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Abstract: This work deals with the study of the synthesis of new bis-indole analogues with a phenyl
linker derived from indole phytoalexins. Synthesis of target bis-indole thiourea linked by a phenyl
linker was achieved by the reaction of [1-(tert-butoxycarbonyl)indol-3-yl]methyl isothiocyanate with
p-phenylenediamine. By replacing the sulfur of the thiocarbonyl group in bis-indole thiourea with
oxygen using mesityl nitrile oxide, a bis-indole homodimer with a urea group was obtained. A
cyclization protocol utilizing bis-indole thiourea and methyl bromoacetate was applied to synthesize
a bis-indole homodimer with a thiazolidin-4-one moiety. Bis-indole homodimers derived from 1-
methoxyspirobrassinol methyl ether were prepared by bromospirocyclization methodology. Among
the synthesized analogues, compound 49 was selected for further study. To evaluate the mode of the
mechanism of action, we used flow cytometry, Western blot, and spectroscopic analyses. Compound
49 significantly inhibited the proliferation of lung cancer cell line A549 with minimal effects on
the non-cancer cells. We also demonstrated that compound 49 induced autophagy through the
upregulation of Beclin-1, LC3A/B, Atg7 and AMPK and ULK1. Furthermore, chloroquine (CQ; an
autophagy inhibitor) in combination with compound 49 decreased cell proliferation and induced G1
cell cycle arrest and apoptosis. Compound 49 also caused GSH depletion and significantly potentiated
the antiproliferative effect of cis-platin.

Keywords: indole phytoalexins; cell death; autophagy; GSH; lung cancer

1. Introduction

Cancer is one of the leading causes of death in both developing and developed
countries [1]. The International Agency for Research on Cancer estimated almost 20 million
new cancer cases and nearly 10 million cancer deaths worldwide in 2020. Among different
cancer types, lung cancer (LC) was the leading cause of cancer death in 2020 in both sexes,
as projected in GLOBOCAN 2020 [2].

Lung cancer therapy depends on the type of cancer. Regardless of the type of LC,
chemotherapy is often involved in the treatment protocol. However, it has several limita-
tions such as toxicity to non-cancer cells or chemoresistance induction [3]. Thus, it is critical
to develop an effective and safe therapy to combat cancers including LC.

Phytochemicals are of great interest because they have been shown to be effective
and inexpensive with minimal side effects [4]. Indole phytoalexins, cruciferous-derived
phytochemicals, are secondary metabolites produced by plants after their exposure to
biotic or abiotic stresses [5]. In addition to their plant-defensive functions, several indole
phytoalexins, either natural or synthetic, have been evaluated for their growth inhibitory
effect using cancer cell models [6]. We and others documented the growth-inhibitory effect
of several natural and synthetic indole phytoalexins in various cancer lines such as colon,
breast, cervix, liver, and prostate [7–14]. Bis-indole alkaloids from natural sources (e.g. 3,3′-
diindolylmethane, hyrtiosin B) [15,16] and synthetic bis-indole hybrids [17,18] acted as very
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powerful inhibitors of growth for many types of human tumor cells in vitro. Bis-indole
derivatives often showed enhanced antiproliferative and anticancer effects against a wide
range of human cancer cells compared to their corresponding monomers [19].

Considering the above facts and in conjunction with our research work on indole
phytoalexins as anticancer agents, we sought to design and synthesize bis-indoles inspired
by indole phytoalexins that have in vitro antiproliferative activity. Our design was based
on the linkage of two peripheral indole-based monomeric units with a phenyl linker to
obtain the target bis-indole analogues of indole phytoalexins.

2. Results and Discussion
2.1. Chemistry

The synthetic pathway proposed to obtain the target bis-indoles 48 and 49 is depicted
in Scheme 1. In the synthesis of bis-indole thiourea 48 linked by a phenyl linker, we decided
on a strategy based on the reaction of [1-(tert-butoxycarbonyl)indol-3-yl]methyl isothio-
cyanate (47) with p-phenylenediamine (30). [1-(tert-Butoxycarbonyl)indol-3-yl]methyl
isothiocyanate (47) was prepared following a previously published procedure [20]. During
a 24 h reflux of two equiv. of isothiocyanate 47 and one equiv. of p-phenylenediamine dihy-
drochloride (30) in dichloromethane in the presence of 6 equiv. triethylamine, we managed
to prepare the corresponding bis-indole homodimer 48 in a yield of 69% (Scheme 1). The
structure of bis-indole thiourea 48 was confirmed by NMR spectroscopy (Supplement file).
In the 13C NMR spectrum, a chemical shift at 180.8 ppm could be observed, proving the
presence of a C=S group.
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With the aim of finding an effective anti-cancer agent, we used the obtained bis-indole
thiourea 48 as a starting substrate for the preparation of bis-indole urea 49. The replacement
of the sulfur of the thiourea moiety with oxygen was carried out using mesityl nitrile oxide
in a mixture of absolute solvents chloroform/methanol (1:1) for 2 h at room temperature.
The desired bis-indole urea 49 precipitated from the reaction mixture as white crystals in a
yield of 58% (Scheme 1). For the prepared urea 49, a chemical shift for the C=O group of the
urea skeleton at a value of 155.7 ppm was observed in the 13C NMR spectrum, confirming
the conversion of thiourea to urea (Supplement file).

