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Abstract

We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines

(GRBMs) from the perspective of density models. The key aspect of this analysis is to show

that GRBMs can be formulated as a constrained mixture of Gaussians, which gives a much

better insight into the model’s capabilities and limitations. We further show that GRBMs are

capable of learning meaningful features without using a regularization term and that the

results are comparable to those of independent component analysis. This is illustrated for

both a two-dimensional blind source separation task and for modeling natural image

patches. Our findings exemplify that reported difficulties in training GRBMs are due to the

failure of the training algorithm rather than the model itself. Based on our analysis we derive

a better training setup and show empirically that it leads to faster and more robust training of

GRBMs. Finally, we compare different sampling algorithms for training GRBMs and show

that Contrastive Divergence performs better than training methods that use a persistent

Markov chain.

Introduction

Inspired by the hierarchical structure of the visual cortex, recent studies on probabilistic mod-

els have used deep hierarchical architectures to learn higher order statistics of image data [1–

3]. One widely used architecture is a stack of restricted Boltzmann machines (RBMs) known

as a deep belief network [4–6]. Since the original formulation of RBMs assumes binary input

values, the model needs to be modified in order to handle continuous input values. One com-

mon way is to replace the binary input units by linear units with independent Gaussian-noise.

The resulting model is known as Gaussian-binary restricted Boltzmann machines (GRBMs) or

Gaussian-Bernoulli restricted Boltzmann machines [7–9].

The difficulties of training GRBMs, in particular for modeling natural images, have been

reported by several authors [8–19] and various modifications have been proposed to address

this problem. Lee et al. [10] have used a sparse penalty during training of GRBMs, which

allowed them to learn meaningful features from natural image patches. Krizhevsky [8] has

trained GRBMs on natural images and has hypothesized that the difficulties are mainly due to
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high-frequency noise in the images, which prevents the model from learning the important

structures. Ranzato and Hinton [13, 14] have argued that the failure of GRBMs is due to the

model’s limitations in modeling covariances and have proposed an advanced model that

explicitly models covariances. Nair et al. [12] and Courville et al. [15] have suggested that the

poor ability of GRBMs in modeling natural image statistics is mainly due to the binary nature

of the hidden units and proposed advanced models with real-valued hidden units. Theis et al.

[11] have illustrated that in terms of likelihood estimation, GRBMs are outperformed even by

simple mixture models. Cho et al. [9] have suggested that the failure of GRBMs is due to the

training algorithm and have proposed a modified sampling algorithm and an adaptive learning

rate.

The studies above have shown the failures of GRBMs empirically. However, to our knowl-

edge there is no formal analysis of GRBMs that investigates the reasons behind these failures,

apart from our preliminary work [17–19]. In this paper, we extend our work on considering

GRBMs from the perspective of density models, i.e. how well the model learns the distribution

of the data. We show that a GRBM can be regarded as a mixture of Gaussians (MoG), which

has already been mentioned briefly in previous studies [11, 15, 20] but has gone unheeded.

Furthermore, in the case of binary visible and binary hidden variables, the relationship of an

RBM and a mixture model has originally been shown by Freund et al. [21]. In this paper, we

show that a GRBM is in fact a constrained MoG, where the Gaussian components cannot be

placed independently of each other, and how this limits the way the model can represent the

data. We argue, however, that due to the exponential number of components it does not pre-

vent the model from learning the statistical structure in the data. We present successful train-

ing of GRBMs both on a two-dimensional blind source separation problem and on natural

image patches without using additional regularization methods such as a sparse penalty. The

results are comparable to those of independent component analysis (ICA), which is generally

accepted to be a good model for natural image statistics. We compare different sampling algo-

rithms for training GRBMs and show that Contrastive Divergence performs better than train-

ing methods that use a persistent Markov chain. Based on our analysis, we derive a better

initialization for the model parameters and propose to restrict the gradient to a reasonable

size. We illustrate empirically how these modifications in combination with Contrastive Diver-

gence help to overcome the reported problems and lead to fast and robust training of GRBMs.

Finally, we discuss the advantages and limitations of GRBMs in comparison to other genera-

tive models.

Gaussian-binary restricted Boltzmann machines

The model

A Boltzmann Machine (BM) is a Markov Random Field with stochastic visible and hidden
units [22], which are denoted as X ≔ (X1, . . ., XM)T and H ≔ (H1, . . ., HN)T, respectively. In

general, we use bold letters to denote vectors and matrices. The joint probability distribution is

defined as

P X;Hð Þ≔
1

Z
e�

1
T0
EðX;HÞ

; ð1Þ

Z≔
Z Z

e�
1
T0
E x;hð Þdx dh ð2Þ

where E(X, H) denotes an energy function as known from statistical physics, which defines the

dependence between X and H. The temperature parameter T0 is usually ignored by setting its
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value to one, but it can play an important role in inference of BMs [23]. The partition function
Z normalizes the probability distribution by integrating over all possible values of X and H,

which is intractable in most cases, such that in training BMs using gradient descent the parti-

tion function is usually estimated using sampling methods. However, even sampling in BMs is

difficult due to the dependencies between all variables.

An RBM is a special case of a BM where the energy function contains no terms combining

two different hidden or two different visible units. Viewed as a graphical model, there are no

lateral connections within the visible or hidden layer, which results in a bipartite graph. This

implies that the hidden units are conditionally independent given the visibles and vice versa,

which allows efficient sampling.

The values of the visible and hidden units are usually assumed to be binary, i.e. Xm, Hn 2 {0,

1}. The most common way to extend an RBM to continuous data is a GRBM, which assumes

continuous values for the visible units and binary values for the hidden units. Its energy func-

tion [9, 17] is defined as

E X;Hð Þ :¼
XM

i

Xi � bið Þ
2

2s2
�
XN

j

cjHj �
XM;N

i;j

XiwijHj

s2
ð3Þ

¼
k X � b k2

2s2
� cTH �

XTWH
s2

; ð4Þ

where kuk denotes the Euclidean norm of u. The conditional probability distributions are

given by

PðHj ¼ 1jxÞ ¼ð1;2;4Þ
1

1þ e� cj �
xTw�j

s2

; ð5Þ

P Xijhð Þ ¼
ð1;2;4Þ

N ðXi; bi þ wT
i�h;s

2Þ; ð6Þ

where wi� and w�j denote the ith row and the jth column of the weight-matrix, respectively.

