
fcell-09-630069 January 18, 2021 Time: 12:40 # 1

REVIEW
published: 21 January 2021

doi: 10.3389/fcell.2021.630069

Edited by:
Sveva Bollini,

University of Genoa, Italy

Reviewed by:
Albano Carlo Meli,

INSERM U1046 Physiologie et
médecine expérimentale du coeur et

des muscles, France
Luca Sala,

Istituto Auxologico Italiano (IRCCS),
Italy

*Correspondence:
Ming-Tao Zhao

Mingtao.Zhao@Nationwide
Childrens.Org

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 16 November 2020
Accepted: 04 January 2021
Published: 21 January 2021

Citation:
Lin H, McBride KL, Garg V and

Zhao M-T (2021) Decoding Genetics
of Congenital Heart Disease Using

Patient-Derived Induced Pluripotent
Stem Cells (iPSCs).

Front. Cell Dev. Biol. 9:630069.
doi: 10.3389/fcell.2021.630069

Decoding Genetics of Congenital
Heart Disease Using Patient-Derived
Induced Pluripotent Stem Cells
(iPSCs)
Hui Lin1,2,3, Kim L. McBride1,2,3,4, Vidu Garg1,2,4,5 and Ming-Tao Zhao1,2,4*

1 Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus,
OH, United States, 2 The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States, 3 Division of Genetic
and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States, 4 Department of Pediatrics, The Ohio
State University College of Medicine, Columbus, OH, United States, 5 Department of Molecular Genetics, The Ohio State
University, Columbus, OH, United States

Congenital heart disease (CHD) is the most common cause of infant death associated
with birth defects. Recent next-generation genome sequencing has uncovered novel
genetic etiologies of CHD, from inherited and de novo variants to non-coding genetic
variants. The next phase of understanding the genetic contributors of CHD will be the
functional illustration and validation of this genome sequencing data in cellular and
animal model systems. Human induced pluripotent stem cells (iPSCs) have opened
up new horizons to investigate genetic mechanisms of CHD using clinically relevant
and patient-specific cardiac cells such as cardiomyocytes, endothelial/endocardial cells,
cardiac fibroblasts and vascular smooth muscle cells. Using cutting-edge CRISPR/Cas9
genome editing tools, a given genetic variant can be corrected in diseased iPSCs and
introduced to healthy iPSCs to define the pathogenicity of the variant and molecular
basis of CHD. In this review, we discuss the recent progress in genetics of CHD
deciphered by large-scale genome sequencing and explore how genome-edited patient
iPSCs are poised to decode the genetic etiologies of CHD by coupling with single-cell
genomics and organoid technologies.

Keywords: congenital heart disease, human induced pluripotent stem cells, NOTCH signaling, hypoplastic left
heart syndrome, genetic models of CHD

INTRODUCTION

Congenital heart disease (CHD) is a leading cause of birth defect-related death and affects ∼1%
of live births in the United States (Hoffman and Kaplan, 2002; Nees and Chung, 2019). CHD is
characterized by morphological abnormalities in the cardiac chambers, septa and valves as well
as the great vessels arising from the heart. Congenital malformations of all aspects of the heart
have been described but the most common types of CHD can be classified into the following
categories: (1) cardiac septation defects, (2) conotruncal and aortic arch artery anomalies, (3)
right- and left-sided outflow tract obstructive defects, and (4) left-right abnormalities (heterotaxy)
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(Garg, 2006; Bruneau, 2008). Septation defects consist of
atrial septal defects (ASD), ventricular septal defects (VSD)
and atrioventricular septal defects (AVSD) while common
conotruncal and aortic arch artery anomalies include tetralogy
of Fallot (TOF), persistent truncus arteriosus and interrupted
aortic arch. Right-sided outflow tract obstructive lesions include
pulmonary stenosis and pulmonary valve atresia with intact
ventricular septum (PA-IVS), whereas hypoplastic left heart
syndrome (HLHS), aortic valve stenosis (AVS) and bicuspid
aortic valve (BAV) are common left-sided outflow tract
obstructive defects. Abnormalities in left-right signaling in the
developing embryos affect cardiac looping, which is critical for
proper alignment of the atria chambers to their appropriate-sided
ventricles and great vessels. This disruption in proper signaling
is associated with complex forms of CHD, such as double outlet
right ventricle and double inlet left ventricle, clinically termed
as heterotaxy syndrome (Kathiriya and Srivastava, 2000). Other
major CHD that does not fit into the abovementioned categories
includes isolated valve anomalies (e.g., Ebstein’s anomaly of
the tricuspid valve and mitral valve prolapse), total anomalous
pulmonary venous connection, anomalous coronary artery and
patent ductus arteriosus.