Bis-indole thiourea 48 was treated with methyl bromoacetate in the presence of triethy-
lamine as a base. During the reaction of bis-indole thiourea 48 with methyl bromoacetate,
the formation of two possible regioisomers 51a and 51b was considered. However, the
cyclization reaction of homodimer 48 lasting 24 h gave only thiazolidin-4-one 51a in 57%
yield (Scheme 2). The product was purified by column chromatography followed by
crystallization from an acetone/n-hexane. The structure of the product was determined
using 2D NMR spectra (Supplement file). In the HMBC spectrum, a correlation was ob-
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served between the CH2 group (bound to indole, δ 5.14 ppm) and the C=O group of the
thiazolidin-4-one ring (δ 171.5 ppm), which proved that it was a derivative 51a.
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By bromospirocyclization of bis-indole thiourea 48, we prepared a bis-indole ho-
modimer 52 derived from the indole phytoalexin 1-methoxyspirobrasinol methyl ether,
which served as a natural model. In the synthesis of this type of derivative, a cycliza-
tion protocol was chosen for the cyclization of thiourea 48 using bromine (1.1 equiv.)
as the cyclization reagent, a mixture of absolute solvents dichloromethane/methanol
(9:1), with methanol also acting as a nucleophile and triethylamine as a base. The reac-
tion of the initially formed spiroindoleninium intermediate B with methanol led to the
formation of the final diastereoisomers trans-(±)-52a and cis-(±)-52b in the ratio 73:27
(Scheme 3). After separation of the diastereoisomers by column chromatography using
eluent dichloromethane/ethyl acetate/ammonia 20:20:0.1, trans-diastereoisomer trans-(±)-
52a was isolated as a pure substance in 55% yield, and cis-(±)-diastereoisomer cis-(±)-52b
containing trans-diastereoisomer trans-(±)-52a as an inseparable impurity (20% yield). The
determination of the trans- and cis-diastereoisomer ratio was carried out by integration
of clearly resolved signals belonging to the H-2, Ha and Hb protons in the 1H NMR spec-
trum of the crude reaction mixture (Supplement file). Using the 2D NOESY experiment,
the structure of the diastereoisomers trans-(±)-52a- and cis-(±)-52b was determined. The
structure of the trans-diastereoisomer trans-(±)-52a was proved through the observed inter-
action between the Hb proton and the OCH3 protons. The detected interaction between
the Hb proton and the H-2 proton in the NOESY spectrum was a confirmation of the
cis-diastereoisomeric structure of the compound cis-(±)-52b.
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2.2. Biological Activity
2.2.1. MTT Screening Assay

The ability of newly synthesized indole phytoalexins to suppress cell proliferation was
screened in vitro on eight cancer cell lines including human colorectal carcinoma (Caco-2
and HCT116), human cervical cancer (HeLa), human breast adenocarcinoma (MCF-7, MDA-
MB-231), human alveolar adenocarcinoma (A549) and human leukemic T cell lymphoma
(Jurkat), and two non-cancer cell lines (MCF-10A, Cos-7). Among the studied compounds,
compounds 49 and 52a showed the strongest antiproliferative activity against several
cancer cell lines (Table 1). However, because compound 52a also significantly decreased
non-cancer cell proliferation, it was excluded from further studies. On the other hand,
compound 49 showed greater selectivity against cancer cell lines, and it was selected for
further analyses at a concentration of 20 µM, specifically on A549 cells.

Table 1. The inhibitory concentrations IC50 (µM) of tested compounds in different cell lines after
72 h incubation.

Comp.
Cell Line IC50 (µM)

Caco-2 HCT116 HeLa MCF-7 A549 Jurkat BLM MDA-MB-231 MCF10A Cos-7

48 51.7 ± 4.1 51.9 ± 4.7 65.3 ± 5.3 77.0 ± 2.1 73.1 ± 7.3 38.8 ± 2.9 77.1 ± 4.3 46 ± 2.5 67.3 ± 1.9 78.3 ± 2.6

49 8.6 ± 0.9 8.8 ± 0.6 8.9 ± 0.2 >100 8.7 ± 0.1 98.8 ± 1.7 >100 >100 55.1 ± 4.1 >100

51a >100 97.7 ± 3.2 >100 >100 93.8 ± 1.0 >100 >100 >100 >100 >100

52a 6.1 ± 2.1 5.8 ± 0.3 6.4 ± 0.7 62.9 ± 3.9 5.95 ± 0.2 6.1 ± 0.7 7.4 ± 2.5 8.3 ± 3.2 10.1 ± 6.2 7.15 ± 0.3

49 Selectivity index—A549 cells vs. non-cancer cells 6.3 11.5

The data show the mean ± SD values of three independent experiments. A non-toxic concentration of DMSO was
used as a negative control.
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2.2.2. BrdU Cell Proliferation Assay

Measurement of the BrdU, a thymidine analogue, is a sensitive method used for the
detection of DNA synthesis during the S phase of the cell cycle. Our results showed
that compound 49 suppressed lung cancer cell proliferation in a dose-dependent manner
(Figure 1) with an IC50 value of 16.1 µM after 72 h of incubation.
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Figure 1. Effect of compound 49 on BrdU incorporation in A549 cells. Lung cancer cells were
exposed to compound 49 at concentrations ranging from 5 to 30 µM for 72 h. The data show
the mean ± SD values of three independent experiments. Statistical significance: ### p < 0.001 vs.
Control, *** p < 0.001 vs. DMSO.

2.2.3. Cell Cycle Analysis

To examine whether the antiproliferative effect of compound 49 is associated with cell
cycle arrest, flow cytometry analyses of cell cycle progression were performed. As shown
in Figure 2, indole phytoalexin 49 induced non-significant changes in the G1, S or G2/M
phases of the cell cycle. Analyses of the sub-G0/G1 subpopulation (a marker of apoptosis)
revealed minimal changes compared to DMSO control at all treatment time points.
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2.2.4. Annexin V/PI Staining

Phosphatidylserine (PS), normally localized in the inner leaflet of the cell membrane,
is translocated on the outer surface during induction of apoptosis [21]. Annexin V/PI
double staining was performed to analyze the externalization of PS on the outer plasmatic
membrane surface together with cell population diversification (An−/PI−—living cells;
An+/PI- early apoptotic cells; An+/PI+—late apoptotic/necrotic cells, and An−/PI+—dead
cells). As shown in Figure 3 indole phytoalexin 49 treatment did not induce total PS
externalization compared to the DMSO-treated control.
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2.2.5. Effect of Compound 49 on the Expression of Autophagy-Related Proteins

On the basis of the above-mentioned results, we may say that compound 49 signifi-
cantly inhibited A549 proliferation. However, surprising results of cell cycle analyses and
Annexin V/PI staining showed that apoptosis was probably not involved in the suppres-
sion of cancer cell growth. Due to this, we decided to study the possible role of autophagy
in indole phytoalexin-induced inhibition of cell proliferation. Autophagy is a pro-survival
process that allows the recycling of unnecessary or damaged cellular components and plays
an important role in cell homeostasis. Moreover, autophagy may also prevent apoptosis of
cancer cells [22], and it is suggested that autophagy suppression may initiate apoptosis of
cancer cells exposed to anticancer drugs [23] or experimental agents [24].