N ðx; m;s2Þ denotes a Gaussian distribution with mean μ and variance σ2. For a detailed deri-

vation of the conditional distributions see Wang et al. [24]. To keep the notation in our analy-

sis simple we use the same standard deviation in all dimensions (see Melchior [18] for an

analysis with independent standard deviations).

Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a frequently used technique for training probabilis-

tic models like BMs. In MLE we have a data set ~X ¼ f~x1; . . . ; ~xLg where the observations ~x l

are presumed to be independent and identically distributed (i.i.d.). The goal is to find optimal

parameters ~Y that maximize the likelihood of the data, i.e. maximize the probability that the

data could be generated by the model [25]. For practical reasons one often considers the loga-

rithm of the likelihood, which has the same maximum as the likelihood since the logarithm is

a strictly monotonic function. The log-likelihood is defined as

lnPð ~X ; YÞ ¼ ln
YL

l¼1

P ~x l; Yð Þ ¼
XL

l¼1

lnP ~x l; Yð Þ: ð7Þ
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We use the average log-likelihood per training sample denoted by ‘̂. For RBMs it is defined as

‘̂≔ lnPð ~X ; YÞ

 �

~x ¼ ln
X

h

e� E ~x ;hð Þ

 !* +

~x

� lnZ; ð8Þ

where ~x 2 ~X , and hf(u)iu denotes the expectation value of the function f(u) with respect to var-

iable u, which in this case is just the average due to the i.i.d. assumption of ~x. The gradient of ‘̂

turns out to be the difference between the expectation values of the energy gradient under the

data and model distribution, which is given by

@‘̂

@y
¼
ð1;2;8Þ
�

X

h

P hj~xð Þ
@E ~x; hð Þ

@y

* +

~x

þ
X

h

P hjxð Þ
@E x; hð Þ

@y

* +

x

: ð9Þ

See [18, 26] for a detailed derivation. In practice, a finite set of i.i.d. samples can be used to

approximate the expectation values in Eq (9). While we can use the training data to estimate

the first term, we do not have any i.i.d. samples from the unknown model distribution to esti-

mate the second term. Since we are able to compute the conditional probabilities in RBMs effi-

ciently, Gibbs sampling can be used to generate those samples. But Gibbs sampling only

guarantees to generate samples from the model distribution if we run it infinitely long. As this

is impossible, a finite number of k sampling steps are used instead. This procedure is known as

the Contrastive Divergence—k (CD-k) algorithm, in which even k = 1 shows good results as

shown in [27]. The CD-gradient approximation is given by

@‘̂

@y
� �

X

h

P hj~xð Þ
@E ~x; hð Þ

@y

* +

~x

þ
X

h

PðhjxkÞ
@E xðkÞ; hð Þ

@y

* +

xðkÞ

; ð10Þ

where x(k) denotes the samples after k steps of Gibbs sampling.

The quality of the gradient approximation highly depends on the set of samples used for

estimating the model expectation value. Gibbs sampling often has a low mixing rate when

used with binary RBMs, which means that the samples tend to stay close to the preceding ones.

Therefore, using only a few steps of Gibbs sampling commonly leads to a biased approxima-

tion of the gradient [28, 29]. In order to increase the mixing rate Tieleman [30] has suggested

to use a persistent Markov chain for drawing samples from the model distribution, which is

referred to as persistent Contrastive Divergence (PCD). Desjardins et al. [23] have proposed to

use parallel tempering (PT), a method that selects samples from a persistent Markov chain

with a different scaling of the energy function. While the advantages of those sampling meth-

ods have been shown for binary RBMs, it is not clear if they also transfer to GRBMs.

After computing the derivatives of the energy function with respect to the parameters (see

Wang et al. [24]), the corresponding gradient approximations Eq (10) become

@‘̂

@b
�

~x � b
s2

� �

~x

�
xðkÞ � b

s2

� �

xðkÞ
; ð11Þ

@‘̂

@c
� P h ¼ 1j~xð Þh i

~x � P h ¼ 1jxðkÞ
� �
 �

xðkÞ ; ð12Þ

@‘̂

@w
�

~xP h ¼ 1j~xð Þ
T

s2

� �

~x

�
xðkÞP h ¼ 1jxðkÞð Þ

T

s2

* +

xðkÞ

; ð13Þ
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@‘̂

@ s
�

k ~x � bk2 � 2 ~xTWP h ¼ 1j~xð Þ

s3

� �

~x

�
k xðkÞ � bk2 � 2 xðkÞTWP h ¼ 1jxðkÞð Þ

s3

* +

xðkÞ

;

ð14Þ

where P(h = 1|x) ≔ (P(h1 = 1|x), � � �, P(hN = 1|x))T, i.e. P(h = 1|x) denotes a vector of

probabilities.

The complexity of a single step of MLE for RBM training is OðKDMNÞ, where K is the

number of Gibbs sampling steps, D is the number of data points (batch-size), M is the number

of visible units, and N is the number of hidden units. This can been seen as follows: In each

iteration the parameters are updated according to Eqs (11–14) and K steps of block Gibbs sam-

pling are performed. The complexity of the parameter update is dominated by the complexity

of Eqs (13) and (14), which is OðDMNÞ. For K steps of block Gibbs sampling the conditional

probabilities of the visible units given the hidden units Eq (6) are evaluated K times and the

conditional probabilities of the visible units given the hidden units Eq (6) are evaluated K + 1

times, which both have a complexity of OðDMNÞ. Therefore, the overall complexity of one

step of MLE for training RBMs using K-step block Gibbs sampling is given by

Oð2ðK þ 1ÞDMNÞ � OðKDMNÞ.

The marginal probability distribution of the visible units

From the perspective of density estimation, the performance of the model can be assessed by

examining how well the model estimates the data distribution. We therefore take a look at the

model’s marginal probability distribution of the visible units, which can be formalized as a

product of experts (PoE) or as a constrained mixture of Gaussians (MoG).

In the form of a product of experts. We derive the marginal probability distribution of

the visible units P(X) by factorizing the joint probability distribution over the hidden units.