Epidemiologic studies reveal that genetic factors are the
predominant cause of CHD whereas environmental factors
(exposures, maternal conditions, intrauterine environment, etc.)
are also important contributors (Liu et al., 2013; Pierpont et al.,
2018). In total, specific genetic and environmental factors can
be identified in 20–30% of all CHD cases. Genetic mechanisms
underlying the development of CHD are complex and remain
elusive using current genetic approaches (Liu et al., 2017;
Pierpont et al., 2018). There are limited animal models to
study the developmental genetics of CHD, and transgenic mice
carrying human variants do not always recapitulate the clinical
phenotypes of CHD (Majumdar et al., 2019). Human iPSCs
are derived from somatic cells (such as skin fibroblasts or
peripheral blood mononuclear cells) and have the potential
to generate all cell types in the body originated from the
three germ layers (Takahashi et al., 2007; Yu et al., 2007).
Compared to animal models, patient iPSCs are clinically
relevant and also include the genetic background of the affected
individuals in a disease-specific manner, thus providing a
powerful tool for studying the contribution of a given genetic
variant to CHD. Patient-specific iPSCs can be differentiated into
cardiomyocytes, endothelial/endocardial cells, cardiac fibroblasts
and smooth muscle cells, which makes it feasible to study
complex genetic regulation and gene-environment interactions
simultaneously in multiple cell types in the heart (Hu et al.,
2016; Zhao et al., 2017a; Gifford et al., 2019). Recent studies
demonstrate that genome-edited iPSCs are ideal platforms to
elucidate the regulatory roles of non-coding genetic variants
in the risk of coronary artery disease and to investigate the
contribution of combinatorial interactions of multiple genetic
variants to complex cardiovascular disease (Lo Sardo et al., 2018;
Deacon et al., 2019).

In this review, we discuss the latest progress on genetic
etiologies of CHD uncovered by the state-of-the-art technologies
such as whole genome sequencing (WGS) and whole exome

sequencing. We explore the fascinating perspectives on
using patient-specific iPSCs and CRISPR genome editing to
functionally study the genetic and epigenetic (environmental)
determinants of CHD.

GENETICS OF CHD

With the advance of massively parallel sequencing, genetics of
CHD have been aggressively explored in the past decade. Large
scientific efforts such as NIH-funded Pediatric Cardiac Genomics
Consortium (PCGC) have been established to coordinate the
investigation of genetic variants present in CHD patient
population relevant to clinical outcomes (Pediatric Cardiac
Genomics Consortium et al., 2013; Jin et al., 2017). The genetic
basis of CHD can be grouped into two categories: syndromic
CHD and non-syndromic (isolated) CHD (Pierpont et al., 2018).
Syndromic CHD is defined as CHD with other congenital
anomalies, neurodevelopmental defects and/or dysmorphic
features. Syndromic CHD may be caused by aneuploidy, copy
number variants (insertions or deletions > 1,000 nucleotides), or
single gene defects. Down syndrome (trisomy 21) is a common
chromosome anomaly, and 40–50% of these patients have various
types of CHD, with cardiac septation defects being the most
common. Turner syndrome is caused by complete or partial
loss of an X-chromosome, and left-sided defects (coarctation
of the aorta, COA), BAV and HLHS are present in 30% of
these patients. 22q11.2 deletion syndrome is one of the most
common copy number variants with deletion of more than 40
genes on chromosome 22. Outflow tract defects are present in
75–80% of 22q11.2 patients. Syndromic CHD caused by single-
gene defects includes Alagille syndrome (variants in JAG1 and
NOTCH2) and Holt-Oram syndrome (variants in TBX5) (Basson
et al., 1997; Li et al., 1997b; Table 1). Genetic contributors
of isolated CHD have been emerging in the past two decades
and most variants are located in genes that are involved in
the molecular regulation of cardiac development. Syndromic
and isolated CHD display distinct genetic architectures: de novo
protein-truncating variants (PTVs) are significantly enriched in
syndromic CHD whereas inherited PTVs are mostly derived
from unaffected parents in isolated CHD (Sifrim et al., 2016;
Jin et al., 2017).