Protein p62, also known as sequestosome 1, is a multifunctional, classic autophagy
receptor, considered together with LC3AB as an important marker of ongoing autophagic
flux. It is involved in cell signaling, metabolism, oxidative stress and cell death. Its main
function is the degradation of misfolded proteins through the ubiquitin–proteasome system
(UPS) and autophagy, thereby maintaining intracellular proteostasis [25]. P62 binds the
autophagosomal membrane protein LC3 and brings p62-containing cytoplasmic contents
to the autophagosome for degradation. Our results showed a significant increase in p62
expression in compound 49-treated lung cancer cells in all time periods (*** p < 0.001)
(Figures 4 and 5). This protein is normally degraded during autophagy after interaction
with LC3 II [26]. On the other hand, accumulation of p62 has also been cited in cancer cells
exposed to a variety of potential anticancer compounds [27–29].
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Beclin-1 plays a key role in the autophagy process, which is activated in cells dur-
ing periods of stress. It ensures the recruitment of autophagosomal proteins to the pre-
autophagosomal structure (PAS) and is part of a complex that is essential for the induction
of autophagy (VSP34 complex). It also interacts with proteins from the Bcl-2 family, by
which it can be inactivated or cleaved by caspases. This is considered a crosstalk between
autophagy and apoptosis [30]. Western blot analyses showed that compound 49 signifi-
cantly upregulated Beclin-1 in all time periods, most significantly after 24 h of incubation
(p < 0.05, p < 0.01, p < 0.001) (Figures 4 and 5). There is no mention in the literature focusing
on Beclin-1 (and even autophagy) and indole phytoalexins. However, another phytoalexin,
resveratrol, has been described to stimulate autophagy in oral cancer cells. Among several
autophagy markers, Beclin-1 expression was upregulated in resveratrol-treated cells [31].
Later, Fan et al. [32] confirmed the ability of resveratrol to induce autophagy associated
with upregulation of Beclin-1 also in lung cancer A549 cells.

ULK1/AMPK. ULK1 is a serine/threonine protein kinase. The ULK1 complex con-
trols the formation of the phagophore, the initial autophagosomal precursor membrane
structure. Upon induction of autophagy, the ULK1 complex translocates to autophagy
initiation sites and regulates the recruitment of a second kinase complex, VPS34. ULK1 can
be inhibited by phosphorylation by mammalian target of rapamycin complex 1 (mTORC1)
or activated after AMP-activated protein kinase (AMPK) phosphorylation [33]. Under
conditions of nutrient deficiency, AMPK is activated, which directly activates ULK1. The
kinase is phosphorylated, i.e., activated by an increased AMP/ATP ratio due to cellular
and environmental stress. AMPK also inactivates mTORC1 and thus blocks its inhibitory
action on autophagy activation [34]. As shown in Figures 4 and 5, the exposure of A549
cancer cells to 49 led to significant upregulation of the phosphorylated form of ULK1
at Ser555 in all time periods, mostly after 24 and 48 h of incubation (p < 0.05, p < 0.01).
Furthermore, a significant increase in the phosphorylated form of AMPK was also observed
(p < 0.01, p < 0.001). Similar results were also demonstrated by Ko et al. [35], who found that
pterostilbene, a naturally occurring phytoalexin, induced autophagy in oral cancer cells, as
confirmed by increased expression of ULK and AMPK. Because activated (i.e., phosphory-
lated) AMPK phosphorylates ULK1 at Ser555 during autophagy initiation [36], we suggest
that compound 49 can initiate autophagy in A549 lung cancer cells.

LC3A/B, a microtubule-associated protein 1A/1B-light chain 3 (LC3), is a soluble
intracellular protein. After synthesis of the pro-LC3 protein, this protein is first cleaved to
form its cytosolic form known as LC3-I. The cytosolic form of LC3 (LC3-I) conjugates with
phosphatidylethanolamine to form the LC3-phosphatidylethanolamine conjugate (LC3-II),
which is recruited to autophagosomal membranes. After the formation of autophagosomes,
their fusion with lysosomes occurs, autolysosomes are formed, and intra-autophagosomal
material (cytoplasmic components including cytosolic proteins and organelles) is degraded
by lysosomal hydrolases. Changes in the levels of the autophagosomal marker LC3-II are
considered a sign of ongoing autophagy, and its lysosomal turnover thus reflects autophagic
activity [37]. Results of our experiments (Figures 4 and 5) showed that indole phytoalexin
49 significantly increased LC3A/B protein expression in A549 cells in all time periods
(p < 0.01, p < 0.001). Association of LC3A/B up-regulation and autophagy induction has
also been referred previously [38–40].

Atg7 belongs to the family of Atg (autophagy-related) proteins involved in the process
of autophagy. A ubiquitin-like conjugation system is required for autophagosome forma-
tion. The Atg7 protein is an E1-like activating enzyme that ensures the conjugation reaction
and is essential for successful conversion of cytosolic LC3-I to its conjugated form, LC3-
II. [41]. We observed (Figures 4 and 5) that the levels of Atg7 were significantly increased in
compound 49-treated A549 cells (p < 0.05, p < 0.01, p < 0.001). Similar results were reported
earlier. Hseu et al. [42] studied the effect of a natural chalcone, flavokawain B, on A549
lung cancer cells. Among other things, they found that flavokawain B induced autophagy
associated with up-regulation of LC3-II and Atg7. Similarly, Maiti et al. [43] found that
application of curcumin to cancer cells induced autophagy associated with a significant
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increase in Atg7 levels with concomitant increase in LC3A/B expression. Moreover, in
curcumin-induced autophagy, up-regulation of beclin-1 has also been observed. Among
phytoalexins, resveratrol has been found to induce autophagy in breast cancer stem-like
cells, as detected by increased expression of autophagy markers including Beclin-1, LC3 II
and Atg7 [44].

Furthermore, to confirm or exclude the role of autophagy in the antiproliferative effect of
compound 49, we performed a set of experiments with chloroquine, an autophagy inhibitor.