P Xð Þ ¼
X

h

P X; hð Þ ð15Þ

¼
ð1;4Þ 1

Z
e�
kX� bk2

2s2

YN

j

X

hj

ecjhjþ
XTw�j

s2
hj ð16Þ

¼
hj2 0;1f g 1

Z

YN

j

e�
kX� bk2

2Ns2 þ ecjþ
XTw�j

s2
�
kX� bk2

2Ns2

� �

ð17Þ

¼
ð21Þ 1

Z

YN

j

e�
kX� bk2

2Ns2 þ e
kbþNw�jk

2 � kbk2

2Ns2
þcj �

kX� b� Nw�jk
2

2Ns2

� �

ð18Þ

¼
1

Z

YN

j

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNs2
p

Þ
M
½N ðX; b;Ns2Þ

þ e
jjbþNw�j jj

2 � jjbjj2

2Ns2
þcjN ðX; bþ Nw�j;Ns2Þ�

ð19Þ

≕
1

Z

YN

j

pj Xð Þ: ð20Þ
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From Eqs (17) to (18) we used the relation

ax
s2
�

x � bð Þ
2

2s2
¼
� x2 þ 2bx þ 2ax � b2

2s2

¼
� x2 þ 2bx þ 2ax � b2 þ a2 � a2 þ 2ab � 2ab

2s2

¼
� ðx � a � bÞ2 þ a2 þ 2ab

2s2
:

ð21Þ

Eq (20) illustrates that P(X) can be written as a product of N factors, referred to as a product

of experts [27]. Each expert pj(X) consists of two isotropic Gaussians with the same variance

Nσ2. The first Gaussian is placed at the visible bias b. The second Gaussian is shifted relative to

the first one by N times the weight vector w�j and scaled by a factor that depends on w�j and b.

Every hidden unit leads to one expert, each mode of which corresponds to one state of the cor-

responding hidden unit. Fig 1(a) and 1(b) illustrate P(X) of a GRBM-2-2 viewed as a PoE,

where GRBM-M-N denotes a GRBM with M visible and N hidden units.

In the form of a mixture of Gaussians. Using Bayes’ theorem, the marginal probability of

X can also be formalized as:

P Xð Þ ¼
X

h

P Xjhð ÞPðhÞ ð22Þ

¼
ð6;30Þ

X

h

N X; bþWh;s2ð Þ

ffiffiffiffiffiffiffiffiffiffi
2ps2
p� �M

Z
ecThþkbþWhk2 � kbk2

2s2 ð23Þ

¼
hj2f0;1g

ffiffiffiffiffiffiffiffiffiffi
2ps2
p� �M

Z
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

PðhðÞÞ

N X; b;s2ð Þ

þ
XN

j¼1

ffiffiffiffiffiffiffiffiffiffi
2ps2
p� �M

Z
e
kbþw�jk

2 � kbk2

2s2
þcj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PðhðjÞÞ

N X; bþ w�j; s
2

� �

þ
XN� 1

j¼1

XN

k>j

ffiffiffiffiffiffiffiffiffiffi
2ps2
p� �M

Z
e
kbþw�jþw�kk

2 � kbk2

2s2
þcjþck

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pðhðj;kÞÞ

N X; bþ w�j þ w�k; s2

� �
þ . . . ;

ð24Þ

where h(j1, j2, . . ., jN) denotes the binary vector having zero entries except for the dimensions j1,

j2, . . ., jN, which are set to one.

GRBMs for modeling natural images
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P(H) in Eq (23) is derived as follows

PðHÞ ¼
Z

P x;Hð Þdx ð25Þ

¼
ð1;4Þ 1

Z

Z

ecTH
YM

i

e
xiw

T
i�H

s2
�
kxi � bik

2

2s2 dx ð26Þ

¼
ecTH

Z

YM

i

Z

e
xiw

T
i�H

s2
�
kxi � bik

2

2s2 dxi ð27Þ

¼
ð21Þ ecTH

Z

YM

i

e
ðbiþw

T
i�HÞ2 � b2

i
2s2

Z

e
kxi � bi � wT

i�Hk2

2s2 dxi

� �

ð28Þ

¼
ecTH

Z
ffiffiffiffiffiffiffiffiffiffi
2ps2
p� �M

e
PM

i

ðbiþwT
i�HÞ2 � b2

i
2s2

ð29Þ

¼

ffiffiffiffiffiffiffiffiffiffi
2ps2
p� �M

Z
ecTHþkbþWHk2 � kbk2

2s2 ð30Þ

Since the form of Eq (24) is identical to a mixture of isotropic Gaussians, we follow its nam-

ing convention. Each Gaussian distribution is called a component of the model distribution,

which is exactly the conditional probability of the visible units given a particular state of the

hidden units. Like in MoGs, each component has a mixing coefficient, which is the marginal

probability of the corresponding hidden state and can also be viewed as the prior probability

of picking the corresponding component. The total number of components in a GRBM is 2N,

which is exponential in the number of hidden units, see Fig 1(c) for an example.

Fig 1. Illustration of a GRBM-2-2 from the perspective of a PoE and a MoG. Arrows indicate the roles of the visible bias vector and the weight vectors.

(a) and (b) visualize the two experts of the GRBM. The red (dotted) and blue (dashed) circles indicate the two Gaussians each expert has. (c) visualizes

the components in the GRBM seen as a MoG. The components are denoted by the green (filled) circles, and result from the product of the two experts.

Notice how each component sits right between a red (dotted) and a blue (dash-dotted) circle.

doi:10.1371/journal.pone.0171015.g001
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The locations of the components in a GRBM are not independent of each other as it is the

case in MoGs. They are centered at b + Wh, which is the vector sum of the visible bias and

selected weight vectors. The selection is done by the corresponding entries in h taking the

value one. This implies that only the M + 1 components that sum over exactly one or zero

weights can be placed and scaled independently. We name them first order components and

the anchor component, respectively. All 2N − M − 1 higher order components are then deter-

mined by the choice of the anchor and first order components, showing that GRBMs are con-

strained MoGs with isotropic components.

Experiments

Two-dimensional blind source separation

The general assumption in the analysis of natural images is that they can be considered as a

mixture of independent super-Gaussian sources [31], (but see [32] for an analysis of remaining

dependencies). We therefore use a mixture of two independent Laplacian distributions as a toy

example, to visualize how GRBMs model natural image statistics.

The independent sources s = (s1, s2)T with p sið Þ ¼ e�
ffiffi
2
p
jsi jffiffi

2
p are mixed by a random mixing

matrix A yielding

~x 0 ¼ As: ð31Þ

It is common to whiten the data, resulting in

~x ¼ V~x 0 ¼ VAs; ð32Þ

where V ¼ ~x0 ~x0T

 �� 1

2 is the whitening matrix calculated with principle component analysis

(PCA). Throughout this paper, we used whitened data.

