning assis-
tance and Gene Yeo for his friendly approval to integrate the
MaxEntScan scoring algorithm into our software.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.05.033.

References

[1] Berget SM, Moore C, Sharp PA. Spliced segments at the 5’ terminus of
adenovirus 2 late mRNA. Proc Natl Acad Sci U S A 1977;74(8):3171–5.

[2] Khodor YL, Rodriguez J, Abruzzi KC, Tang C-H- A, Marr MT, Rosbash M.
Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in
Drosophila. Genes Dev 2011;25(23):2502–12.

[3] Aebi M, Hornig H, Padgett RA, Reiser J, Weissmann C. Sequence requirements
for splicing of higher eukaryotic nuclear pre-mRNA. Cell 1986;47(4):555–65.

[4] Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol
2014;15(2):108–21.

[5] Freund M et al. A novel approach to describe a U1 snRNA binding site. Nucleic
Acids Res 2003;31(23):6963–75.

[6] Freund M et al. Extended base pair complementarity between U1 snRNA and
the 5’ splice site does not inhibit splicing in higher eukaryotes, but rather
increases 5’ splice site recognition. Nucleic Acids Res 2005;33(16):5112–9.

[7] Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with
applications to RNA splicing signals. J Comput Biol 2004;11(2-3):377–94.

[8] Matlin AJ, Clark F, Smith CWJ. Understanding alternative splicing: towards a
cellular code. Nat Rev Mol Cell Biol 2005;6(5):386–98.

[9] Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements
to an integrated splicing code. RNA 2008;14(5):802–13.

[10] Baralle M, Baralle FE. The splicing code. Biosystems 2018;164:39–48.
[11] Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor

usage. Biochim Biophys Acta Gene Regul Mech 2019;1862(11-12):194391.
https://doi.org/10.1016/j.bbagrm.2019.06.002.

[12] Erkelenz S, Mueller WF, Evans MS, Busch A, Schoneweis K, Hertel KJ, et al.
Position-dependent splicing activation and repression by SR and hnRNP
proteins rely on common mechanisms. RNA 2013;19(1):96–102.

[13] Erkelenz, S., et al., Genomic HEXploring allows landscaping of novel potential
splicing regulatory elements. Nucleic Acids Res, 2014. 42(16): p. 10681-97.

[14] Brillen AL et al. Succession of splicing regulatory elements determines cryptic
5ss functionality. Nucleic Acids Res 2017;45(7):4202–16.

[15] Holland JH. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control. and artificial intelligence 1992.

[16] Kammler S et al. The strength of the HIV-1 3’ splice sites affects Rev function.
Retrovirology 2006;3:89.

[17] Gehring NH, Wahle E, Fischer U. Deciphering the mRNP code: RNA-bound
determinants of post-transcriptional gene regulation. Trends Biochem Sci
2017;42(5):369–82.

[18] Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF,
Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep
learning. Cell 2019;176(3):535–548.e24.

[19] Zhang XH et al. Sequence information for the splicing of human pre-mRNA
identified by support vector machine classification. Genome Res 2003;13
(12):2637–50.

https://github.com/caggtaagtat/ModCon
https://github.com/caggtaagtat/ModCon
https://doi.org/10.1016/j.csbj.2021.05.033
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0005
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0005
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0010
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0010
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0010
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0015
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0015
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0020
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0020
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0025
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0025
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0030
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0030
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0030
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0035
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0035
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0040
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0040
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0045
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0045
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0050
https://doi.org/10.1016/j.bbagrm.2019.06.002
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0060
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0060
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0060
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0070
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0070
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0075
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0075
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0080
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0080
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0085
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0085
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0085
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0090
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0090
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0090
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0095
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0095
http://refhub.elsevier.com/S2001-0370(21)00214-2/h0095

	Modifying splice site usage with ModCon: Maintaining the genetic code while changing the underlying mRNP code
	1 Introduction
	2 Material and methods
	2.1 HEXplorer algorithm
	2.2 The ModCon algorithm
	2.2.1 Maximizing or minimizing the total HEXplorer score of a coding sequence
	2.2.2 Genetic algorithm
	2.2.3 Sliding-window algorithm
	2.2.4 Additional sequence processing
	2.2.5 HBond, maxent and HEXplorer data sources

	2.3 The luciferase reporter
	2.4 Splice donor competition reporter

	3 Results
	3.1 Similar SSHW ranges obtained by GA and SW for 1000 human TSL1 SD sites
	3.2 Faster convergence of GA if SW results are added to initial population
	3.3 Applying ModCon to reporter constructs

	4 Discussion
	Availability and implementation
	Author statement
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