2.2.6. MTT Assay with Chloroquine Combination

As shown in Figure 6, chloroquine (CQ) at a doses of 5, 10 and 20 µM significantly
potentiated the effect of compound 49, most effectively at the highest concentration used
(p < 0.001 vs. DMSO, vs. 49 alone as well as vs. CQ alone). These results prompted us to
study the effect of the CQ/compound 49 combination on cell cycle and apoptosis induction.
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2.2.7. Effect of Chloroquine Co-Treatment on Cell Cycle

When compared to compound 49 alone, a more significant effect in combination
with CQ was observed after 24 h of incubation. As shown in Figure 7, compound 49 in
combination with CQ induced significant cell cycle arrest at the G1 phase after 24 h of
incubation with a concomitant decrease in cells in S phase when compared to DMSO, CQ
or compound 49 alone. Analyses of the subG0/G1 subpopulation revealed non-significant
changes compared to the DMSO control and to all other samples at all treatment time points.

2.2.8. Effect of Chloroquine on Apoptosis

In comparison with compound 49 alone, combination with CQ significantly increased
the number of cells in late apoptosis compared to DMSO, CQ or compound 49 alone at all
treatment time points (Figure 8).
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2.2.9. Effect of Compound 49 on Glutathione (GSH) Levels and Activity of
GSH-Related Enzymes

Glutathione is an important intracellular molecule involved in carcinogen detoxifica-
tion. On the other hand, its elevated state in cancer cells is often associated with resistance
to chemotherapy [45]. Furthermore, we previously found that some derivatives of natural
indole phytoalexins possess remarkable glutathione-depleting potency [10,46]. Our results
showed that treatment of A459 lung cancer cells with compound 49 significantly reduced
levels of GSH with a concomitant increase in glutathione reductase (GR) and glutathione-S-
transferase (GST) activity in all time periods. On the other hand, the activity of superoxide
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dismutase (SOD) showed no significant changes in compound 49-treated A549 cells, and
the activity of glutathione peroxidase (GPx) even significantly decreased after 24 and 48 h
of incubation (Table 2). Because high levels of GSH are associated with cancer cell resis-
tance, the GHS-depleting effect of compound 49 could be interesting due to new cancer
chemosensitizer development. In the case of GST and GR, we hypothesize that an increase
in the activity of both enzymes may be a compensatory mechanism induced by GSH
depletion [10,46]. Furthermore, several lines of evidence showed an association between
GHS depletion and autophagy initiation in both cancer and non-cancer cells [10,46–48].
On the basis of the above mentioned, we suggest that GSH depletion can be involved in
compound 49 autophagy induction.

Table 2. Effect of compound 49 on glutathione (GSH), superoxide dismutase (SOD), glutathione
peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST).

SOD
(µkat/mg Prot)

GPx
(µkat/mg Prot)

GR
(µkat/mg Prot)

GSH
(nmol/mg Prot)

GST
(µkat/mg Prot)

DMSO 24 0.523 ± 0.29 0.299 ± 0.009 2.950 ± 0.47 1.707 ± 0.619 1.620 ± 0.09
48 0.604 ± 0.32 0.284 ± 0.031 2.440 ± 0.59 1.546 ± 0.123 1.200 ± 0.19
72 0.466 ± 0.21 0.205 ± 0.108 3.950 ± 0.53 0.603 ± 0.043 1.330 ± 0.46

49 24 0.408 ± 0.24 0.148 ± 0.021 *** 8.200 ± 2.97 * 0.395 ± 0.043 * 3.540 ± 1.07 *
48 0.526 ± 0.27 0.139 ± 0.028 ** 11.270 ± 1.04 *** 0.107 ± 0.015 *** 2.580 ± 0.44 **
72 0.523 ± 0.38 0.077 ± 0.038 10.100 ± 2.89 * 0.228 ± 0.062 ** 5.060 ± 0.52 ***

The data show the mean ± SD values of three independent experiments. * p < 0.05; ** p < 0.01, *** p < 0.001
vs. DMSO.

2.2.10. Effect of Simultaneous Treatment with Compound 49 and Cis-Platin (CisPt) on
A549 Human Lung Cancer Cell Proliferation

Furthermore, the depletion of GSH has been documented to potentiate the effect of
anticancer drugs [49,50]. Glutathione plays an important role in cisPt detoxification, so
depletion of GSH is believed to potentiate the cisPt-induced DNA damage and increase
the chemosensitivity of cancer cells to this anticancer drug [51]. Due to the GSH-depleting
effect of compound 49, we performed a set of experiments with cis-platin (CisPt) alone
or in combination with compound 49 (Figure 9). Treatment of lung cancer cells with
different CisPt concentrations alone for 72 h resulted in dose-dependent growth inhibition
with the maximal effect of CisPt at the concentration of 10.0 µM (39% reduction of cell
growth). Simultaneous treatments with CisPt (10 µM) and 20 µM of compound 49 caused
a 59% reduction in cell growth. Statistical analysis showed that the drug combination
was more effective than compound 49 or CisPt treatment alone (p < 0.05; p < 0.01). These
data suggest that compound 49 potentiates the cancer cell suppressive effect of cisPT, and
this effect can be due to the depletion of cellular GSH. Similar results we also obtained by
Kachadourian et al. [52], who found that selected flavonoids potentiated cytotoxicity of
cis-platin in A549 lung cancer cells via depletion of GSH.

In summary, in this study, a new series of bis-indole analogues with a phenyl linker
derived from indole phytoalexins were designed and synthesized. The structure of the
analogues 48–52a was confirmed by NMR spectroscopy. Compound 49 significantly sup-
pressed the growth of lung cancer cells with low cytotoxicity in non-cancer cells. Surpris-
ingly, the mechanistic analyses showed that compound 49 did not affect either the cell
cycle or apoptosis. Subsequent analyses, however, showed that compound 49 initiated au-
tophagy, as demonstrated by increased phosphorylation or expression of several autophagy
markers, including AMPK, ULK1, Beclin-1, LC3A/B, p62 and Atg7. Furthermore, experi-
ments with chloroquine (an autophagy inhibitor) showed cell cycle arrest at the G1 phase
and increased numbers of cells in late apoptosis in combination with compound 49. On the
basis of these results, we suggest that autophagy probably has a defensive function, and it
is not involved in the antiproliferative effect of compound 49. In addition, compound 49
caused GSH depletion in cancer cells, resulting in increased sensitivity to cancer treatment,
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as documented by the potentiation of cis-platin cytotoxicity in indole phytoalexin-treated
cells. These results provide new and interesting information that compound 49-induced
GSH depletion could be useful to increase the effectiveness of anticancer drugs.
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Figure 9. Effect of cis-platin (CisPt) on A549 cell survival either alone or in combination with
compound 49 (20 µM). The data show the mean ± SD values of three independent experiments.
*** p < 0.001 vs. DMSO, + p < 0.05 vs. CisPt, ++ p < 0.01 vs. CisPt, • p < 0.05 vs. 49.