In order to assess the performance of GRBMs in modeling the data distribution, we trained

GRBMs with two visible and two hidden units (GRBM-2-2) and GRBMs with two visible and

four hidden units (GRBM-2-4) on the toy problem using CD-1 with a learning rate of 0.1. For

comparison, we also fitted two-dimensional isotropic Gaussian distributions to the data distri-

bution and trained ICA models using the FastICA algorithm [33]. FastICA has a complexity of

Oð2DMðM þ 1ÞÞ � OðDMMÞ [34], where D is the number of data points (batch-size), and

M is the data dimensionality. Thus, the asymptotic complexity of FastICA and MLE for RBM

training is comparable, and becomes equivalent if the number of visible and hidden units are

the same (M = N) and the number of Gibbs sampling steps is set to one (K = 1).

All experiments were repeated 200 times and we calculated the average ‘̂ over the test data

for all models. For the super-Gaussian sources of ICA, ‘̂ can be assessed analytically by

‘̂ ¼ �
XN

j¼1

ln ~pðwT
�j~x lÞ

* +

~x l

þ ln jdet Wj: ð33Þ

¼ �
XN

j¼1

ln 2 cosh 2 wT
�j~x l

* +

~x l

þ ln j det Wj; ð34Þ

where ~pðsiÞ ¼ 2 cosh 2ðsiÞ is used by the fast ICA algorithm as a smooth approximation of p(si).
Furthermore, as we know the true data distribution, the exact ‘̂ can also be calculated by

‘̂ ¼ �
ffiffiffi
2
p
ju1�~x lj þ ju2�~x ljh i

~x l
� ln 2þ ln jdet Uj; ð35Þ

GRBMs for modeling natural images
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where U = (VA)−1. The results are presented in Table 1, which confirm the conclusion of [11]

that GRBMs are not as good as ICA in terms of ‘̂ if the same number of visible and hidden

units are used. For a GRBM-2-4, however, ‘̂ comes close to that of of ICA.

To illustrate how GRBMs model the statistical structure of the data, we looked at the proba-

bility distributions and the weight vectors of the 200 trained GRBMs. About half of them (110

out of 200) recovered the independent components, see Fig 2(a) as an example. This can fur-

ther be illustrated by plotting the Amari error between the true unmixing matrix A−1 and esti-

mated model matrices, i.e. the unmixing matrix of ICA and the weight-matrix of the GRBM-

2-2, as shown in Fig 3. The Amari error [35] between two matrices A and B is defined as

1

2N

XN

i¼1

XN

j¼1

jðAB� 1Þijj

max kjðAB� 1Þikj
þ

jðAB� 1Þijj

max kjðAB� 1Þkjj

 !

� 1: ð36Þ

One can see that these 110 GRBMs estimated the unmixing matrix quite well, although

GRBMs are not as good as ICA. This is due to the fact that the weight vectors in GRBMs are

not restricted to be orthogonal as in ICA.

For the remaining 90 GRBMs, the two weight vectors pointed to the opposite direction as

shown in Fig 2(b). Accordingly, these GRBMs failed to estimate the unmixing matrix, but in

terms of density estimation these solutions have the same quality as the orthogonal ones. Thus

all the 200 GRBMs were able to learn the statistical structure in the data and model the data

distribution pretty well.

For comparison, we plotted the probability distribution of a learned GRBM with four hid-

den units, see Fig 2(c), in which case the GRBMs always find the two independent components

correctly.

To further show how the components contribute to the model distribution, we randomly

chose one of the trained GRBM-2-4, GRBM-2-4, and MoG-2-3 model and calculated the mix-

ing coefficients of the anchor and the first order components, as shown in Table 2. The large

mixing coefficient for the anchor component indicates that the model most likely reaches hid-

den states in which none of the hidden units is activated. In general, the more activated hidden

units a state has the less likely it is reached, which leads naturally to a sparse representation of

the data.

The dominance of the anchor mixing coefficient (
P

h2H0
PðhÞ) and the first order mixing

coefficients (
P

h2H1
PðhÞ) as shown in Table 2, can also be seen in Fig 2 by comparing a

GRBM-2-2 (a) with a two dimensional MoG having three isotropic components denoted by

MoG-2-3 (d). Although the MoG-2-3 has one component fewer than the GRBM-2-2, the two

models have almost the same probability distribution. The first order components of the

GRBM-2-2, however, have a greater distance to the anchor component than those of the

MoG-2-3, which is necessary to achieve the very small mixing coefficients of the second order

component.

Table 1. Comparison of ℓ̂ for different models trained on the blind source separation task.

Method ℓ̂ � std

Gaussian −2.8367 ± 0.0086

GRBM-2-2 −2.8072 ± 0.0088

GRBM-2-4 −2.7448 ± 0.0125

ICA −2.7382 ± 0.0091

Data distribution −2.6923 ± 0.0092

doi:10.1371/journal.pone.0171015.t001
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Fig 2. Illustration of the log-probability densities for models trained on the blind source separation task. The data is plotted as gray dots. (a)

shows a GRBM-2-2 that has learned two independent components. (b) shows a GRBM-2-2 that has learned one independent component with opposite

directions. (c) shows a GRBM-2-4. (d) shows an isotropic MoG with three components. The arrows indicate the weight vectors of the GRBMs, while the

crosses denote the means of the MoG components. Comparing (a) and (d), the contribution of the second order component is so insignificant that the

probability distribution of the GRBM with four components is almost the same as the MoG with three components.

doi:10.1371/journal.pone.0171015.g002
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Natural image patches

In contrast to random images, natural images have a common underlying structure which

could be used to code them more efficiently than with a pixel-wise representation. Olshausen

and Field [36] have shown that sparse coding is such an efficient coding scheme and that it is

in addition a biologically plausible model for the simple cells in the primary visual cortex. Bell

and Sejnowski [31] have shown that the independent components provide a comparable

representation for natural images. We now want to test empirically whether GRBMs, like

sparse coding and ICA, generate such biologically plausible results.

We used the Van Hateren’s natural image database [37] and randomly sampled 70,000 grey

scale image patches with a size of 14 × 14 pixels. The mean of each image patch was removed

Fig 3. Amari errors of ICA and GRBM-2-2 on the blind source separation task over different trials. The

Amari error compares the estimated with the true unmixing matrix. The box extends from the lower to the

upper quantile values of the errors, with a line at the median. The whiskers extending from the box show the

minimum-maximum range. As a base line, the Amari errors between the real unmixing matrices and random

matrices are provided.

doi:10.1371/journal.pone.0171015.g003

Table 2. Sums of the mixing coefficients for models trained on the blind source separation task.