Pathogenic variants linked to isolated CHD primarily encode
transcription factors, signaling molecules, structural proteins
and epigenetic modifiers that are essential for normal cardiac
development (Zaidi et al., 2013; Pierpont et al., 2018; Nees and
Chung, 2019; Table 1). For instance, genetic variants in highly
conserved transcription factors critical for cardiac development
are found in both familial and sporadic cases of CHD. NKX2-
5 variants are present in patients with TOF and ASD with
conduction delay (Schott et al., 1998; Benson et al., 1999;
Goldmuntz et al., 2001; Stallmeyer et al., 2010). Pathogenic
GATA4 variants are associated with ASD, VSD, AVSD, pulmonary
stenosis (PS), and TOF (Garg et al., 2003; Okubo et al., 2004;
Hirayama-Yamada et al., 2005; Sarkozy et al., 2005; Tomita-
Mitchell et al., 2007). A small subset of GATA4 variant-induced
cardiac malformations in humans are recapitulated in transgenic
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TABLE 1 | A summary of single-gene variants underlying CHD.

Gene CHD Discovery methods References

GATA4 Atrial septal defect
Atrioventricular septal defect
Pulmonary stenosis
Tetralogy of Fallot
Ventricular septal defect

Linkage analysis
PCR
Targeted sequencing

Garg et al., 2003
Hirayama-Yamada et al., 2005
Okubo et al., 2004
Sarkozy et al., 2005
Tomita-Mitchell et al., 2007

JAG1 Pulmonary artery stenosis
Tetralogy of Fallot

BAC
FISH
Linkage analysis
PCR
SSCP
Targeted sequencing

Eldadah et al., 2001
Li et al., 1997a
Mcdaniell et al., 2006
Oda et al., 1997

MIB1 Left ventricular non-compaction PCR
Targeted sequencing
Transgenic mice
Zebrafish reporter assays

Luxan et al., 2013

NKX2-5 Atrial septal defects
Atrioventricular conduction block
Ebstein’s anomaly
Tetralogy of Fallot

FISH
Linkage analysis
PCR
Targeted sequencing

Benson et al., 1999
Goldmuntz et al., 2001
Schott et al., 1998
Stallmeyer et al., 2010

NOTCH1 Aortic valve stenosis
Bicuspid aortic valve
Coarctation of the aorta
Hypoplastic left heart syndrome
Tetralogy of Fallot

In vitro expression assay
Luciferase reporter assay
Microarray
Whole exome sequencing
Whole genome sequencing

Durbin et al., 2017
Garg et al., 2005
Mcbride et al., 2008
Kerstjens-Frederikse et al., 2016
Stittrich et al., 2014
Zahavich et al., 2017

PCDHA13
SAP130

Hypoplastic left heart syndrome Mouse forward genetics
Whole exome sequencing

Liu et al., 2017

TBX5 Atrial septal defect
Ventricular septal defect

Enhancer reporter assay PCR
Targeted sequencing
Transgenic mice
Zebrafish reporter assay

Basson et al., 1997
Li et al., 1997b; Mcdermott et al., 2005
Smemo et al., 2012

BAC, bacterial artificial chromosome; FISH, fluorescence in situ hybridization; SSCP, single-strand conformation polymorphism.

mouse models harboring the mutant human GATA4 variants
(Misra et al., 2012; Han et al., 2015).