3. Materials and Methods
3.1. General Remarks

1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were measured in CDCl3 or
DMSO-d6 on a Varian Mercury Plus spectrometer. Chemical shifts (δ) are reported in ppm
downfield from TMS as internal standard, and coupling constants (J) are given in hertz
(Hz). Melting points were determined on a Kofler micro melting point apparatus and are
uncorrected. Infrared spectra were recorded on an Avatar FT-IR 6700 (Thermo Scientific,
UK) using an attenuated total reflectance (ATR) method in the range 4000–400 cm−1.
Microanalyses were performed with a Perkin-Elmer, CHN 2400 elemental analyzer. The
progress of chemical reactions was monitored on TLC-sheets ALUGRAM® SIL G/UV254
(Macherey-Nagel, Dueren, Germany). Detection was carried out with ultraviolet light
(254 nm). Column chromatography was performed on silica gel, Kieselgel 60 Merck Type
9385 (0.040–0.063). All commercial reagents were used in the highest available purity
without further purification.

3.2. Synthesis
3.2.1. Synthesis of N,N′-(1,4-phenylene)bis{N′-[1-(tert-butoxycarbonyl)indol-3-yl]methyl
(thiourea)} (48)

To a solution of {[1-(tert-butoxycarbonyl)indol-3-yl]methyl} isothiocyanate (47; 0.623 g,
2.16 mmol) and 1,4-phenylenediamine dihydrochloride (0.196 g, 1.08 mmol) in
dichloromethane (10 mL), triethylamime was added (0.655 g, 0.903 mL, 6.48 mmol). The
reaction mixture was refluxed for 24 h. The resulting white precipitate was filtered out, and
the pure product was isolated.

Yield: 69% (0.511 g), white crystals, m.p. = 204–206 ◦C (dichloromethane), Rf (n-
hexane/ethyl acetate 1:1) = 0.38.

1. H NMR (400 MHz, DMSO-d6) δ: 9.53 (s, 2H, NH, NH′), 8.04 (d, J = 8.2 Hz, 2H, H-7,
H-7′), 8.03 (s, 2H, NH, NH′), 7.75 (d, J = 7.8 Hz, 2H, H-4, H-4′), 7.62 (s, 2H, H-2, H-2′), 7.33
(dd, J = 8.2 Hz, J = 0.8 Hz, 2H, H-6, H-6′), 7.32 (s, 4H, H-2”, H-3”, H-5”, H-6”), 7.25 (ddd,
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J = 7.8 Hz, J = 7.8 Hz, J = 0.8 Hz, 2H, H-5, H-5′), 4.84 (d, J = 4.4 Hz, 4H, CH2, CH2
′), 1.61 [s,

18H, (CH3)3, (CH3)3
′].

13. C NMR (100 MHz, DMSO-d6) δ: 180.8 (C=S, C=S′), 149.5 (C=O, C=O′), 135.9 (C-1”,
C-4”), 135.3 (C-7a, C-7a′), 129.6 (C-3a, C-3a′), 125.0 (C-6, C-6′), 124.5 (C-2, C-2′), 123.9 (C-2”,
C-3”, C-5”, C-6”), 123.1 (C-5, C-5′), 120.2 (C-4, C-4′), 118.4 (C-3, C-3′), 115.2 (C-7, C-7′), 84.3
[C(CH3)3, C(CH3)3

′], 39.3 (CH2, CH2
′), 28.1 [C(CH3)3, C(CH3)3

′].
IR νmax (cm−1) 3275 (NH), 2976, 1731 (C=O), 1508, 1451, 1368, 1255, 1152, 1086.
Anal. Calcd for C36H40N6O4S2 requires: C 63.13%; H 5.89%; N 12.27%; Found: 63.33%;

H 6.06%; N 12.51%.

3.2.2. Synthesis of N,N′-(1,4-phenylene)bis{N′-[1-(tert-butoxycarbonyl)indol-3-yl]methyl
(urea)} (49)

To a solution of thiourea (48; 0.103 g, 0.15 mmol) in anhydrous chloroform/methanol
(1.3 mL/1.3 mL), mesityl nitrile oxide (0.097 g, 0.6 mmol) was added. The reaction mixture
was stirred for 2 h at room temperature. The resulting white precipitate was filtered out,
and the pure product was isolated.

Yield: 58% (0.057 g), white crystals, m.p. = >300 ◦C (chloroform/methanol), Rf (n-
hexane/ethyl acetate 1:1) = 0.13.

1. H NMR (400 MHz, DMSO-d6) δ: 8.29 (s, 2H, NH, NH′), 8.03 (d, J = 8.2 Hz, 2H, H-7,
H-7′), 7.68 (d, J = 7.4 Hz, 2H, H-4, H-4′), 7.56 (s, 2H, H-2, H-2′), 7.34–7.30 (m, 2H, H-6, H-6′),
7.23 (s, 4H, H-2”, H-3”, H-5”, H-6”), 7.26–7.22 (m, 2H, H-5, H-5′), 6.42 (t, J = 5.4 Hz, 2H,
NH, NH′), 4.39 (d, J = 5.4 Hz, 4H, CH2, CH2

′), 1.60 [s, 18H, (CH3)3, (CH3)3
′].

13. C NMR (100 MHz, DMSO-d6) δ: 155.7 (C=O, C=O′), 149.5 (C=O, C=O′), 135.4 (C-7a,
C-7a′), 134.7 (C-1”, C-4”), 129.6 (C-3a, C-3a′), 124.9 (C-6, C-6′), 123.8 (C-2, C-2′), 123.0 (C-5,
C-5′), 120.1 (C-3, C-3′), 120.0 (C-4, C-4′), 118.9 (C-2”, C-3”, C-5”, C-6”), 115.2 (C-7, C-7′), 84.1
[C(CH3)3, C(CH3)3

′], 34.6 (CH2, CH2
′), 28.1 [C(CH3)3, C(CH3)3

′].
IR νmax (cm−1) 3306 (NH), 2976, 1735 (C=O), 1628, 1566 (NHC=O), 1369, 1354, 1258,

1157, 1085.
Anal. Calcd for C36H40N6O6 requires: C 66.24%; H 6.18%; N 12.88%; Found: 66.49%;

H 6.37%; N 13.04%.