Method
X

h2H0

PðhÞ
X

h2H1

PðhÞ
X

h2H2

PðhÞ
X

h2H3

PðhÞ
X

h2H4

PðhÞ

GRBM-2-2 0.9811 0.0188 7.8856e-05 – –

GRBM-2-4 0.9645 0.0352 3.4366e-04 1.2403e-10 6.9977e-18

MoG-3 0.9785 0.0215 – – –

Sums of the mixing coefficients of a successfully trained GRBM-2-2, GRBM-2-4 and a MoG-3. H0 denotes the set containing only the vector with zero

entries, H1 denotes the set of all vectors where exactly one entry is set to one and the rest is set to zero, H2 denotes the set of all vectors where exactly two

entries are set to one and the rest is set to zero and so forth.

doi:10.1371/journal.pone.0171015.t002
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separately and then whitened using Zero-phase Component Analysis (ZCA). Afterwards the

data set was divided into 40,000 training and 30,000 testing image patches. Training a GRBM

on natural image patches is not a trivial task and we followed the recipes discussed in detail in

the next section.

In Fig 4, we display the learned weight vectors w�j, named features or filters, which can be

regarded as receptive fields of the hidden units. They are fairly similar to the filters learned by

ICA [31].

Like in the 2D experiments, we calculated the anchor and first order mixing coefficients, as

shown in Table 3. The coefficients are much smaller compared to the anchor and first order

coefficients of the GRBMs in the two dimensional case. However, they are still significantly

large, considering that the total number of components in this case is 2196. Like in the 2D

experiments, the more activated hidden units a state has, the less likely it will be reached,

which leads naturally to a sparse representation. To support this statement, we plotted the his-

togram of the number of activated hidden units per training sample, as shown in Fig 5.

We also examined the results of GRBMs in the over-complete case, i.e. GRBM-196-588.

There is no prominent difference of the filters compared to the complete case shown in Fig 4.

To further compare the filters in the complete and over-complete case, we estimated and plot-

ted the spatial frequency, location and orientation for all filters in the spatial and frequency

domain, see Figs 6 and 7, respectively. This is achieved by fitting a Gabor function of the form

used by Lewicki and Olshausen [38]. In the over-complete case the space of locations and fre-

quencies is covered more densely.

For comparison, we also trained ICA on the whitened natural image data set, which

achieved an ‘̂ averaged over 10 trials of -259.19 on the training data and -259.66 on the test

data (see Table 4). Like in the 2D experiments, the average ‘̂ of GRBMs became comparable to

that of ICA if we doubled the number of hidden units. A GRBM-196-392 achieved an ‘̂ aver-

aged over 10 trials of -257.78 on the training data and -260.40 on the test data after 1000 epochs

Fig 4. Illustration of 196 learned filters learned by a GRBM-196-196. The plot has been ordered from left to right and

from top to bottom by the increasing average activation level of the corresponding hidden units.

doi:10.1371/journal.pone.0171015.g004

Table 3. Sums of the mixing coefficients of a GRBMs-196-196 trained on whitened natural image

patches.

Method
X

h2H0

PðhÞ
X

h2H1

PðhÞ
X

h2HnfH0[H1g

PðhÞ

GRBM-196-196 0.04565 0.00070 0.95365

H0 denotes the set containing only the vector with zero entries, H1 denotes the set of all vectors where

exactly one entry is set to one and the rest is set to zero, and HnfH0 [H1g represents the set of all

remaining vectors. (the Partition function was estimated using annealed importance sampling).

doi:10.1371/journal.pone.0171015.t003
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of training, which only changed slightly to -257.38 on the training data and -260.03 on the test

data after 2000 epochs of training as shown in Table 4. We also trained a MoG with nine

Gaussian components each having a free covariance matrices, which achieved an ‘̂ of -229.35

on the training data and -241.87 on the test data (see Table 4). Our results are consistent with

the findings of Theis et al. [11], that a MoG with only a few components and free covariance

matrices lead to a better ‘̂ than ICA and GRBMs. However, the resulting filters i.e. the eigen-

vectors of the covariance matrix are not localized edge detectors such as in ICA or GRBMs, see

Melchior [18] for a visual comparison.

Successful training of GRBMs on natural images

Training GRBMs has been reported to be difficult [8, 9]. Based on our analysis we propose sev-

eral modifications on the training setup that in our experiments improve the success and

speed of training GRBMs on natural image patches significantly. Some of them do not depend

on the data distribution and should therefore improve training in general.

Fig 5. Histogram of the number of activated hidden units of a GRBM-196-196. The model was trained on whitened natural image

patches. The histograms before and after training are plotted in blue (dotted) and in green (solid), respectively.

doi:10.1371/journal.pone.0171015.g005
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Preprocessing of the data

Preprocessing the data is important especially if the model is highly restricted like GRBMs.

Whitening is a common preprocessing step for natural images. It removes the first and second

order statistics from the data so that it has zero mean and unit variance in all directions. This

Fig 6. Spatial layout and size of the filters learned on whitened natural image patches. (a) for a GRBM-196-196 and (b) for a GRBM-196-588. The

layout and size of the filters represented by the position and size of the bars. Each bar denotes the center position and the orientation of a Gabor function

fitted to one of the learned filters. Thickness and length of each bar are proportional to the spatial-frequency bandwidth of the corresponding filters.

doi:10.1371/journal.pone.0171015.g006

Fig 7. Polar plot of frequency tuning and orientation of the filters learned on whitened natural image patches. (a) for a GRBM-196-196 and (b) for a

GRBM-196-588. The crosshairs describe the selectivity of the filters, which is given by the 1/16-bandwidth in spatial-frequency and orientation, see [38] for

details.

doi:10.1371/journal.pone.0171015.g007
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allows training algorithms to focus on higher order statistics like kurtosis, which is presumed

to play an important role in natural image representations [36, 39].

The components of GRBMs are isotropic Gaussians, such that the model would need sev-

eral components to model covariances. But the whitened data has a spherical covariance

matrix, such that the distribution can be modeled already fairly well by a single component.

The other components can then be used to model higher order statistics, so that we claim that

whitening is an important preprocessing step for GRBMs.

Parameter initialization

The initial choice of the model parameters is important for the optimization process. Using

prior knowledge about the optimization problem can help to derive an initialization that can

improve speed and success of the training.

For GRBMs we know from the analysis above that the anchor component, which represents

most of the whitened data moves to the data mean during training. Therefore, it is reasonable

in practice to set the visible bias to the value of the data mean without training it.