Components of the NOTCH signaling pathway are linked to
both syndromic and isolated CHD. JAG1 variants are observed
in ∼90% of Alagille syndrome patients whereas NOTCH2
variants account for additional 1–2% of individuals with Alagille
syndrome (Li et al., 1997a; Oda et al., 1997; Mcdaniell et al.,
2006; Kamath et al., 2012). Loss-of-function variants in JAG1
cause pulmonary artery stenosis and TOF with or without
pulmonary atresia (Eldadah et al., 2001). Heterozygous mutations
in DLL4 (ligand) and NOTCH1 (receptor) lead to Adams
Oliver syndrome with CHD present in about 25% of these
patients (Stittrich et al., 2014; Meester et al., 2015). Variants
in RBPJ which interacts with the cleaved NOTCH1 protein
to form a transcriptional complex, are also linked to Adams
Oliver syndrome (Hassed et al., 2012). Of note, pathogenic
NOTCH1 mutations are linked to BAV, HLHS, AVS, COA,
and TOF (Garg et al., 2005; Mcbride et al., 2008; Kerstjens-
Frederikse et al., 2016; Durbin et al., 2017; Zahavich et al.,
2017). Mechanistically, NOTCH1 mutations reduce the ligand
binding ability, interrupt the S1 cleavage of NOTCH receptor in
the Golgi, and impair the epithelial-to-mesenchymal transition
(Riley et al., 2011). In addition, germline mutations in MIB1
which encodes an E3 ubiquitin ligase that promotes endocytosis
of NOTCH ligands, lead to left ventricular non-compaction

(LVNC) in autosomal-dominant pedigrees (Luxan et al., 2013).
Myocardial Mib1 mutations in mice cause the expansion of
compact myocardium to proliferative immature trabeculae and
interruption of chamber myocardium development.

The encyclopedia of DNA elements (ENCODE) project
suggests that more than 80% of human genomic DNA has
a biochemical function (Consortium, 2012). The majority of
disease-causing variants identified by genome-wide association
studies (GWAS) are located in non-coding DNA elements, many
of which are embedded in the DNase I hypersensitive (open
chromatin) regions (Maurano et al., 2012). GWAS in CHD have
similar findings (Cordell et al., 2013; Hu et al., 2013; Mitchell
et al., 2015; Hanchard et al., 2016). De novo variants in enhancer
elements have been found in several human developmental
defects including CHD and neurodevelopmental disorders (Short
et al., 2018). For example, sequence variants in a limb-specific
enhancer ZRS which is located nearly 1 Mb from its target
gene sonic hedgehog (Shh) result in limb malformations such
as preaxial polydactyly (Lettice et al., 2003). Copy number
variants affecting topological associated domains have also been
implicated in disrupting enhancers and causing developmental
defects (Lupianez et al., 2015). Distal cis-regulatory elements have
been identified in TBX5, of which variants are responsible for
Holt-Oram syndrome (Mcdermott et al., 2005; Smemo et al.,
2012). Among patients with Holt-Oram syndrome, three quarters
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have CHD, with ASD and VSD as the most common cardiac
defects. A homozygous variant found in an enhancer about
90 kb downstream of TBX5 is associated with isolated ASD
and VSD in a cohort of non-syndromic CHD patients. This
single-nucleotide variant compromises the enhancer activity
driving expression of TBX5 in the heart in both mouse and
zebrafish transgenic models (Smemo et al., 2012). Recent WGS
and chromatin immunoprecipitation sequencing have enabled
researchers to expand the genetic variants in non-coding DNA
elements that may have a regulatory role in controlling gene
transcription during heart development (Zhao et al., 2017b;
Richter et al., 2020). Non-coding de novo variants (DNVs) are
significantly enriched in individuals with CHD and potentially
exhibit transcriptional and post-transcriptional regulatory effects
on genes critical for normal cardiac morphogenesis. Genetic
architecture of CHD in cardiac regulatory non-coding DNVs
will be further elucidated with the advance of WGS and precise
genome editing technologies.

PATIENT-SPECIFIC IPSCS FOR
MODELING GENETICS OF CHD

Although a genetic etiology is identified in about 1/3 of CHD
patients, experimental models to functionally validate genetic
variants associated with CHD are far from perfect. Genetically
engineered mice have been used for studying fundamental
genetics of cardiac development for more than 25 years.
Murine models are able to recapitulate some aspects of human
cardiac development due to their similar stages of cardiac
morphogenesis and adult cardiac structure (Majumdar et al.,
2019). However, there are substantial differences in genomic
content and physiology between humans and mice. Orthologous
heterozygous variants sometimes do not reproduce similar CHD
phenotypes when introduced into the mouse genome. Patient-
derived iPSCs appear to provide a unique platform to study
the genetic mechanisms of CHDs as they retain all the genetic
information of the original affected individuals. Combined with
CRISPR/Cas9 genome-editing, single-cell genomics, and cardiac
organoid engineering technologies, patient-specific iPSCs would
greatly complement the murine genetic models of CHD and
illustrate novel perspectives on genetic etiologies of CHD for
future precision diagnosis and treatment.