3.2.3. Synthesis of 2,2′-[1,4-phenylenebis(azanylylidene)]bis{3-[(1-(tert-butoxycarbonyl)-
indol-3-yl)methyl]-1,3-thiazolidin-4-one} (51a)

To a solution of thiourea (48; 0.103 g, 0.15 mmol) in anhydrous dichloromethane
(4.5 mL), methyl bromoacetate (0.229 g, 0.142 mL, 1.5 mmol) was added. After 5 min,
triethylamine (0.303 g, 0.418 mL, 3 mmol) was added, and the reaction mixture was stirred
for 24 h at room temperature. After diluting the mixture with dichloromethane (15 mL),
the dichloromethane layer was washed with saturated NaCl solution (2 × 15 mL). The
organic layer was dried over anhydrous sodium sulphate. After evaporation of the solvent,
the residue was purified by column chromatography on a silica gel (15 g SiO2, eluent
n-hexane/ethyl acetate 2:1). The obtained product was crystallized from acetone/n-hexane.

Yield: 57% (0.065 g), white crystals, m.p. = 196–198 ◦C (acetone/n-hexane), Rf (n-
hexane/ethyl acetate 2:1) = 0.73.

1. H NMR (400 MHz, CDCl3) δ: 8.14 (d, J = 7.5 Hz, 2H, H-7, H-7′), 7.95 (d, J = 7.5 Hz,
2H, H-4, H-4′), 7.84 (s, 2H, H-2, H-2′), 7.35–7.26 (m, 4H, H-5, H-5′, H-6, H-6′), 7.00 (s, 4H,
H-2”, H-3”, H-5”, H-6”), 5.14 (s, 4H, CH2, CH2

′), 3.79 [s, 4H, CH2 (thiazolidin-4-one), CH2
(thiazolidin-4-one)′], 1.67 [s, 18H, (CH3)3, (CH3)3

′].
13. C NMR (100 MHz, CDCl3) δ: 171.5 (C=O, C=O′), 153.9 (C=N, C=N′), 149.6 (C=O,

C=O′), 144.6 (C-1”, C-4”), 135.2 (C-7a, C-7a′), 129.5 (C-3a, C-3a′), 127.2 (C-2, C-2′), 124.5
(C-6, C-6′), 122.7 (C-5, C-5′), 121.9 (C-2”, C-3”, C-5”, C-6”), 120.1 (C-4, C-4′), 115.1 (C-7, C-7′),
114.9 (C-3, C-3′), 83.8 [C(CH3)3, C(CH3)3

′], 37.3 (CH2, CH2
′), 32.7 [CH2 (thiazolidin-4-one),

CH2 (thiazolidin-4-one)′], 28.2 [C(CH3)3, C(CH3)3
′].

IR νmax (cm−1) 3007, 1731 (C=O), 1717 (C=O), 1608, 1449, 1367, 1255, 1165.
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Anal. Calcd for C40H40N6O6S2 requires: C 62.81%; H 5.27%; N 10.99%; Found: 62.97%;
H 5.53%; N 11.19%.

3.2.4. Synthesis of trans-(±)- and cis-(±)-N,N′-bis[1-(tert-Butoxycarbonyl)-2-methoxy-
spiro{indoline-3,5′-[4′,5′]dihydrothiazol-2′-yl}]benzene-1,4-diamine [(±)-52a, (±)-52b]

A freshly prepared solution of bromine (0.855 mL, 0.365 mmol; the stock solution
prepared by dissolving of bromine (0.04 mL) in anhydrous dichloromethane (1.76 mL)) was
added to a solution of thiourea (48; 0.114 g, 0.166 mmol) in a mixture of anhydrous solvents
dichloromethane/methanol (3.0 mL/0.3 mL). After stirring for 10 min., triethylamine
(0.074 g, 0.102 mL, 0.730 mmol) was added, and the reaction mixture was stirred for another
5 min. After diluting the mixture with dichloromethane (20 mL), the dichloromethane layer
was washed with saturated NaCl solution (2 × 25 mL). The organic layer was dried over
anhydrous sodium sulphate. After evaporation of the solvent, the residue was submitted
to chromatography on a silica gel (15 g, eluent dichloromethane/ethyl acetate/ammonia
20:20:0.1) to afford pure diastereoisomer trans-(±)-52a and cis-(±)-52b containing trans-
(±)-52a as an inseparable impurity. The obtained trans-diastereoisomer trans-(±)-52a was
crystallized from dichloromethane/n-hexane.

Trans-(±)-52a

Yield: 55% (0.068 g), white crystals, m.p. = 208–210 ◦C (dichloromethane/n-hexane),
Rf (dichloromethane/ethyl acetate/ammonia 20:20:0.1) = 0.50.

1. H NMR (400 MHz, CDCl3) δ: 7.75 (s, 2H, H-7, H-7′), 7.37 (d, J = 7.5 Hz, 2H, H-4,
H-4′), 7.25 (dd, J = 7.5 Hz, J = 7.5 Hz, 2H, H-6, H-6′), 7.03–7.00 (m, 6H, H-5, H-5′, H-2”,
H-3”, H-5”, H-6”), 5.54 (s, 2H, H-2, H-2′), 4.34 (d, J = 12.1 Hz, 2H, Hb, Hb

′), 4.07 (d, J = 12.1
Hz, 2H, Ha, Ha

′), 3.54 (s, 6H, OCH3, OCH3
′), 1.57 [s, 18H, (CH3)3, (CH3)3

′].
13. C NMR (100 MHz, CDCl3) δ: 159.2 (C=N, C=N′), 151.9 (C=O, C=O′), 142.2 (C-1”,

C-4”), 141.5 (C-7a, C-7a′), 129.8 (C-6, C-6′, C-3a, C-3a′), 123.6 (C-4, C-4′, C-2”, C-3”, C-5”,
C-6”), 121.6 (C-5, C-5′), 115.9 (C-7, C-7′), 98.6 (C-2, C-2′), 82.2 [C(CH3)3, C(CH3)3

′], 65.4
(C-3, C-3′), 58.2 (OCH3, OCH3

′), 53.8 (CH2, CH2
′), 28.3 [C(CH3)3, C(CH3)3

′].
IR νmax (cm−1) 3325 (NH), 2889, 1717 (C=O), 1635, 1479, 1384, 1169, 1080.
Anal. Calcd for C38H44N6O6S2 requires: C 61.27%; H 5.95%; N 11.28%; Found: 61.50%;

H 6.12%; N 11.54%.