Learning the right scaling is usually very slow since weights and biases jointly determine the

position and scaling of the components. In the final stage of training GRBMs on whitened nat-

ural images, the first order components are scaled down extremely compared to the anchor

component, since the data distribution is rather dense in the region of the first order compo-

nents. Therefore, it will usually speed up the training process if we initialize the parameters so

that the first order scaling factors are already very small. Considering Eq (24), we are able to

set a specific first order scaling factor by initializing the hidden bias to

cj ¼ �
k bþ w�jk2 � k b k2

2s2
þ ln tj; ð37Þ

so that the scaling is determined by τj, which should ideally be chosen close to the unknown

final scaling factors. In practice, the choice of 0.01 showed good performance in most cases.

Furthermore, the initial norms of the weight-matrix columns should also be comparable to

the corresponding norms of a successfully trained GRBM. A common way however is to ini-

tialize the weights with small Gaussian-distributed random values, in which case the norms of

the weight-matrix columns are small, such that all components are positioned close to the

anchor component. According to Bengio and Glorot [40], the weights of a artificial neural net-

work should be initialized to wij � U �
ffiffi
6
p

ffiffiffiffiffiffiffiffi
NþM
p ;

ffiffi
6
p

ffiffiffiffiffiffiffiffi
NþM
p

� �
, where U(a, b) is the uniform distribu-

tion in the interval [a, b]. This initialization leads to much larger norms of the weight-matrix

columns, which in our experience works better than the commonly used Gaussian-distributed

random values. In combination with the proposed initialization for the biases, the component

scaling and the norms of the weight-matrix columns are close to the values of a successfully

trained GRBM, so that the optimization problem becomes more about finding the right rota-

tion of the weight vectors rather than their position and scaling.

Table 4. Comparison of ℓ̂ on training and test data for different models trained on whitened natural

image patches.

Method ℓ̂ train ℓ̂ test

ICA −259.19 −259.66

GRBM-196-392 −257.38 −260.03

Mixture of 9 Gaussians (MoG-9) −229.35 −241.87

doi:10.1371/journal.pone.0171015.t004
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Gradient restriction and choice of hyperparameter

The choice of the hyperparameters has a significant impact on the speed and success of train-

ing GRBMs. For successful training in an acceptable number of parameter updates, the learn-

ing rate needs to be sufficiently large otherwise the learning process becomes too slow or the

algorithm converges to a local optimum where all components are placed in the data mean.

But if the learning rate is chosen too high the norm of the parameter updates often get too

large leading to a divergence of ‘̂. This effect becomes even more critical as the model

dimensionality increases. In our experience, for a GRBM with 196 visible and 1,000 hidden

units, ‘̂ diverges already for a learning rate of 0.001. This problem usually leads to the choice of

a rather small learning rate, which in turn leads to a rather slow learning speed.

To prevent divergence, we propose to restrict the norm of the weight gradient columnsrw:

j to a reasonable size. Since we know from our analysis that the components are placed in the

region of data and that the position of the first order components are determined by the corre-

sponding weight-matrix column, there is no need for a norm of the weight-matrix columns

lager than twice the maximal data norm. This bound also holds for the gradient and should be

chosen even smaller to prevent the components from changing their position to quickly. In

practice, one should restrict the column norms of the update matrix rather than column

norms of the gradient matrix to also account for the effects of a momentum term for example.

The restriction allows us to use large learning rates even for very large models and therefore

enables fast and robust training. In our experience a value of one hundredth of the maximal

data norm yielded good performance in general.

The batch-size should be chosen large enough, so that the entire data set is sufficiently rep-

resented by the data points within each batch. In practice a batch-size of 100 or larger yielded

good results.

A momentum term adds a percentage of the old gradient to the current gradient, which can

lead to faster and more robust learning especially for small batch-sizes. We did not observe a

benefit of using a momentum term compared to simply using a larger learning rate if the

batch-size is chosen rather large (i.e.�100).

Since the components are placed on the data they are naturally restricted. This makes the

use of a weight decay useless or even counter productive since it prevents the system from con-

verging to the optimal solution where the weight columns have a certain norm.

The use of a sparse penalty is not necessary since we know from our analysis that a sparse

representation emerges naturally when GRBMs are trained on whitened natural image

patches. Furthermore, when using a sparse penalty we have to guess the unknown sparseness

level in advance, which might differ significantly from the optimal value.

Results

To show the effect of the training setups proposed, we trained several GRBMs with 196 hidden

units on the whitened natural image data set for 200 epochs using CD-1 with different parame-

ter initializations and training setups. Since the model is very sensitive to changes in the vari-

ance parameter, we set the corresponding learning rate to be 100 times smaller than the

learning rate for the weights and bias in all experiments. Furthermore, we set the visible bias to

the data mean without updating it. Each experiment was repeated 10 times and in each trial ‘̂

was estimated every fifth epoch using 100 repetitions of annealed importance sampling [41]

(AIS) with 10,000 linearly distributed inverse temperatures. The evolution of the average ‘̂ on

the test data, for the different experiments described in the following is shown in Fig 8. In all

GRBMs for modeling natural images
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experiments, the evolution of ‘̂ on the training data (not shown) and test data were qualita-

tively the same.

In a first experiment, we used a training setup as it is often used in practice, i.e. a learning

rate of 0.01, a visible and hidden bias initialized to zero, and a weight-matrix initialized to

small Gaussian distributed random values. The model did not capture the statistics of the data

since the visualized filters (not shown) look just like noise patterns and ‘̂ did not increase over

200 epochs (see Fig 8). Increasing the learning rate to 0.1 led instantaneously to an extreme

divergence of ‘̂ independently of the chosen initialization and whether a momentum was used

or not. We therefore performed the same experiment with a learning rate of 0.1 but restricted

the parameter updates to one hundredth of the maximal data norm, which led to a significant

improvement of ‘̂ (see Fig 8). The learned filters looked similar to those shown in Fig 4. We

also performed experiments where we changed the initialization of the weight-matrix and the

hidden bias to the initialization proposed in the previous section. In both cases the quality of

the learned filters and the final ‘̂ stayed almost the same. The learning speed, however,

Fig 8. Evolution of ℓ̂ on natural image patches when using different training setups. GRBM-196-196s were trained on whitened natural image data

set with CD-1. The learning curves are the average ‘̂ on the test data over 10 trials and ‘̂ was estimated using AIS. “init. c = New” and “init. w = New”

correspond to the initializations proposed in the previous section, and “init. w = 0.01” corresponds to an initialization of the weights to Gaussian distributed

random values with standard deviation of 0.01. The learning rate for the variance parameter was set 100 times smaller than for the other parameters.

doi:10.1371/journal.pone.0171015.g008
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increased when the weights are initialized as proposed by Bengio and Glorot [40] (indicated by

“init w = New” in Fig 8) and increased even more when in addition our proposed initialization

for the hidden bias values is used (indicated by “init c = New” in Fig 8). As control experiments

we also trained models using the proposed initialization with a smaller learning rate of 0.01

but without gradient restriction. As shown in Fig 8, ‘̂ did not diverge but the speed of conver-

gence became rather slow and the model did not get even close to convergence after 200

epochs. When in addition a momentum term of 0.9 was used, the performance became almost

equivalent to the performance when the model is trained with a learning rate of 0.1 and gradi-

ent restriction. However, when the learning rate was further increased or the number of hid-

den units was increased the divergence of ‘̂ was observed again.