Human iPSCs are promising models for studying genetic
mechanisms of isolated CHD caused by single-gene defects. In
addition to cell-autonomous inherited cardiac disease such as
long QT syndrome (Moretti et al., 2010; Itzhaki et al., 2011),
ventricular tachycardia (Zhang et al., 2014; Sleiman et al., 2020)
and dilated cardiomyopathy (Sun et al., 2012; Hinson et al., 2015),
patient iPSCs have been employed to model several types of
CHD, including BAV and calcific aortic valve disease (CAVD)
(Theodoris et al., 2015), supravalvular aortic stenosis (SVAS)
(Ge et al., 2012), cardiac septal defects (Ang et al., 2016), Barth
syndrome (Wang et al., 2014), and HLHS (Hrstka et al., 2017;
Yang et al., 2017; Miao et al., 2020; Table 2). Human iPSCs
can be differentiated to the desired cardiovascular cell types
relevant for studying different CHD (Protze et al., 2019), though

the immaturity of iPSC-derived cardiomyocytes (iPSC-CMs)
continues to be a challenge for recapitulating the physiological
scenarios in the heart (Karbassi et al., 2020; Zhao et al., 2020b).
Robust cardiac differentiation protocols have been optimized
to generate subtype-specific (atrial, ventricular and nodal)
cardiomyocytes for precision disease modeling (Zhang et al.,
2011; Lee et al., 2017; Protze et al., 2017; Ren et al., 2019; Liang
et al., 2020; Zhao et al., 2020a).

Human iPSC models of CHD have employed major cardiac
cell types such as cardiomyocytes (CMs), vascular smooth
muscle cells (SMCs), and endothelial/endocardial cells (ECs)
that can be derived from patient-specific iPSCs for laboratory
research. These patient-derived cardiac cells carrying genetic
variants enable researchers to study the disease mechanisms
in a petri dish (Table 2). For example, pathogenic GATA4
variants cause cardiac septal defects and cardiomyopathy.
A heterozygous variant in GATA4 (G296S missense) is linked
to 100% penetrant ASD, VSD, AVSD or PS (Garg et al., 2003).
Human iPSC-CMs from heterozygous GATA4-G296S patients
display impaired contractility, defects in calcium handling ability
and abnormal mitochondrial functions (Ang et al., 2016).
Molecular analysis reveals that mutant GATA4 disrupts the
recruitment of TBX5 which binds to cardiac super-enhancers
and leads to dysregulation of genes related to cardiac septation.
In another study, Theodoris et al. (2015) have derived iPSCs
from patients with BAV and CAVD which are linked to
NOTCH1 haploinsufficiency. In iPSC-derived endothelial cells
(iPSC-ECs), NOTCH1 heterozygous nonsense variants disrupt
the epigenetic architecture of NOTCH1-bound enhancers and
cause the depression of anti-osteogenic and anti-inflammatory
gene regulation networks in response to hemodynamic shear
stress (Theodoris et al., 2015). Furthermore, the same group
have recently utilized a combination of human iPSC technology,
machine learning and network analysis to identify an efficacious
therapeutic candidate XCT790 for preventing and treating aortic
valve disease in a mouse model, demonstrating the prospective
pharmacogenetic applications of CHD patient-specific iPSCs
(Theodoris et al., 2020). Ge et al. (2012) have employed iPSC-
derived smooth muscle cells (iPSC-SMCs) to investigate how
elastin (ELN) gene variants lead to narrowing or blockage of
the ascending aorta in SVAS. SVAS iPSC-SMCs harboring ELN
variants are less mature and contractile, and show fewer networks
of smooth muscle actin filament bundles compared to healthy
controls. These SVAS iPSC-SMCs have a higher proliferation
ability and migration rate in response to platelet-derived growth
factor (PDGF), indicating that SVAS iPSC-SMCs recapitulate the
pathological features of SVAS patients and may provide novel
insights for future therapies.