Cis-(±)-52b

Yield: 20% (0.025 g), colorless oil, Rf (dichloromethane/ethyl acetate/ammonia
20:20:0.1) = 0.59.

1. H NMR (400 MHz, CDCl3) δ: 7.78 (s, 2H, H-7, H-7′), 7.41–7.38 (m, 2H, H-4, H-4′),
7.28–7.24 (m, 2H, H-6, H-6′), 7.06–7.01 (m, 6H, H-5, H-5′, H-2”, H-3”, H-5”, H-6”), 5.26 (s,
2H, H-2, H-2′), 3.92 (d, J = 12.1 Hz, 2H, Hb, Hb

′), 3.63 (d, J = 12.1 Hz, 2H, Ha, Ha
′), 3.56 (s,

6H, OCH3, OCH3
′), 1.58 [s, 18H, (CH3)3, (CH3)3

′].

3.3. Biological Activity
3.3.1. Tested Compounds

All tested compounds were synthesized by Marianna Budovska (see above). The
compounds were dissolved in DMSO. The final concentration of DMSO in the culture
medium did not exceed 0.2% and had no cytotoxic effect.

3.3.2. Cell Culture

The cell lines used for this study were Caco-2 (human colorectal adenocarcinoma cell
line, American Type Culture Collection, Manassas, VA, USA (ATCC)), HCT116 (human
colorectal carcinoma cells European Collection of Authenticated Cell Cultures, Salisbury,
UK (ECACC)), HeLa (human cervical tumor cells, ECACC), MCF-7 (human breast tumor
cells, ECACC), MDA-MB-231 (human breast tumor cells, ATCC), A549 (human lung carci-
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noma cells, ATCC), BLM (human melanoma lung metastases, a gift from prof. K. Smetana,
Institute of Anatomy, Charles University in Prague), Jurkat (human leukemia cell line,
ECACC), Cos-7 (immortalized monkey kidney fibroblasts, ATCC) and MCF-10A (human
mammary epithelial cells, ATCC). Caco-2, MCF-7, BLM, Cos-7 and A549 cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) with high glucose and sodium pyruvate
(GE Healthcare, Piscataway, NJ, USA); HCT116 lines, HeLa, MDA-MB-231 and Jurkat
were cultured in RPMI-1640 medium; and MCF10A cells were cultured in high glucose
DMEM/F12 (Dulbecco’s Modified Eagle’s Medium F12). The media were enriched with
10% fetal bovine serum (FBS) and a 1% solution of a mixture of antibiotics and antimycotics
1×HyClone™ (GE Healthcare, Chicago, IL, USA). DMEM/F12 medium was supplemented
with epidermal growth factor (EGF) (20 ng/mL final), hydrocortisone (0.5 µg/mL final)
and insulin (10 µg/mL final) (Sigma-Aldrich Chemie, Steinheim, Germany). The cells were
placed in an incubator at 37 ◦C with humidified air containing 5% CO2.

3.3.3. MTT Colorimetric Assay

The MTT assay is a colorimetric method used to quantify the metabolic activity of
cells. MTT (3-(4,5-di-methylthiazol-2-yl)2,5-diphenyltetrazolium bromide) (Sigma-Aldrich
Chemie, Steinheim, Germany) is reduced by oxidoreductases in the cytosol of cells to
light-absorbing formazan, the presence of which can be measured spectrophotometrically
and determines the half-maximal inhibitory concentration (IC50). A549 cells were seeded in
95-well culture plates at a density of 5 × 103 per well. After 24 h of cultivation, the tested
substance 49 was added in concentrations of 10, 50 and 100 µM.

We also incubated the cells with chloroquine at concentrations of 5–20 µM, which
was added 1 h before the addition of the test substance, and cisplatin at concentrations of
3–10 µM. Cisplatin was added 24 h after the addition of 49. After 72 h of incubation, 10 µL
of MTT (5 mg/mL) was added to each well. After 4 h, formazan crystals formed in the
wells, which were dissolved in 100 uL of 10% SDS (sodium dodecyl sulfate). After 24 h,
the absorbance was measured at a wavelength of 540 nm using an automated Cytation™
3 Cell Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA). These experiments were
performed in three independent replicates.

3.3.4. BrdU Cell Proliferation Assay

A549 tumor cells were plated at a density of 5 × 103 cells/well in a volume of 80 µL
(96-well plates). After 24 h of incubation in the respective medium, we added the indole
phytoalexin 49 in concentrations of 5–30 µM. After 48 h of incubation with the test substance,
we added BrdU labeling solution and incubated for another 24 h. Subsequently, the cells
were fixed for 30 min with a fixing solution, aspirated and incubated with peroxidase-
conjugated anti-BrdU antibody (100 µL, 1:100). After washing with washing buffer 3 times,
TMB substrate solution (tetramethylbenzidine, Roche, Basel, Switzerland) was added in a
volume of 100 uL to each well. During the reaction, 25 µL of 1M H2SO4 was added as a stop
solution, and the amount of BrdU incorporated was detected with an automated Cytation™
3 Cell Imaging Multi-Mode Reader (Biotek, Winooski, VT, USA) at a wavelength of 450 nm.
Three independent analyses were performed.