The advantage of PCD and PT sampling for training binary RBMs has been shown in sev-

eral studies [23, 30, 42]. For GRBMs, Cho et al. [9] have shown some advantage of PT over CD

sampling in terms of the reconstruction error and classification rate. But to our knowledge

there exists no analysis of the different sampling algorithms with respect to the objective being

optimized, which is ‘̂. We therefore performed a second set of experiments where we com-

pared different sampling algorithms for training GRBMs on whitened natural image patches.

We used the gradient restriction, our proposed initialization for the hidden bias and the weight

initialization proposed by Bengio and Glorot [40]. All models were trained for 400 epochs and

‘̂ was estimated every 10th epoch using AIS with the same setup as described above. We use

(P)CD-1 and (P)CD-10 to denote the use of (P)CD sampling with either 1 or 10 sampling

steps. For PT we used k = 1 with 10 linearly distributed inverse temperatures from 0 to 1

denoted by PT-110.

Fig 9 shows the evolution of ‘̂ when either CD-1 or PCD-1 was used for training in combi-

nation with different learning rates. When CD-1 was used with a learning rate of 0.1 the model

quickly converged to an average ‘̂ around -270. No significant difference can be observed

when a learning rate of 0.01 in combination with a momentum term of 0.9 was used instead. A

smaller learning rate of 0.05 without momentum led to a more stable convergence and thus to

a slightly higher average ‘̂, but at the same time reduced the convergence speed.

When using a persistent Markov chain the assumption is that the model distribution

changes slowly enough through one parameter update so that the samples after one sampling

step are still representative for the updated model distribution. Thus, PCD-1 usually requires a

much smaller learning rate than CD-1 [29, 43]. This can also be seen from Fig 9, when PCD-1

was used for training in combination with a learning rate of 0.05, ‘̂ immediately diverged.

However, when a learning rate of 0.01 was used, ‘̂ did not diverge but the speed of convergence

reduced significantly. Using an even smaller learning rate in combination with a momentum

term did not help to overcome the instability problem as can also be seen in Fig 9 for a learning

rate of 0.005 and a momentum term of 0.9.

One way to overcome the divergence problem when using PCD-1, besides using a smaller

learning rate, is to use more sampling steps between the parameter updates. Fig 10 shows the

evolution of ‘̂ for PCD-10, CD-10 and PT-110 using either a learning rate of 0.1 or 0.05. In the

case of PCD-10, even a learning rate of 0.1 did not lead to a divergence of ‘̂ anymore. For both

learning rates the results for CD-10 and PCD-10 were rather similar although the evolution of

‘̂ appeared to be more stable in the case of CD-10. Both methods reached a significantly higher

‘̂ than CD-1 and PCD-1 and a slightly better ‘̂ was reached when a smaller learning rate of

0.05 is used. PT-110 diverged for a learning rate of 0.1 and reached a slightly worse ‘̂ than CD-

10 and PCD-10 when a learning rate of 0.05 is used. The slightly worse ‘̂ of PT might be
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explained by the fact that, although samples might come form different temperatures, PT still

uses one step of sampling between the parameter updates. Compared to CD-1 and PCD-1,

however, PT reached a better ‘̂ value. We would expect PT-1010 also to be better than CD-10

and PCD-10. However, the computational overhead is almost 10 times higher than for CD-10

and PCD-10, which itself have a 10 times higher computational overhead than CD-1 and

PCD-1, which makes PT-1010 impracticable. Note that initially we trained GRBMs with only

16 hidden units in which case ‘̂ did not differ significantly for the different training methods.

Since the computational overhead for the gradient restriction is very small, it is advisable

to use it precautionally in general, even though the threshold might never be exceeded dur-

ing training. Furthermore, it is beneficial to use our proposed initialization of the hidden

units as well as the proposed initialization of the weights by Bengio and Glorot [40]. We did

not observe any benefit of using a momentum term compared to using a larger learning rate

instead. Since PCD and PT do not reach better final ‘̂ but are incompatible with large learn-

ing rates when a small number of sampling steps is used, it is advisable to use CD instead of

PCD. Using a larger k is advisable but also increases the computational cost substantially.

Fig 9. Evolution of ℓ̂ on whitened natural image patches when using different training methods. GRBM-196-196s were trained on the whitened natural

image data set using CD-1 and PCD-1 using different learning rates and momentum terms. The learning curves are the average over 10 trials. The gradient

was restricted to one hundredth of the maximal data norm (0.48) and the learning rate for the variance parameter was set 100 times smaller than for the other

parameters.

doi:10.1371/journal.pone.0171015.g009
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Comparison to related work

Training GRBMs is known to be difficult and several studies [8–19] have addressed this prob-

lem using different ways of evaluating the model performance. Most of the studies have inves-

tigated the learned filters/features visually, showing comparable features to those shown in Fig

4 or they have compared the performance of classifiers that were trained on the GRBMs fea-

ture output. A good discriminative performance, however, does not imply a good generative

performance and vice versa. Since GRBMs are optimized for the ‘̂ objective it is thus rather

questionable if classification rates are a good way of evaluating model performances. To our

knowledge there is only one publication [11] besides ours that has evaluated and compared the

‘̂ for different models including GRBMs. The results of Theis et al. [11] are consistent with our

findings that GRBMs with the same number of visible and hidden units have a worse perfor-

mance than ICA, and that MoGs with only a few Gaussian components and free covariances

matrices lead to a better ‘̂ than ICA and GRBMs. One should note, however, that the resulting

filters of MoGs (i.e. the eigenvectors of the covariance matrix) are not localized edge detectors

such as filters learned by ICA or GRBMs, see Melchior [18] for a visual comparison.