Human iPSCs have been utilized to study complex genetics
in CHD together with transgenic mouse models and clinical
genetics. A recent study reveals that NKX2-5 variants serve
as a genetic modifier of a familial LVNC cardiomyopathy
with variable age of presentation from childhood to incidental
asymptomatic finding in adulthood (Gifford et al., 2019).
Human iPSCs were created carrying the inherited compound
heterozygous variants in MKL2, MYH7 and NKX2-5 while
genetically engineered mice carrying the orthologous variants
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TABLE 2 | Current iPSC models for studying disease mechanisms of CHD.

CHD Variants Cell types Disease phenotypes References

ASD
VSD
AVSD

GATA4 Cardiomyocytes Impaired contractility
Defects in calcium handling
Abnormal mitochondrial functions

Ang et al., 2016

BTHS TAZ Cardiomyocytes Irregular sarcomeres
Abnormal myocardial contraction
Excessive ROS generation

Wang et al., 2014

CAVD NOTCH1 Endothelial cells Defective epigenetic architecture
Disrupted transcriptional response

Theodoris et al., 2015

HLHS NOTCH1
Unknown

Cardiomyocytes Abnormal gene expression
NO signaling deficiency
Disorganized sarcomeres
Reduced contraction force
Decreased metabolic activity

Hrstka et al., 2017

Paige et al., 2020
Yang et al., 2017

HLHS Unknown Endothelial cells Endocardial differentiation defects Miao et al., 2020

LVNC MKL2
MYH7
NKX2-5

Cardiomyocytes NKX2-5 is a genetic modifier
Abnormal gene expression

Gifford et al., 2019

LVNC TBX20 Cardiomyocytes Defects in cardiac proliferation
Abnormal TGF-β signaling

Kodo et al., 2016

PA-IVS Unknown Cardiomyocytes Abnormal developmental trajectory
Reduced contractility

Lam et al., 2020

SVAS ELN Smooth muscle cells Less mature and contractile
Higher proliferation ability in response to PDGF

Ge et al., 2012

VSD TBX5 Cardiomyocytes TBX5 haploinsufficiency
Disrupted gene regulatory network

Kathiriya et al., 2020

The CHD subtypes, genetic variants, relevant cell types, and disease phenotypes are listed. ASD, atrial septal defect; AVSD, atrioventricular septal defect; BTHS, Barth
syndrome; CAVD, calcific aortic valve disease; HLHS, hypoplastic left heart syndrome; LVNC, left ventricular non-compaction; PA-IVS, pulmonary atresia with intact
ventricular septum; SVAS, supravalvular aortic stenosis; VSD, ventricular septal defect.

were also generated. By analyzing the phenotypes from transgenic
murine hearts and patient iPSC-CMs, NKX2-5 variants are
identified as a genetic modifier for this cardiomyopathy with
oligogenic inheritance. In another study, LVNC iPSC lines were
generated from patients with TBX20 variants (Kodo et al.,
2016). LVNC iPSC-CMs show defects in proliferation which
is caused by the abnormal activation of TGF-β signaling. In
mice, overexpression of TGF-β1 leads to arrest in cardiac
development, disturbed expansion of embryonic cardiomyocytes
and trabecular/compact layer ratio in the left ventricle. Mostly
recently, Kathiriya and colleagues have generated TBX5 knockout
human iPSC lines with different dosages (heterozygous and
homozygous) and performed single-cell RNA sequencing and
gene regulatory network analysis. TBX5 haploinsufficiency alters
the expression of CHD-related genes and reduced TBX5 gene
dosage disrupts gene regulatory networks in human iPSC-CMs.
Abnormal genetic interaction between Tbx5 and Mef2c leads to
ventricular septation defects in transgenic mice with reduced
Tbx5 gene dosage (Kathiriya et al., 2020). These studies further
highlight the combinatorial advantages of using human iPSCs
and transgenic mouse models to reveal genetic mechanisms of
CHD pathogenesis (Figure 1).