3.3.5. Cell Cycle Analysis

The A549 lung human alveolar adenocarcinoma cells were seeded at a density of
2 × 105/dish. After 24 h incubation, the cells were treated with indole phytoalexin 49 at
20 µM concentration alone or after 1 h pre-treatment with chloroquine (20 µM), and the
control group with DMSO (v/v 0.02%). The whole population of treated cells (adherent
and floating) for cell cycle analyses was harvested at three different times (24, 48 and 72 h),
washed in cold washing buffer (PBS), fixed in cold 70% ethanol and stored at −20 ◦C at
least overnight. For flow cytometry analyses, cell suspensions were washed with PBS,
resuspended in staining solution (Triton X-100 final concentration 0.1%, ribonuclease A
final concentration 0.5 mg/mL, and propidium iodide final concentration 0.025 mg/mL)
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and incubated for 30 min in the dark at RT. Stained cells were analyzed using a BD
FACSCaliburTM Flow Cytometer (Becton Dickinson, San Jose, CA, USA) in FL-2 channel.
Three independent analyses were performed.

3.3.6. Annexin V/PI Analysis

The A549 lung human alveolar adenocarcinoma cells were seeded at a density of
2 × 105/dish. After 24 h incubation, the cells were treated with indole phytoalexin 49 at
20 µM concentration alone or after 1 h pre-treatment with chloroquine (20 µM), and the
control group with DMSO (v/v 0.02%). The whole population of treated cells (adherent
and floating) was harvested at three different times (24, 48 and 72 h), washed with PBS and
stained with Annexin V-Alexa Fluor® 647 antibody (Thermo Scientific, Rockford, IL, USA)
in binding buffer for 20 min in the dark at RT. After the wash step, samples were stained
with 1 µL of propidium iodide (final concentration 25 µg/mL) for 5 min and analyzed
using a BD FACSCaliburTM Flow Cytometer (Becton Dickinson, San Jose, CA, USA). Three
independent analyses were performed.

3.3.7. Western Blot Analysis

A549 cells were seeded on Petri dishes (55 cm2) at a density of 1 × 106 and allowed
to culture in the medium. After 24 h, the test substance was added, and the cells were
incubated for 24, 48 and 72 h. Subsequently, the cells were lysed with ice-cold Laemli
buffer solution containing glycerol, 1M Tris/HCl (pH 6.8), 20% sodium dodecyl sulphate
(SDS), deionized water and mixtures of phosphatase and protease inhibitors. After lysis,
the cells were sonicated, and the protein concentration in the samples was quantified
using the Pierce® BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) and
measured by an automated Cytation™ 3 Cell Imaging Multi-Mode Reader (Biotek) at a
wavelength of 570 nm. Proteins, added in an amount of 30 µg per well were separated
on 10% SDS-PAA gels for approximately 3 h (at a voltage of 100 V) and transferred to
polyvinylidene difluoride) (PVDF) membranes using the iBlot™ 2 dry blotting system
(Invitrogen, Carlsbad, CA, USA). The membranes were washed and blocked in a solution
of 5% non-fat dry milk (Cell Signaling Technology®, Danvers, MA, USA) or 5% bovine
serum albumin (BSA, SERVA, Heidelberg, Germany) in a solution of TBS-Tween (TBST,
pH 7,4) at RT. After blocking non-specific binding, the membranes were incubated with
primary antibody solutions overnight at 4 ◦C. The list of primary and secondary antibodies
is given in Table 3. The next day, we washed the membranes 3 × 5 min in TBST solution
and incubated with the appropriate secondary antibody conjugated with horseradish
peroxidase (HRP) for 1 h at RT. We washed the membranes again with TBST (3 × 5 min).
An iBright™ FL1500 Imaging System (Invitrogen, Carlsbad, CA, USA) using an ECL
chemiluminescent substrate (Thermo Scientific, Rockford, IL, USA) was used to detect
the expression of selected proteins. Densitometric analysis was performed using Image
Studio™ Lite Software (LI-COR Biosciences, Lincoln, NE, USA). Beta-actin was used as a
loading control, and each analysis was performed in three independent experiments.

3.3.8. Measurement of Glutathione Content and Antioxidant Enzyme Activity

Both floating and adherent A549 cells were harvested at 24, 48, and 72 h after treatment
with compound 49 (20 µM). SOD determination kit, Glutathione Peroxidase Cellular Activ-
ity Assay kit, Glutathione Reductase Assay Kit and Glutathione-S-transferase (GST) Assay
Kit (all Sigma Aldrich, Germany) were used for the detection of relevant enzyme activity.
Reduced glutathione (GSH) content was measured by the method originally described by
Floreani et al. [53]. Assays were performed on an M 501 single beam UV/VIS spectropho-
tometer (Spectronic Camspec Ltd., Leeds, United Kingdom). All measured parameters were
calculated per milligram or gram of protein determined using the bicinchoninic acid assay.
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Table 3. List of Western blot antibodies.

Primary Antibody Mr (kDa) Origin Manufacturer

p62/SQSTM1 62 Rabbit Abcam, Cambridge, United
Kingdom

Beclin-1 60 Rabbit

Cell Signaling Technology,
Danvers, MA, USA

Phospho-AMPKα 62 Rabbit
Phospho-ULK Ser555 140–150 Rabbit

LC3A/B 14/16 Rabbit
ATG7 78 Rabbit
β-actin 45 Rabbit

Secondary antibody Mr (kDa) Origin Manufacturer

Anti-rabbit IgG HRP - Goat Cell Signaling Technology,
Danvers, MA, USA

3.3.9. Statistical Analysis

Results are expressed as mean ± standard deviation (SD). Statistical analyses of data
were performed using standard procedures with one-way analysis of variance (ANOVA)
followed by Bonferroni’s multiple comparison test. Differences were considered significant
when p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010251/s1, 1H NMR and 13C NMR spectra of the
synthesized compounds. 1H NMR spectrum (DMSO-d6, 400 MHz) of thiourea 48; 13C NMR spectrum
(DMSO-d6, 100 MHz) of thiourea 48; 1H NMR spectrum (DMSO-d6, 400 MHz) of urea 49; 13C NMR
spectrum (DMSO-d6, 100 MHz) of urea 49; 1H NMR spectrum (CDCl3, 400 MHz) of thiazolidin-4-one
51a; 13C NMR spectrum (CDCl3, 100 MHz) of thiazolidin-4-one 51a; 1H NMR spectrum (CDCl3,
400 MHz) of trans-(±)-52a; 13C NMR spectrum (CDCl3, 100 MHz) of trans-(±)-52a; 1H NMR spectrum
(CDCl3, 400 MHz) of cis-(±)-52a.
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