Fig 10. Evolution of ℓ̂ on whitened natural image patches when using advanced training methods. GRBM-196-196s were trained on the whitened

natural image data set using CD-10, PCD-10, and PT-10 with 10 linearly distributed inverse temperatures. The learning curves are averaged over 10 trials.

The gradient was restricted to one hundredth of the maximal data norm (0.48) and the learning rate for the variance parameter was set 100 times smaller

than for the other parameters.

doi:10.1371/journal.pone.0171015.g010
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We emphasize the importance of training the variance parameter since it changes the per-

formance significantly especially when a large number of hidden units is used [18]. The major-

ity of other studies, however, have used GRBMs with a fixed value for the variance parameter

(i.e. set to one). Only two studies [8, 9], both using a different parameterization of the energy

function, have considered training the variance parameter. While Krizhevsky [8] has con-

cluded that it is rather difficult and thus impractical to train the variance parameter, Cho et al.

[9] have also found that training the variance parameter is of importance.

All studies [8–19] except ours have used a rather small learning rate to avoid problems dur-

ing GRBM training, which leads to a rather slow convergence (as an example see Fig 9). It is

thus questionable whether the models have reached convergence and whether reported results

change if the models are trained till convergence using our proposed methods. Cho et al. [9]

have addressed the training difficulties by proposing a modification of PT sampling and an

adaptive learning rate. We claim, however, that the problem of using a large learning rate with

PCD or PT sampling can be compensated by restricting the gradient and using a bigger num-

ber of sampling steps (see Fig 10). Lee et al. [10] have shown that GRBMs could also learn

meaningful filters by using a sparse penalty. We show however that a sparse penalty is not nec-

essary to learn meaningful features and in our experience a penalty usually leads to much

worse ‘̂ values compared to an unregularized model.

Apart from the analysis of the original model, some extensions of GRBMs have been pro-

posed to overcome reported difficulties. Ranzato et al. [14] have argued that the failure of

GRBMs in modeling natural images is due to the model’s focus on predicting the mean

intensity of each pixel rather than the dependence between pixels. They have proposed the

mean-covariance RBM (mcRBM), which in addition to the conventional hidden units has a

group of hidden units that can model the covariance between the visible units. Compared to

a GRBM, an mcRBM can have a covariance matrix that is not restricted to be diagonal and

can thus be considered as an improved GRBM. Since the visible units of an mcRBM are not

conditionally independent, the model cannot be trained by simple block Gibbs sampling

anymore. Instead, drawing samples from the model distribution needs to be approximated,

which makes training more difficult and costly. The authors have shown that an mcRBM

learns filters similar to those of ICA and GRBMs and that mcRBMs lead to features that are

more discriminative than those of GRBMs, resulting in a better classification rate on the

CIFAR-10 data set. Another explanation for the failure of GRBMs has been provided by

Nair et al. [12] as well as Courville et al. [15], who argue that the deficiency of GRBMs in

modeling covariances is due to the binary nature of the hidden units. Nair et al. [12] have

proposed to replace the binary hidden units by noisy linear rectifier units, which allows the

model to learn similar filters to those of GRBMs, but outperforms the original model in

terms of classification rates. Courville et al. [15] have developed the spike and slab RBM

(ssRBM), which splits each binary hidden unit into a binary spike variable and a real-valued

slab variable. According to Fig 1, the real-valued slab variables would allow to shift the com-

ponents along the corresponding weight vector w�j, such that a ssRBM can be considered as

a more flexible GRBM. The authors have shown that ssRBMs also learn filters similar to

those of ICA and GRBMs and that ssRBMs lead to similar classification rates on CIFAR-10

data set as mcRBMs. A natural extension of an RBM is a deep Boltzmann machine (DBM)

[42, 44], which has additional binary hidden layers. In contrast to a deep belief network all

layers in a DBM are trained jointly. A Gaussian-binary/Gaussian-Bernoulli DBM (GDBM)

[45] has similar properties than the ssRBM and mcRBM in modeling natural image statis-

tics, see Wang [19] for a detailed comparison. We agree on the advantages and higher flexi-

bility of mcRBM, ssRBM, and GDBMs in modeling natural image statistics. One should

GRBMs for modeling natural images
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note, however, that GRBMs might get closer to the results of mcRBMs and ssRBMs if they

are trained with a sufficiently large learning rate and if the standard deviation is optimized.

Conclusion

In this paper, we provide a theoretical analysis of GRBMs and show that its product of experts

formulation can be rewritten as a constrained mixture of Gaussians. This representation gives

a much better insight into the capabilities and limitations of the model.

We use a two-dimensional blind source separation task as a toy problem to demonstrate

how GRBMs model the data distribution. The results illustrate that GRBMs learn meaningful

features both for the toy problem and when modeling natural image patches. In both cases, the

learned features are comparable to those of ICA, which is generally accepted to be an appropri-

ate model for natural image statistics. Although ICA reaches a better ‘̂ than GRBMs that have

the same number of visible and hidden units, a comparable ‘̂ can be reached by GRBMs with

twice as many hidden than visible units. We show on the one hand that a large learning rate is

required to train GRBMs in an acceptable number of parameter updates, but on the other hand

a large learning rate can easily lead to divergence of ‘̂, which we identify as the main reason for

reported difficulties in training GRBMs [8–19]. Based on our theoretical analysis, we propose

to restrict the norm of the parameter updates to a reasonable size. We illustrate that the restric-

tion of the gradient prevents divergence and allows to use large learning rates for fast and

robust training of GRBMs. Furthermore, we propose a better way to initialize the hidden biases

leading to an even faster convergence than a naive initialization. Our results suggest that CD

learning is more appropriate when training GRBMs on natural images than sampling methods

that use a persistent Markov chain such as PCD or PT. Finally, we discuss related GRBM stud-

ies in which GRBMs have mainly been trained using a rather small learning rate and fixing the

values for the standard deviations to one. This is in contrast to our work where we emphasize

the importance of using a large learning rate and optimizing the variance parameter.

Due to the structural similarity the proposed initializations and gradient restriction can also

be applied to GDBMs, mcRBMs, and ssRBMs. An empirical analysis of this modification on

other models would be promising future work.

The implementation of the proposed modifications and the algorithms analyzed in this

work are part of the Python library PyDeep publicly available at https://github.com/MelJan/

PyDeep. The natural image data set is publicly available at https://zenodo.org/record/167823

Supporting information

S1 File. S1_File.py. Python code for creating the 2D data used in the experiments.
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