Hypoplastic left heart syndrome is a severe form of CHD
characterized by aortic and mitral valve atresia or stenosis,
leading to a hypoplastic left ventricle and aorta (Saraf et al.,
2019). Though HLHS has a strong genetic component, the
genetic etiology of HLHS is complex (Mcbride et al., 2005).
Further, mouse models are not able to fully recapitulate

the clinical phenotype (Liu et al., 2017; Grossfeld et al.,
2019). Using HLHS patient-derived iPSC-CMs, multiple studies
demonstrate the pathogenic link of NOTCH1 variants to HLHS
(Theis et al., 2015; Durbin et al., 2017; Hrstka et al., 2017;
Yang et al., 2017). HLHS iPSCs harboring NOTCH1 variants
exhibit compromised ability to generate cardiac progenitors and
HLHS iPSC-CMs show disorganized sarcomere structures and
sarcoplasmic reticulum as well as a blunted drug response (Yang
et al., 2017). Another independent study confirms that HLHS
iPSCs have a deficiency in cardiomyocyte differentiation and
NOTCH signaling pathway (Hrstka et al., 2017). Additionally,
abnormalities in the nitric oxide (NO) pathway are found in
the cardiac lineage specification of HLHS iPSCs with NOTCH1
mutations. Small molecule supplementation could restore the
cardiogenesis, implying a potential therapeutic target for HLHS
patients. This study is consistent with the congenital cardiac
abnormalities observed in Notch1+/−; Nos3−/− transgenic mice
and demonstrates that interaction between NO pathway and
NOTCH signaling is required for proper development of the
left-sided cardiac structures including the aortic valve (Bosse
et al., 2013; Koenig et al., 2016). Recently, Miao et al. (2020)
have highlighted the contribution of endocardial defects to
the pathogenesis of HLHS using patient iPSCs and single-
cell RNA sequencing of human fetuses with under developed
left ventricles. Although the genetic causes of these HLHS
iPSCs are unclear, endocardial defects lead to abnormal
endothelial-to-mesenchymal transition, reduced cardiomyocyte
proliferation and maturation, and disrupted fibronectin-integrin
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FIGURE 1 | An integrated patient-specific iPSC model for studying genetics of CHD. Whole genome sequencing of CHD patients identifies prospective genetic
variants that are retained in patient-specific iPSCs. Cardiovascular defects in CHD are recapitulated in patient iPSC-derived cardiac cells, such as cardiomyocytes
(CMs), endocardial/endocardial cells (ECs), vascular smooth muscle cells (SMCs), and fibroblasts (FBs). Genetic variants associated with a CHD phenotype are
corrected in diseased iPSCs and introduced to healthy iPSCs using CRISPR/Cas9 genome editing tools. These genome-edited iPSCs are further investigated to
validate the cause-effect relationship between a given genetic variant and a CHD phenotype. In parallel, orthologous variants are genetically introduced into animal
models (rodents, pigs, zebrafish, etc.) in order to investigate the in vivo effects of a given human variant on heart development. Together, an integrated model
including both genome-edited human iPSCs and transgenic animals will yield a more comprehensive illustration of the genetic basis of CHD in the new era of
genomic medicine.

signaling. Another study by Mikryukov et al. (2021) has
identified a critical role of BMP10 in the specification and
maintenance of endocardial cells from human iPSCs. These
iPSC-derived endocardial cells can induce trabeculation in
iPSC-CMs and generate valvular interstitial-like cells, which
are promising in vitro models for studying cardiac valve
defects and LVNC. As the intercellular communication between
endocardium and myocardium is essential for normal ventricular
development (Macgrogan et al., 2018), further investigation
would be warranted to illustrate how the abnormal crosstalk
signaling leads to hypoplasia of the left ventricle using HLHS
iPSC-CMs and iPSC-ECs.

The major challenge for studying genetics of CHD is lack
of reliable models to functionally validate genetic variants that
are discovered by massive genome sequencing. Although iPSC
models are increasingly being used to study the contribution of
genetic variation in the development of CHD, limitations should
be carefully considered before any translational applications
move forward. Human iPSC-CMs are fetal-like cardiomyocytes
and show immature structural and physiological characteristics.
For example, iPSC-CMs do not have mature structures of
myofibrils and T-tubule, and they are misaligned compared to
rod-shape adult cardiomyocytes (Karbassi et al., 2020; Zhao
et al., 2020b). Enormous efforts have been made to promote
the structural and functional maturation of iPSC-CMs, including

the addition of thyroid and glucocorticoid hormones (Parikh
et al., 2017), physical and electrical conditioning (Ronaldson-
Bouchard et al., 2018), and co-culture with stromal cells in
3D cardiac microtissues (Giacomelli et al., 2020). In addition,
iPSC-CMs are mostly cultured as a 2D structure which differs
from the 3D structure of the human heart. Patient iPSC-
derived cardiac organoids may be better models as a 3D
substitute for the human heart (Rossi et al., 2018; Richards
et al., 2020). However, it is still undetermined whether cardiac
organoids can recapitulate the developmental scenarios of CHD
pathogenesis. After all, any iPSC-based models are in vitro
systems, which are fundamentally distinct from the in vivo
environment. Although animal models best represent the
in vivo environment, animals are different from humans in
terms of physiology and genomics, and may not be clinically
relevant. Therefore, we propose an integrated model which
incorporates patient-specific iPSCs with transgenic animals
(Figure 1). We envision that genetic variants associated with
a CHD phenotype are tested in genome-edited iPSCs which
are patient-derived and clinically relevant, while orthologous
variants are also genetically introduced to animal models
(rodents, pigs, zebrafish, etc.) to investigate the in vivo functions.
The combination of human iPSCs and transgenic animals will
provide us a more comprehensive illustration of pathogenetic
mechanisms of CHD.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 January 2021 | Volume 9 | Article 630069

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-630069 January 18, 2021 Time: 12:40 # 7

Lin et al. Decoding CHD Genetics by iPSCs

OUTLOOK

Recent advances in CRISPR/Cas9 genome editing (Adli, 2018),
single-cell genomics (Tanay and Regev, 2017) and organoid
(Rossi et al., 2018) technologies further propel the discovery
of novel mechanisms of CHD development using patient- and
disease-specific iPSCs. Precise genome editing technologies can
be used to correct a given variant in patient iPSCs and then study
whether the disease phenotypes can be rescued in genetically
corrected isogenic cardiac cells (Hockemeyer and Jaenisch,
2016; Deacon et al., 2019). Concomitantly, this variant can be
introduced to a healthy iPSC line with new genetic background
to test whether it is sufficient to cause the disease phenotypes.
Moreover, oligogenic inheritance in CHD may be studied in
patient iPSCs by simultaneous correction or introduction of a
combination of multiple genetic variants (Gifford et al., 2019).
Single-cell RNA-seq analysis of human and mouse hearts has
provided unprecedented resources on the trajectory of cardiac
development in vivo at single-cell resolution and revealed a
blueprint on how normal cell fate determination is altered under
genetic perturbation and pathological conditions such as CHD
(Cui et al., 2019; De Soysa et al., 2019; Litvinukova et al., 2020;
Paik et al., 2020). Single-cell transcriptional profiling of healthy
and diseased iPSCs during cardiac differentiation would decipher
how a given genetic variant affects cardiac differentiation and
developmental trajectories, and uncover new molecular insights
in the pathogenesis of CHD (Churko et al., 2018; Kathiriya
et al., 2020; Lam et al., 2020; Miao et al., 2020; Paige et al.,
2020). As heart development is dependent on interaction among
multiple cell types in the embryo, cardiac organoids and 3D bio-
printing may serve as another tier of disease modeling using
patient iPSCs (Lee et al., 2019; Nugraha et al., 2019). Cardiac
organoids contain the spatial information of multiple cardiac

cell types and lay out a 3-D platform to study the complex
interactions between genotypes and phenotypes under normal
and diseased conditions using patient-specific iPSCs. Although
cardiac organoids have been used for modeling drug-induced
toxicity and myocardial infarction (Richards et al., 2020), it is still
challenging to generate cardiac structures such as heart valves and
septa that can represent the developmental defects in CHD using
the current cardiac organoid technologies. Future therapeutic
breakthroughs in precision medicine of CHD would require the
convergence of precision genome editing, single-cell genomics
and cardiac bioengineering, which is built upon clinically relevant
and patient-specific iPSC platforms.
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